高中物理竞赛热学部分题选

高中物理竞赛热学部分题选
高中物理竞赛热学部分题选

高中物理竞赛热学部分题选

1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。导线按斯特藩定律从其表面散热。斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即

()

,4

4外辐T T S P -∞

试说明为什么用保险丝时并不需要准确的长度。

解:设l 为保险丝长度,r 为其半径,P 为输至整个保险丝上的功率。若P 增大,保险丝的温度将上升,

直到输入的电功率等于辐射的功率。

所以当P 超过某一值m ax P 时,在一定的时间内,保险丝将烧毁,而

()

,214

4max l r c T T kS P ??=-=π外熔

式中k 为一常数,S 为表面积,1c 为一常数。

由于P=I 2R ,假设保险丝的电阻R 比它所保护的线路电阻小很多,则I 不依赖于R ,而

ρρ

,S l R =为

常数,2

r S π=为保险丝的横截面积。

,/2

2r l I P πρ=

当rl c r l I 22

2

/=时(这里2c 为另一常数),保险丝将熔化。

.322r c I = 可见,保险丝的熔断电流不依赖于长度,仅与其粗细程度(半径r)有关。

2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。

解:金属A 和B 从自由状态降温,当温度降低t ?时的总缩短为

t l l l l B A B A ?+=?+?=?0)(αα (1)

而在-20°C 时,若金属丝中的拉力为F ,则根据胡克定律,A 、B 的伸长量分别为F/K A 和F/K B ,

所以 l K E

K E B A ?=+ (2)

t l K K F B A B A ?+-????

??+0)(11αα (3)

所以 N

K K t l F B

A B A 50011)(0=+?+=αα

因为N F 450>,所以温度下降到-20°C 前A 丝即被拉断。A 丝断后。F=0,即使温度再下降很多,B 丝也不会断。

3.长江大桥的钢梁是一端固定,另一端自由的。这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2)

解:长1m 、横截面积为1mm 2的杆,受到10N 拉力后伸长的量,叫伸长系数,用a 来表示,而它的倒数叫弹性模量E ,./1a E =当杆长为L 0m ,拉力为F ,S 为横截面积(单位为mm 2),则有伸长量

,0ES F

L L =

?

所以有公式

.0L L E S F p ?==

又由于 (),10t a L L ?+=

所以

t

a L L L ?=-00

得 t

Ea L L L E S F

p ?=-?==00

代入数据得 ()[]()

2

65/12010401012100.2mm N p =--????=-

大桥一端是自由端,是为了避免钢梁热胀冷缩而产生的有害胁强;否则钢梁会因热胀冷缩引起的胁强

而断裂,即如果两端固定,由于热胀冷缩会对钢梁产生拉伸或压缩的压强而使钢梁受损。此时钢梁所承受的胁强为

2/120mm N p =。

4.厚度均为a=0.2毫米的钢片和青铜片,在T 1=293开时,将它们的端点焊接起来,成为等长的平面双金属片,若钢和青铜的线膨胀系数分别为10-5/度和2×10-5/度,当把它们的温度升高到T 2=293开时,它们将弯成圆弧形,试求这圆弧的半径,在加热时忽略厚度的变化。

分析:本题可认为每一金属片的中层长度等于它加热后的长度,而与之是否弯曲无关。

解:设弯成的圆弧半径为r ,l 为金属片原长,φ为圆弧所对的圆心角,1α和2α分别为钢和青铜的线膨胀系数,1l ?和2l ?分别为钢片和青铜片温度由1T 升高到2T 时的伸长量,那么对于钢片

1

)2(l l r ?+=-α

? (1)

)(1211T T l l -=?α (2)

对于青铜片

2

)2

(l l r ?+=+α

? (3)

)

(1222T T l l -=?α (4) 将(2)代入(1)、(4)代入(3)并消去φ,代入数据后得

03.20=r 厘米

5.在负载功率P 1=1kW ,室温t 0=20℃时,电网中保险丝的温度达到t 1=120℃,保险丝的材料的电阻温度系数α=4×10-3K -1,保险丝的熔断温度t 2=320℃,其所释放的热量与温度差成正比地增加,请估计电路中保险丝熔断时负载的功率。 解:设电网电压为U ,单位时间内保险丝所释放的热量为

R U P Q 2

)/(= 式中R 是温度为t 时保险丝的电阻,由题文知

u

C

图21-14

)1(0t R R α+= )(0t t k Q -=

式中k 是比例系数,此热量传给周围介质,这样对于功率为1P 和2P 的负载可建立方程:

)()1()/(01102

1t t k t R U P -=+α

)()1()/(02202

2t t k t R U P -=+α 由此解得欲求的负载功率为

)1)(/()1)(

(20110212t t t t t t P P αα+-+-= kW 4.1≈

6.毛细管由两根内径分别为d 1和d 2的薄玻璃管构成,其中d 1?d 2,如图

21-15所示,管内注入质量为M 的一大滴水。当毛细管水平放置时,整个水滴“爬进”细管内,而当毛细管竖直放置时,所有水从中流出来。试问当毛细管的轴与竖直方向之间成多大角时,水滴一部分在粗管内而另一部分在细管内?水的表面张力系数是σ,水的密度为ρ。对玻璃来说,水是浸润液体。 解:由于对玻璃来说,水是浸润液体,故玻璃管中的水面成图21-15所示的凹弯月面,且可认为接触角为0°,当管水平放置时,因水想尽量和玻璃多接触,故都“爬进”了细管内。而当细管竖直放置时,由于水柱本身的重力作用使得水又“爬进”了粗管。毛细管轴线与竖直线之间夹角为最大时,这符合于整个水滴实际上在毛细管细管部分的情况,这时水柱长:

22max 41

d M L πρ=

于是根据平衡条件得:

max max 2

010cos 44αρσσgL d p d p +-=-

式中0p 为大气压强。由此得到

???? ??

-=122m in 1arccos

d d Mg d πσα

同理,毛细管的轴与竖直线之间的夹角为最小值,这将是整个水滴位于粗管内的情况,同理可得

???? ?

?-=1arccos 2

11max d

d Mg d πσα

7.有一摆钟在25℃时走时准确,它的周期是2s ,摆杆为钢质的,其质量与摆锤相比可以忽略不计,

仍可认为是单摆。当气温降到5℃时,摆钟每天走时如何变化?已知钢的线胀系数α=1.2×10-5℃-1。

分析:钢质摆杆随着温度的降低而缩短,摆钟走时变快。不管摆钟走时准确与否,在盘面上的相同指示时间内,指针的振动次数是恒定不变的,这由摆钟的机械结构所决定,从而求出摆钟每天走快的时间。

解:设25℃摆钟的摆长m l 1,周期C s T ο

5,21

=时摆长为m l 2,周期s T 2,则

g l T g l T 22112,2ππ

==

由于12l l <,因此12T T <,说明在5℃时摆钟走时加快。

在一昼夜内5℃的摆钟振动次数2

23600

24T n ?=

次,这温度下摆钟指针指示的时间是

.

3600241212T T T n ??=

图21-15

这摆钟与标准时间的差值为t ?,

3600243600

2412?-??=

?T T t

()

.

37.10104.212104.21123600244

14

1s g l

g

l

=?-?--??=--ππ

8.有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计),直径为d=2.0m 。球内充

有压强p 0=1.005×105Pa 的气体,该布料所能承受的最大不被撕破力f m =8.5×103

N/m ,(即对于一块展平的

一米宽的布料,沿布面而垂直于布料宽度方向所施加的力超过8.5×103N 时,布料将被撕破)。开始时,气

球被置于地面上,该处的大气压强为p a0=1.000×105Pa ,温度T 0=293K 。假设空气的压强和温度均随高度而线性地变化,压强的变化为a p =-9.0Pa/m ,温度的变化为a T =-3.0×10-3K/m ,问该气球上升到多少高度时将破裂?

假设气体上升很缓慢,可认为球内温度随时与周围空气的温度保持一致,在考虑气球破裂时,可忽略气球周围各处和底部之间空气压强的差别。

解:当气球充满气体而球内压强大于球外时,布料即被绷紧,布料各部分之间产生张力,正是这种张力可能使布料被撕裂,设想把气球分成上下两个半球,它们的交线是一个直径为d 的圆周,周长为d π,所以要从这条交线处撕裂气球,至少需要的张力为d f m π?。另一方面,考虑上半球(包括半球内的气体)受力的情况,它受到三个力的作用:

(1)下半球的球面布料所施加的张力F ;

(2)上半球外空气对它的压力的合力,其大小为a

a p d P ,4

2

π?

是气球所在高度处的大气压强;

(3)下半球内气体对它的压力为42

d P π?

,式中p 为气球内气体的压强。

忽略浮力时,上述三力相互平衡,即

F

d p d P a +?

=?

4

4

2

2

ππ

而当d f F m π??时,布料即被撕裂,所以,气球破裂的条件是

d

f d p p m a ππ???

-4

)(2

(1)

设气球破裂发生在高度h 处,则

h

a p p p a a +=0 (2)

而该处温度

h a T T T +=0 (3)

这个温度也就是破裂时气球内气体的温度。又因为气球在上升过程中球内气体是等容变化,所以有

00T p T p =即00T T p p ?= (4)

将(2)、(4)和(3)式代入(1)式,得

m

a a T p p p d f h p

T a m 30000101.2)/()

()/4(?=---?

(5)

即气球上升到m 3

101.2?高度以上就将被裂。

9.有一底部开口的热气球,其体积V b =1.1m 3

是常数,气球蒙皮的质量m k =0.187kg ,其体积可忽略不

计,空气的初始温度为θ3=20℃,正常的外部气压为p 0=1.013bar ,在这些条件下的空气密度为ρ1=1.2kg/m 2

1.为使气球刚好能浮起,气球内的空气必须加热到多高的温度?

2.先把气球系牢于地,把内部空气加热到稳态温度θ3=110℃。当气球被释放并开始上升时,其最初的加速度是多少?

3.将气球下部扎紧,在气球内部的空气维持稳态温度θ1=110℃的情形下,气球在温度为20℃和地面大气压为p 0=1.013bar 的等温大气中上升,在这些条件下,求气球能达到的高度h .

4.在高度h 处[见问题3],将气球从其平衡位置拉离Δh=10m ,然后释放,问气球将作何种运动? 解:1、首先计算气球浮起时气球内空气的密度,浮起的条件为

g m g m g m H 12=+

式中m 2是气球内空气的质量,m 1是温度为1θ的空气质量。因

b V m 11ρ=; b V m 22ρ=

所以

312/03.1m kg V m b

h

=-

=ρρ

利用等容状态方程 2211T T ρρ=

式中

K K T 293)20273(1=+= 因此

C K T 023.683.341==

2、和

3、作用于绳的力F K 等于气球所受浮力

f

F 与重力为

l F 之差,即

l

f K F F F -=

其中

g

V F b f 1ρ=; g V g m F b h l 3ρ+=

所以

g m V F h b k ])([31--=ρρ

33

1

1

3/918.0m kg T T ==ρρ

式中K T 3833=,因而得到

N F k 2.1=

根据牛顿第二定律,得

)/(9.032.12

.121s m V F a b k ===

ρ

气球上升直到其重量等于浮力处于平衡,此时有 b k b V h m V )(3ρρ=+

式中)(h ρ是气球外空气的密度,于是

33/088.1)(m kg V m h b

k

=+

=ρρ

由气压公式,空气密度为

h p g e h ???

?

??-=011)(ρρρ

因而

)(ln 1

10h g p h ρρρ=

式中1ρ是高度为零处的密度,代入所给数据,得

m h 827=

10.任何弯曲表面薄膜都对液体施以附加压强,如果液体的表面是半径为R 的球面的一部分,求其产生的附加压强为多大?

解:如图21-20所示的曲面为半径R 的球面的一部分,在其上选取一小块球面S ?来讨论,加在l ?上的力f ?为 l f ?=?σ

这样 ?σ?sin sin 1l f f ?=?=?

因而施加在整个球面S ?上平行于半径OC 的力:

∑∑=?=?=?

πσ?σsin 2sin 11r l f f

又因底面周边的轴对称性,整个圆周上所受表面张力沿底面平行方向的分力互相抵消,由图可知

R r =

?sin 则

R r f 212πσ=

附加压强为

R Rr r S f P σππσ222

21==?= 注:上式是在凸液面条件下导出的,不难证明在数值上对凹液面也成立,不过对凹液面而言,附加压强为

负值,表示球凹形液面内的压强小于外部压强,对一个球形液泡(如肥皂泡),由于有内、外两层液膜,故内外压强差值为R /4σ

11.将1大气压的空气吹成r=2.5厘米的肥皂泡,应作多少功?肥皂液的表面张力系数α=45×10-3牛/米。

解:首先要扩大泡内外的表面积需作功

απα218r S W =?=

同时将空气由10=P 大气压等温压缩到泡内

)3/4,/4(3

0r V r P P πα=+=需作功,由(8-17)式知

)/ln()/ln(002P P PV V V nRT W ==

)41ln(34)4(030r p r R P απα+??+

=

1

03032434W r p r P =??≈απ 式中0P ?r /4α,r P r P 00/4)/41ln(αα=+。两项共需作功

121)3/5(W W W W =+= 3

2

10

2.1)3/5(8-?=?=r π焦。

f

?f ?图21-20

12.紧绷的肥皂薄膜有两个平行的边界,线AB 将薄膜分隔成两部分(如图21-29(a ))。为了演示液体的表面张力现象,刺破左边的膜,线AB 受到表面张力作用被拉紧,试求此时线的张力。两平行边之间的距离为d ,线AB 的长度为l (L ?πd/2),肥皂液的表面张力系数为σ。

解:刺破左边的膜以后,线会在右边膜的作用下形状相应发生变化(两侧都有膜时,线的形状不确定),不难推测,在2/d l π>的情况下,线会形成长度为

()2/21

d l πχ-=

的两条直线段和半径为2/d 的半圆,

如图21-29(b )所示。线在C 、D 两处的拉力及各处都垂直于该弧线的表面张力的共同作用下处于平衡状态,显然

∑=i f T 2,

式中i f 为在弧线上任取一小段所受的表面张力,∑i

f

指各小段所受表面张力的合力,如图21-29(b )

所示,在弧线上取对称的两小段,长度均为θ?r ,与χ轴的夹角均为θ,显然 θσ??==r f f 221。

而这两个力的合力必定沿χ轴方向,(它们垂直χ轴方向分力的合力

为零),这样

θ

θσχχ??==r r f f cos 221,

所以 ∑∑

==?=d r r f i

σσθθσ24cos 2。

因此

d T σ=。

说明:对本题要注意薄膜有上下两层表面层,都会受到表面张力的作用。

13.在航天飞船上,如图21—34所示,有一长cm l 20=的圆筒,绕着与筒长度方向垂直的轴o o '以恒定的转速min /100=n 旋转,筒近轴端离o o '为cm d 10=,筒内装有非常粘稠、密度

3/2.1cm g =ρ的液体,有一颗质量为mg m 0.1='、密度3/5.1cm g ='ρ粒

子从圆筒正中部释放(初始相对筒静止),试求粒子到达筒端克服粘滞阻力

所做功。又问如果这个粒子密度3

/0.1cm g =''ρ,其他条件均不变,则粒

子到达筒端过程中克服粘滞阻力所做功又是多少?

解 (1)设粒子体积V ?,它离开转轴距离为r ,设想粒子由周围同样液体取代,则小液团受到合力提供向心力,即有2

ωρr V F F ??=-',现将小液团换成粒子,由于质量增加,合外力不足以提供向心力,向外侧移动,由于液体非常粘稠,而运动速度非常缓慢,可以理解为任一时刻速度按匀速圆周运动确定,f 表示粘滞阻力,则有

r V f F F 2

ωρ?'=+-' 则 r V f 2)(ωρρ?-'=

r f ∝所以r 由2L

d +

变化至l d +时,克服粘滞阻力功为

221)(22ωρρV L f f W ?-'=?+=221

2L d L

d ?+++

代入数据得: J W 7

105.5-?=。

(2)当粒子密度ρ''时,向左运动,同样可得到

图21-29(b )

图21—34

J

W Vr f 72103.3,)(-?=?-''=ωρρ

14.一个气球中充满了2molH 2S ,气球体积为0.15m 3,球内放了一个内装1molSO 2的小容器,小容器与气球本身重量可忽略不计,在t=0时刻放手,气球向上飘起,假设上升10s 后,小容器自动弹开放出SO 2,又过了10s 反应完全,此时气球的速率为40m/s ,方向向上,且在此10s 内,气球上升高度为100m 。问再过多久气球重新回到地面,气球内SO 2的平均反应速率为多少?(空气阻力不计,空气密度为1.29kg/m 3,g=9.8m/s 2)

解:开始时,气球所受重力

)(294.1108.9)641342(3

N G =???+?=-

所受浮力 )(986.115.08.929.1N gV F =??==ρ

故气球加速上升,其加速度

)/(24.510132294.1986.12

3

s m m mg F m F a =?-=-=

=

-合

在前10s 后,气球上升的高度

)(2621024.521

2122m at H =??==

又经10s 后,由O H S SO S H 222232+=+可知,2mol 的S H 2刚好与1mol 的2SO 完全反应,全

部生成S 与O H 2的固态或液态物质,气球内无气体剩余,故气球不再受浮力。所以气球的速度即为重力加速度,做竖直上抛运动,设气球再过0t 秒落回地面,此时气球上升高度为

)(362100262m h H =+=+

2

021

at t v s += 2

08.92140362t t ?-=-

解得 )(6.130s t =

因为在10s 内,1mol 的2SO 全部反应完毕,其反应速率为

)/(1.0101

s mol v ==

'

15.如图22-20所示,若在湖水里固定一细长圆管,管内有一活塞,它的下

端位于水面上,活塞的底面积S=1cm 2,质量不计,水面的大气压强P 0=1.0×105Pa 。现把活塞缓慢地提高H=5m ,则拉力对活塞做的功为 J 。

解:把活塞缓慢提高的过程可分两个阶段。当水柱升高到m H 100=后,活塞再提高时,水柱不再上升,与管外大气压强相平衡,此时活塞只克服活塞上方的大气压作功,活塞与水柱之间是真空,在上升到0H 的过程中,活塞受到拉力F ,活塞外大气压力为S P 0以及水柱对活塞向上的压力F 作用,水柱对活塞的压力随着活塞上升而减小,所以应求平均力

S P S P F 0021)0(21=+=

如图所示,当水柱上升到m H 100=处时,拉力做功1W ,大气压力做功00SH P ,以及水柱做功0H F ,

根据动能定理有

021

00001=+

-SH P SH P W

)

(5010101021

2121450000001J SH P SH P SH P W =???==-=-

活塞上升m H 100=后,管内形成真空,活塞只受拉力与大气压力继续上升,做功

0)(002=--H H S P W

)(5051010)(4

5002

J H H S P W =??=-=- 所以拉力对活塞所做总功

)(10021J W W W =+=

16.质量为m 1的圆筒水平地放置在真空中,质量为m 2、厚度可忽略的活塞将圆筒分为体积相同的两部分(图23-13(a )),圆筒的封闭部分充有n 摩尔的单原子理想气体,气体的摩尔质量为M ,温度为T 0,突然放开活塞,气体逸出。试问圆筒的最后速度是多少?设摩擦力、圆筒和活塞的热交换以及气体重心的运动均忽略不计。(T 0=273K,m 1=0.6kg,m 2=0.3kg,n=25mol,氦的摩尔质量为 4×10-3kg/mol,c V =12.6J/mol ·K,γ=5/3)

解:过程的第一阶段是绝热膨胀,膨胀到两倍体积后(图23-13(b ))温度将是T ,根据绝热方程,有

1

0100)2(--=γγV T V T 因此

10

2-=

γT T

圆筒和活塞的总动能等于气体内能的损失,即

22)(2

112220v m v m T T nc V -

=- 根据动量守恒定律,

1122v m v m =

解上述方程,得过程第一阶段结束时的圆筒速度:

?

???

??--=

1)(221101m m m T T nc v V

由此得出结论,在过程第一阶段的最后瞬间,圆筒以速度1v 向右运动,此时活塞正好从圆筒冲出。 我们把坐标系设置在圆筒上,所给的是一个在真空中开口的圆筒,筒内贮有质量为nM 、温度为T 的气体。显然,气体将向右方流动,并推动圆筒向右以速度x v 运动,气体分子的动能由下式给出:

nRT Mnv m 23

22

=

式中m v 是分子的平均速度[注:指均方根速率],它由下述关系式给定:

M RT v m 3=

平衡状态下各有1/6的分子在坐标轴方向来回运动。在计算气体逸出时,假定有1/6的分子向圆筒的底部运动。这自然只是一级近似。因此,6/nm 的质量以速度m v 向圆筒底部运动,并与筒底作弹性碰撞。之后圆筒以速度x v 、气体以速度g v 运动。对于弹性碰撞,动量守恒定律和机械能守恒定律成立。由动量

守恒有

图23-13(b )

2

v 1

v

x

g m v m v nM

v nM 166+=

由机械能守恒有

2262

6212x g m v m nMv nMv +?=? 解以上方程组,得到气体逸出后的圆筒速度为

M RT

nM m nM v nM m nM v m x 3626211+=

+=

气体分子的1/6以速度g v 反弹回来,g v 的绝对值要小于m v 。

气体必然有较低的温度,其一部分内能使圆筒的动能增加。 速度相加后得圆筒速度为x v v +1,代入所给的数据:

kg nM 1.0=; K T 0.172=; s m v /7.3251=

s m v /4.6512= s m v m /1035= s m v g /990-=

s m v x /0.56=

得圆筒的最后速度为

s m s m s m /7.381/0.56/7.325=+ 17.试估算地球大气的总质量M 和总分子数N 。

分析:就本题而言,地球表面的大气压强来源于空气柱的重力,由此结合地球表面的面积便可估算出地

球大气的总质量.//0g S p g F M ==由地球大气的总质量及空气的摩尔质量可知地球大气的总摩尔数,乘以阿

伏加德罗常数即得地球大气总分子数,.

0N M

N μ=

当然这种估算只计算了以地球表面积为底面,向上伸

展的圆柱体内的空气质量,实际上地球大气是分布在以地球表面为底面的两同心球体之内,显然两者是有差别的,但估算结果的数量级应是正确的。

解:地面上的标准大气压强Pa p 501001.1?=,地球半径m r 6104.6?=。所以地球表面积24r S π=,

地球表

面所受大气总的压力S p F 0=,它应等于地球大气的重力

(

)

()kg g S p M Mg 182

65

0103.58.9/104.614.341001.1/,?=?????==,

空气的摩尔质量约为1/29mo g =μ,地球大气的总摩尔数为μ/M 。因此地球大气的总分子数

()

个44323180101.11029/100.6103.5?=????==

-N M

N μ

点评:本题把所学的物理知识与实际问题联系起来,可以提高兴趣,加深理解,也可以让学生感到物理学知识的广泛应用。实际问题涉及的因素很多,往往比较复杂,但总有主次之分,要抓住其本质,即可作出相当精确的估算。

18.有一气缸,除底部外都是绝热的,上面是一个不计重力的活塞,中间是一块固定的导热隔板,把气缸分隔成相等的两部分A 和B ,上、下各有1mol 氮气(图27-3),现由

底部慢慢地将350J 热量传送给缸内气体,求

(1)A 、B 内气体的温度各改变了多少?

(2)它们各吸收了多少热量。

若是将中间的导热隔板变成一个绝热活塞,其他条件不变,则A 、B

的温度又是各改

图27-3

变多少(不计一切摩擦)?

解:A 、B 中间的隔板导热,因而A 、B 两部分气体温度始终相同,B 中温度升高后将等压膨胀。 设末态时A 、B 温度为T ',对B 部分气体有

T V T V ='' B 部分气体对外做功为

T R T T PV

V V P W ?=?=

-'=)(

A 、

B 两部分气体的内能增量为

T

R T R E ?=??=?525

2

根据热力学第一定律得

W Q E -=?

K R Q

T 02.76==

? 对A 部分气体有 J T R Q A 8.14525

=?=

以B 部分气体有

J

Q Q Q A B 2.204=-=

19.一卡诺机在温度为27oC 和127oC 两个热源之间运转,(1)若在正循环中,该机从高温热源吸热

1.2×103cal ,则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少?

解:(1)

cal T T T Q Q 900]400300

4001[102.1]1[312112=--??=--

=

J Q T T T W 311

2

110254.1?=-=

(2)对卡诺制冷机

212

212T T T Q Q Q -=

-=

ω,

cal

T T T Q Q 31

2

121106.1]1[?=-+=,

J Q T T T W 321

2

110672.1?=-=

20.一个质量为m=200.0kg ,长L 0=2.00m 薄底大金属桶倒扣在宽旷的水池

底部(如图27-15(a )所示)。桶的内横截面积S=0.500m 2(桶的容积为L 0S ),

桶本身(桶壁与桶底)的体积V 0=2.50×10-2m 3,桶内封有高度L=0.200m 的空气。池深H 0=20.00m 。大气压强P 0=10.00Mh 2o ,水的密度ρ=1.000×103kg/m 3,

重力加速度g 取10.00m/s 2。若用图中所示的吊绳将桶上提,使桶底能到达水面处,则绳拉力所需做的功有一最小值。试求从开始到绳拉力刚完成此功的过程

中,桶和水(包括池水及桶内水)的机械能改变了多少(结果要保留三位有效数字)?不计水的阻力,设水温很低,不计其饱和蒸汽压的影响,并设水温上H

l '图27-15(b )

下均匀且保持不变。

解:在上提过程中,桶内空气压强减小,体积将增大,从而对桶和桶内空气(空气质量不计)这一整体的浮力将增大。在此题中若存在桶所受浮力等于重力的位置,则此位置是桶的不稳定平衡点,再稍上提,浮力将大于重力,桶就会上浮。从这时起,绳不必再拉桶,桶也将在浮力作用下,上浮到达水面并冒出。因此绳对桶的拉力所需做的最小功的过程,就是缓慢地将桶由池底提高到浮力等于重力的位置所经历的过程。

下面先看这一位置是否存在。如果存在的话,如图27-15(b )所示,设在此位置时桶内空气的高度为

l ',因为浮力等于重力,应有:

g V S l mg )(0+'=ρ (1)

代入已知数据可得

m l 350.0=' (2)

设此时桶的下方边缘距池底的高度为H ,由玻意耳定律可知 l l l H H p l l l H p ''---+=--+)]([)]([000000 (3)

由(2),(3)二式可得

m H 24.12= (4)

因为

)(00l H H -<,即整个桶仍浸在水中,可知存在上述浮力等于重力的位置。

现在再求将桶由池底缓慢地提高到H 处桶及水的机械能的增量E ?,E ?包括三部分:

1.桶势能的增量1E ?;

2.在H 高度时桶本身排开的水可看作下降去填充在池底时桶本身一部分所占的空间而引起的水势能的增量2E ?;

3.在H 高度时桶内空气所排开的水可看作一部分下降去填充在池底时空气所占的空间,一部分(由于空气膨胀)上升到水池表面,由此引起水的势能的增量3E ?。则

mgH E =?1 (5)

gH V E 02ρ-=? (6)

?

?? ?

?

'-+'--'+??? ??-=?l l H S gH l l S l l S E 21g l )(21lg 0003ρρρ (7) 321E E E E ?+?+?=?

?

??

???-'+--'+'+-=2))(()]([220000l l l H l l Sg gH l S V m ρρ (8) 由(1)式可得

?

??

???-'+--'=?2))((22000l l l H l l Sg E ρ (9) 代入数值计算,结果取三位有效数字,得

J E 41037.1?=?

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

初中物理竞赛-热学试题(高难度_需谨慎)

A9\A10A 班初中物理竞赛热学训练试题 班级________学号_________姓名_________得分________ (时间:60分 满分100分) 1.液体表面分界线单位长度上的表面张力叫作表面张力系数, 用下面方法可以测量液体的表面张力从而求得液体的表面张 力系数.如图所示,容器内盛有肥皂液,AB 为一杠杆,AC=15cm , BC=12cm.在其A 端挂一细钢丝框,在B 端加砝码使杠杆平衡. 然后先将钢丝框浸于肥皂液中,再慢慢地将它拉起一小段距离 (不脱离肥皂液),使钢丝框被拉起的部分蒙卜一层肥皂膜,这时需将杠 杆B 端砝码的质量增加5.0×10-4kg ,杠杆才重新平衡(钢丝框的钢丝很 细,在肥皂中受到的浮力可不计).则肥皂液的表面张力为( ).c (A)6×10-3N (B)14×10-3N (C)4×10-3N (D)3×10-3N 2.如图所示,若玻璃在空气中重为G 1,排开的水重为G 2,则图中弹簧 秤的示数为( ). (A )等于G 1 (B )等于G 2 (C )等于(G 1-G 2) (D )大于(G 1-G 2) 3. 两个相同的轻金属容器里装有同样质量的水。一个重球挂在不导热的细线上。放入其中一个容器内,使球位于容器内水的体积中心。球的质量等于水的质量,球的密度比水的密度大得多。两个容器加热到水的沸点,再冷却。已知:放有球的容器冷却到室温所需时间为未放球的容器冷却到室温所需时间的k 倍。试求制作球的物质的比热与水的比热之比c 球:c 两个完全相同的金属球a 、b,其中a 球放在不导热的水平面上,b 球用不导热的细线悬挂起来。现供给两球相同的热量,他们的温度分别升高了△ta 、△tb ,假设两球热膨胀的体积相等,则 A.△ta>△tb B.△ta<△tb C.△ta=△tb D.无法比较 4.水和油边界的表面张力系数为σ=1.8×10-2N /m ,为了使1.0×103kg 的油在水内散成半 径为r =10-6m 的小油滴,若油的密度为900kg /m 3,问至少做多少功? 5.炎热的夏季,人们通过空调来降低并维持房间较低的温度,在室外的温度为1T 时,要维持房间0T 的温度,空调每小时工作0n 次。已知一厚度d ,面积为S 的截面,当两端截面处的温度分别为a T 、b T ,且b a T T >,则热量沿着垂直于截面方向传递,达到稳定状态时,在t ?时间内通过横截面S 所传递的热量为: t S d T T K Q b a ?-= (其中K 为物质的导热系数。)

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

热学试题(2).doc

大学物理竞赛训练题 热学(2) 一、选择题 1. 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经②过程a′cb 到达相同的终态b ,如p -T 图所示,则两个过程中气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1 > Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 2. 有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是: [ ] (A) 6 J. (B) 5 J. (C) 3 J. (D) 2 J. 3. 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是 [ ] (A) 等压过程. (B) 等体过程. (C) 等温过程. (D) 绝热过程. 4.在所给出的四个图象中,哪个图象能够描述一定质量的理想气体,在可逆绝热过程中,密度随压强的变化? [ ] 5. 气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,则气体分子的平均速率变为原来的 [ ] (A) 24/5倍. (B) 22/3倍. (C) 22/5倍. (D) 21/3倍. 6. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于 [ ] (A) 2/3. (B) 1/2. (C) 2/5. (D) 2/7. 7. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是: (A) S 1 > S 2. (B) S 1 = S 2. (C) S 1 < S 2. (D) 无法确定. [ ] p ρ p (A) ρ p (C) ρ p (B)ρ p (D)

高中物理竞赛热学公式整合知识分享

高中物理竞赛热学公 式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p nE = ——理想气体的压强公式 4> 32 k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v =——最概然速率 v =——平均速率 r v == ——方均根速率 3> /0P E kT n n e -= ——玻尔兹曼分布律 /0 mgz kT n n e -= ——气体分子在重力场中按高度的分布律

4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p = 5> 1(2)2 E t r s kT =++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2 V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) dU Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν =

27高中物理竞赛热学习题2整理

高中物理竞赛热学习题 热学2 姓名: 班级: 成绩: 1. 如图所示,一摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为1/2 ,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为 23RT ,R 为普适气体常量,T 为热力学温度. 2.有一气缸,除底部外都是绝热的,上面是一个不计重力的活塞,中间是一块固定的导热隔板,把气缸分隔成相等的两部分A 和B ,上、下各有1mol 氮气(52 U RT = ),现由底部慢慢地将350J 热量传送给缸内气体,求 (1)A 、B 内气体的温度各改变了多少? (2)它们各吸收了多少热量。 3. 使1mol 理想气体实行如图所示循环。求这过程气体做的总功。仅用T 1,T 2和常数R 表示。 (在1-2过程,12P T α= )

4.如图所示,绝热的活塞S 把一定质量的稀薄气体(可视为理想气体)密封在水平放置的绝热气缸内.活塞可在气缸内无摩擦地滑动.气缸左端的电热丝可通弱电流对气缸内气体十分缓慢地加热.气缸处在大气中,大气压强为p0.初始时,气体的体积为V0、压强为p0.已知1 摩尔该气体温度升高1K 时其内能的增量为一已知恒量。,求以下两种过程中电热丝传给气体的热量Q1与Q2之比. 1 .从初始状态出发,保持活塞S 位置固定,在电热丝中通以弱电流,并持续一段时间,然后停止通电,待气体达到热平衡时,测得气体的压强为p1 . 2 .仍从初始状态出发,让活塞处在自由状态,在电热丝中通以弱电流,也持续一段时间,然后停止通电,最后测得气体的体积为V 2 . 5. 图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p0。用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A室中有一电加热器Ω。已知在A、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V0。现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体末态体积和A室中气体的末态温度。设A、B 两室中气体1摩尔的内能 5 2 U RT 。R为普适恒量,T为热力学温度。

高中物理竞赛辅导习题热学部分..

高中物理竞赛热学部分题选 1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。导线按斯特藩定律从其表面散热。斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即 () ,4 4外辐T T S P -∞ 试说明为什么用保险丝时并不需要准确的长度。 解:设l 为保险丝长度,r 为其半径,P 为输至整个保险丝上的功率。若P 增大,保险丝的温度将上升, 直到输入的电功率等于辐射的功率。 所以当P 超过某一值max P 时,在一定的时间内,保险丝将烧毁,而 ( ) ,2144 max l r c T T kS P ??=-=π外熔 式中k 为一常数,S 为表面积,1c 为一常数。 由于P=I 2R ,假设保险丝的电阻R 比它所保护的线路电阻小很多,则I 不依赖于R ,而 ρρ ,S l R =为 常数,2 r S π=为保险丝的横截面积。 ,/22 r l I P πρ= 当rl c r l I 22 2/=时(这里2c 为另一常数),保险丝将熔化。 .3 22 r c I = 可见,保险丝的熔断电流不依赖于长度,仅与其粗细程度(半径r)有关。 2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。 其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106 N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。 解:金属A 和B 从自由状态降温,当温度降低t ?时的总缩短为 t l l l l B A B A ?+=?+?=?0)(αα (1) 而在-20°C 时,若金属丝中的拉力为F ,则根据胡克定律,A 、B 的伸长量分别为F/K A 和F/K B , 所以 l K E K E B A ?=+ (2) t l K K F B A B A ?+-? ??? ??+0)(11αα (3) 所以 N K K t l F B A B A 50011)(0=+?+=αα 因为N F 450>,所以温度下降到-20°C 前A 丝即被拉断。A 丝断后。F=0,即使温度再下降很多,B 丝也不会断。 3.长江大桥的钢梁是一端固定,另一端自由的。这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2) 解:长1m 、横截面积为1mm 2的杆,受到10N 拉力后伸长的量,叫伸长系数,用a 来表示,而它的倒数叫弹性模量E ,./1a E =当杆长为L 0m ,拉力为F ,S 为横截面积(单位为mm 2),则有伸长量

高中物理竞赛讲义-热力学第一定律

热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

高中物理竞赛十年复赛真题-热学(含答案)

十年真题-热学(复赛) 1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程.双原子理想气体的定容摩尔热容为52 R , R 为气体常量. (1)求直线AB 过程中的最高温度; (2)求直线AB 过程中气体的摩尔热容量随气体体积变 化的关系式,说明气体在直线AB 过程各段体积范围内 是吸热过程还是放热过程,确定吸热和放热过程发生转 变时的温度T c ; (3)求整个直线AB 过程中所吸收的净热量和一个正循 环过程中气体对外所作的净功. 解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02 -V 0 此即 p =32p 0-p 0V 0 V ① 根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ????-p 0V 0V 2+32p 0V =-p 0νR ????V -34V 02+9p 0V 016νR ③ 由③式知,当V =34 V 0时, ④ 气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR ⑤ (2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦ 由理想气体内能公式和题给数据有:dU =νC V dT =ν52 RdT ⑧ 由①⑥⑦⑧式得:C m =C V +p νdV dT =52R +????32 p 0-p 0V 0V 1νdV dT ⑨ 由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V ) ⑩ 由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R 2 ? 由⑥⑩?式得,直线AB 过程中, 在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV >0,吸热 ? 在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQ dV >0,吸热 ? 在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQ dV <0,放热 ?

高中物理竞赛热学公式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p n E = ——理想气体的压强公式 4> 32k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v = ——最概然速率 v =——平均速率 r v ==——方均根速率 3> /0 P E kT n n e -= ——玻尔兹曼分布律 /0m g z k T n n e -= ——气体分子在重力场中按高度的分布律 4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p =

5> 1(2)2 E t r s kT = ++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) d U Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν = 7> ——理想气体的摩尔热容 8> ,,p m V m C C R =+ ——迈耶公式

高中物理竞赛辅导讲义-8.2热力学第一定律

8.2热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

上海物理竞赛热学

上海物理竞赛热学 The Standardization Office was revised on the afternoon of December 13, 2020

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是()A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。

14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 :3 C.1:4 :5。 5.现有一扇形的均质金属物体,该材料具有热胀冷缩的性质,如图所示。室温状 态下AB、CD边所成的圆心角为α。若使物体温度均匀升高,则α角的变化情况是:( ) (A)变大 (B)不变

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

重点高中物理竞赛热学

高中物理竞赛——热学 一.分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3 kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol -1,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为v= A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即a 3= A m ol N 2V =A m ol N 2/M ρ,最后,邻近钠离子之间的距离l= 2 a 【答案】3.97×10-10m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有8 1×8个离子=2 1分子,所 以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s )。 无论是振动还是迁移,都具备两个特点:a 、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2气体分子的三种速率。最可几速率v P :f(v)=N N ?(其中ΔN 表 示v 到v+Δv 内分子数,N 表示分子总数)极大时的速率,v P = μRT 2=m kT 2;平均速率v :所有分子速率的算术平均值,v = πμ RT 8= m kT 8π;方均根速率2 v :与分子平均动能密切相关的一个 速率,2 v = μ RT 3= m kT 3〔其中R 为普适气体恒量,R=8.31J/(mol.K)。k 为玻耳兹曼常量, k= A N R =1.38×10-23J/K 〕

相关文档
最新文档