油水分离技术在甲醇制烯烃装置的应用

油水分离技术在甲醇制烯烃装置的应用
油水分离技术在甲醇制烯烃装置的应用

甲醇制烯烃的相关工艺

甲醇制低碳烯烃的工艺举例以及本组最佳工艺的确定 一、 甲醇制低碳烯烃的工艺列举 甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SAPO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin ,MTO ),甲醇制丙烯(methanol-to-propylene ,MTP )。MTO 工艺的代表技术有环球石油公司( UOP )和海德鲁公司( Norsk Hydro )共同开发的UOP/Hydro MTO 技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP 工艺的代表技术有鲁奇公司(Lurgi )开发的Lurgi MTP 技术和我国清华大学自主研发的FMTP 技术。 1.1 UOP /I-Iydro 公司的MTO 工艺 美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发了UOP /Hydro MTO 工艺。MTO 工艺对原料甲醇的适用范围较大,可以使用粗甲醇(浓度80%一82%)、燃料级甲醇(浓度95%)和AA 级甲醇(浓度>99%) 。该工艺采用流化床反应器和再生器设计,其流程见图3。其反应温度由回收热量的蒸汽发生系统来控制,失活的催化剂被送到流化床再生器中烧碳再生,并通过发生蒸汽将热量移除,然后返回流化床反应器继续反应。由于流化床条件和混合均匀催化剂的共同作 甲醇制取低碳烯烃 UOP/Hydro 公司 的MTO 工艺 大连化学物理研究 所的DMTO 工艺 上海化工研究院的SMTO 工艺 鲁奇(Lurgi)公司的MTP 工艺 清华大学的 FMTP 工艺 MTO MTP

煤制烯烃研究报告范本

煤制烯烃研究报告

煤制烯烃工艺研究报告 一、煤制烯烃简介 制备丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,因此世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到重视。 煤制烯烃主要指乙烯、丙烯及其聚合物。聚乙烯主要应用于粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先经过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂的作用下脱水生成二甲醚(DME),形成甲醇、二甲醚和水的平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。当前,国际上有几种领先的甲醇制烯烃工艺,如美国UOP公司与挪威海德鲁(Lydro)公司的甲醇制烯烃工艺(MTO)、德国鲁奇(Lurgi)公司的甲醇制丙烯工艺(MTP)、美国AtoFina与UOP公司的烯烃裂

解工艺等,其中Lurgi公司的MTP工艺已经在国内的生产装置上应用,在最先实现工业化。 二、国外煤制烯烃技术 MTO是国际上对甲醇制烯烃的统一叫法。最早提出煤基甲醇制烯烃工艺的是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO 的工业化。1995年,UOP与挪威Norsk Hydro公司合作建成一套甲醇加工能力0.75 吨/天的示范装置,连续运转90天,甲醇转化率接近100%,乙烯和丙烯的碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺的20万吨/年乙烯工业装置,截止已实现50万吨/年乙烯装置的工业设计,并表示可对设计的50万吨/年大型乙烯装置做出承诺和保证。UOP/Hydro的MTO工艺能够在比较宽的范围内调整反应产物中C2与C3;烯烃的产出比,可根据市场需求生产适销对路的产品,以获取最大的收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)的甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,是全球首套采用霍尼韦尔先进技术(Honeywell)的装置,与传统工艺相比,该项工艺被验证拥有高收率和低副产品形成的优点。

甲醇制烯烃工艺_MTO_

纪律和奖罚制度,调动全体试车人员的积极性,经过一年多的工作,于1998年11月15日又开始试车。经过一个多月的投料表明,1.5万t a氯化法钛白的主要技术难关基本上已被攻克,初步实现了连续稳定生产。 5 几点建议 (1)面对世界钛白由跨国集团高度垄断的新局面,国内钛白工业必须加强集中统一领导、统一规划、合理布局,一致对外。 (2)对现有的钛白厂要实行强强联合,对亏损严重、污染大的厂要坚决实行关停并转。 (3)对已引进的3套较大型的钛白粉生产装置,国家应继续给予优惠政策和资金支持,并跨地区、跨部门地组织专家联合进行技术攻关。特别要充分发挥经验丰富的老专家的作用,协同作战,解决工艺、技术难题,提高产品质量,开发新品种,以满足国民经济发展的需要。 (4)由于硫酸法钛白生产三废排放量大,较难处理,而氯化法钛白生产的主要技术难题又已基本被攻克,现在完全可以利用国内技术兴建万吨级以上的氯化法钛白生产装置。建议除了特殊地区外,今后兴建的钛白厂主要应采用氯化法。而且厂址最好能与氯碱厂在一起,以达到优势互补,提高经济效益的目的。 (5)为保护民族工业,扶植国内钛白生产,建议对国外钛白供应商向我国低价倾销钛白粉要进行处罚;要制定相关法律,向其所在国贸易管理机构起诉,并对进口产品征收高额的反倾销税。 ?新产品新装置? 吉化公司乙撑双硬脂酰胺装置建成投产 具有国内领先水平的年产700t乙撑双硬脂酰胺生产装置,在吉化公司研究院建成,并投入批量生产。 乙撑双硬脂酰胺是一种多功能塑料加工助剂,可广泛应用于高分子聚合树脂,如AB S树脂、聚氯乙烯、聚丙烯、酚醛树脂及氨基树脂加工中的润滑剂、防粘剂、粘度调节剂和表面光亮剂等。 该装置是由吉化研究院自行开发、设计的。经半年的运转考核,生产能力达到并超过设计能力(已达800t a以上),其产品经在吉化合成树脂厂引进的10万t a AB S生产装置上应用,性能指标完全满足生产要求。目前,产品已向该公司及国内多家用户批量供货,质量及稳定性已达到国外同类产品水平。 (微笔) 扬子石化大型空分装置投入运行 扬子石化股份公司投资近3亿元的每小时增产氧气2万m3、氮气3.75万m3的大型空气分离装置投入运行。 该空分装置在设计、安装过程中,采用了引进国外先进技术和设备与国内配套设计相结合的办法,装置开停车过程可全部自动调整控制,DCS控制系统达到国际90年代先进水平。(微笔) 甲醇制烯烃工艺(M TO) 一项以天然气为原料经甲醇制取混合烯烃(乙烯+丙烯+丁烯)的工艺技术即M TO工艺,已由美国环球油品公司(UO P)和挪威海德罗(H ydroc)公司联合开发中试成功。 1995年11月,在南非第四次天然气转化国际年会上,UO P和H ydroc公司首次公布了这一工艺技术及其示范装置的运行数据。据称,这一工艺经小试、中试和示范装置长期、连续试验,操作稳定,得到了相互验证,可以用来建设年产50万t乙烯的工业化生产装置。 该技术的工艺流程和设备与炼厂的 型催化裂化装置基本相同,产品分离流程比传统的深冷分离流程简单。 采用M TO工艺生产烯烃,需要大量天然气或甲醇:一套30万t a M TO法乙烯装置,年消耗天然气13亿m3或甲醇150万t。因此,在天然气供应充足而且价格便宜的地方,采用此法生产烯烃,比之石脑油或轻柴油裂解制烯烃,在技术和经济上都具有一定的优越性。 我国对M TO工艺的开发也已经历多年,中试数据与国外很接近,而催化剂性能则优于国外。据了解,中国石油和天然气北方公司正在进行M TO工艺的千吨级工业化试验。(宗言恭) 81 化 工 技 术 经 济 第17卷

甲醇制烯烃工艺

甲醇制烯烃工艺 学生姓名:冯佑磊 班级学号:101409121

在天然气制烯烃工艺中,天然气经甲醇制烯烃MTO/MTP工艺技术是最具备工业化条件的技术。中国化工学会理事长、中国工程院院士曹湘洪表示,在后石油时代,炼油工业应以汽油、煤油、柴油产量最大化为目标;新建乙烯、丙烯装置,宜选择MTO「甲醇制烯烃」工艺路线;已有乙烯装置,宜用费托合成油来替代石脑油作为原料。“中国科学院大连化学物理研究所”的DMTO在神华包头的成功实现工业化生产,证明了国产的MTO技术与催化剂的生产都已达到世界领先的水平。MTO 工艺与MT P工艺都是可行的,从市场的风险性考虑,MTO工艺比MT P工艺更安全些。 MTO/MTP工艺概述 1.1 概述 MTO是指以煤基或天然气基合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工工艺技术,其主要产品为乙烯、丙烯。 MTP是指以煤基或天然气基合成的甲醇为原料,采用固定床反应器,生产丙烯的化工工艺技术。 甲醇制烯烃技术源于甲醇制汽油。在甲醇合成汽油过程中,发现C2~C4 烯烃是过程的中间产物。控制反应条件(如温度等)和调整催化剂的组成,就能使反应停留在生产乙烯等低碳烃的阶段。显然,催化剂的研究则是MTO 技术的核心。 目前世界上,对研制MTO催化剂卓有成效,因而具备工业化和商业转让条件的甲醇制低碳烯烃的技术主要有三种:美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发的UOP/Hydro MTO 工艺;德国鲁奇公司开发的Lurgi MTP 工艺;中国科学院大连化学物理研究所开发的D M TO 工艺。 1.2 MTO技术特点 采用流化床反应器和再生器,连续稳定操作;采用专有催化剂,催化剂需要在线再生,保持活性;甲醇的转化率达100%,低碳烯烃选择性超过85%,主要产物为乙烯和丙烯;可以灵活调节乙烯/丙烯的比例;乙烯和丙烯达到聚合级。 1.3 MTP技术特点 采用固定床由甲醇生产丙烯,首先将甲醇转化为二甲醚和水,然后在三个MTP反应器中进行转化为丙烯。催化剂系采用南方化学开发的改进ZSM-5催化剂,有较高的丙烯选择性。甲醇和DME 的转化率均大于99%,对丙烯的收率则约为71%。产物中除丙烯外还将有液化石油气、汽油和水。 1.4 基本反应历程 MTP、MTO反应历程通常认为可分成三个步骤: (1)甲醇首先脱掉一分子水生成二甲醚。甲醇和二甲醚迅速形成平衡混合物。甲醇/二甲醚分子与分子筛上酸性位作用生成甲氧基. (2)甲氧基中一个C.H质子化生成C-H+,与甲醇分子中-OH.作用形成氢键,然后生成已基氧缝,进而生成C=C键。 (3)C=C键继续发生链增长生成(CH2)n。反应过程以分子筛作催化剂时,产物分布比较简单,以C2--一C4(特别是乙烯、丙烯)为主。MTP、 MTO过程的关键技术是催化剂,由于反应过程中有大量的水存在,且催化剂运行中需要在较高温度下频繁再生烧炭,因而催化剂的热稳定性及水热稳定性是影响化学寿命的决定因素。 二.国内外MTO、MTP技术介绍 2.1 UOP/Hydro 甲醇制烯烃工艺 2.1.1工艺简介 挪威海德鲁(Hydro)公司创建于1905年2月,以生产氮肥起家。现在油气开发是其支柱产业。美国环球油品公司(U O P)创建于1914年,是当今世界上炼油和石油化工最主要的工艺技术专利商之一,而又以生产和供应分子筛及炼油、石油化工用催化剂见长。1992年,美国UOP公司和挪威Hydro公司开始了类似催化裂化装置的甲醇制烯烃工艺,并进行了小试工作。1995 年两公司合作

煤制烯烃简介

煤制烯烃项目简介 一、煤制烯烃 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先通过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂得作用下脱水生成二甲醚(DME),形成甲醇、二甲醚与水得平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。 煤制烯烃主要指乙烯、丙烯及其聚合物、聚乙烯主要应用于粘合剂、农膜、电线与电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯就是仅次于乙烯得一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 二、国外煤制烯烃技术 MTO就是国际上对甲醇制烯烃得统一叫法。最早提出煤基甲醇制烯烃工艺得就是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO得工业化。1995年,UOP与挪威NorskHydro公司合作建成一套甲醇加工能力0.75 吨/天得示范装置,连续运转90天,甲醇转化率接近100%,乙烯与丙烯得碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺得20万吨/年乙烯工业装置,截止2006年已实现50万吨/年乙烯装置得工业设计,并表示可对设计得50万吨/年大型乙烯装置做出承诺与保证、UOP/Hydro得MTO工艺可以在比较宽得范围内调整反应产物中C2与C3;烯烃得产出比,可根据市场需求生产适销对路得产品,以获取最大得收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)得甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,就是全球首套采用霍尼

甲醇制烯烃工艺净化水的洁净与利用研究

甲醇制烯烃工艺净化水的洁净与利用研究 发表时间:2019-07-01T10:31:21.203Z 来源:《建筑模拟》2019年第19期作者:刘伟[导读] 本文详细探讨了甲醇制烯烃工艺净化水a的洁净与利用,旨在改善净化水水质,拓展了其综合利用途径。 刘伟 神华新疆化工有限公司新疆乌鲁木齐 830001摘要:现有甲醇制烯烃工艺在生产轻烯烃产品的过程中,会副产大量的水和少量油类物质,这些生成物随着反应气一起在后续系统冷却,油类物质进入水中,增加了外排废水中的COD含量,也会在甲醇制烯烃工艺的水系统中凝固,导致换热器、空冷器的换热效率下降。基于此,本文详细探讨了甲醇制烯烃工艺净化水a的洁净与利用,旨在改善净化水水质,拓展了其综合利用途径。 关键词:甲醇制烯烃工艺;净化水;洁净;利用研究 目前,在现有的甲醇制烯烃工艺生产过程中,均会副产大量的水及少量油类物质,这些副产物最终会在污水汽提塔中进行初级处理,汽提出少量甲醇、二甲醚等有机物后,污水汽提塔塔底采出的废水称作净化水,并送至污水处理系统。其中,副产物之一的油类物质,其含量约占到产品气总量的0.3%,在反应气处理的过程中,被带到装置水系统的各个点,给水系统带来以下问题:①外排净化水中的COD 偏高。②水系统换热器、重沸器、塔器等出现堵塞情况。因此,甲醇制烯烃工艺净化水的洁净与利用具有重要的现实意义。 1 净化水中COD 及有机物含量影响因素 1.1甲醇制烯烃反应产物 甲醇制烯烃反应产物较为复杂,根据相关文献,目前主流的甲醇制烯烃反应机理为“烃池”理论,其中反应过程中涉及到27 种化学反应,产物众多,而污水汽提塔的设计一般只能回收未反应完全的甲醇、二甲醚等物质,其他副反应产物诸如酮、醛、长链烷烃和芳烃类物质无法在污水汽提塔中脱除,导致甲醇制烯烃工艺净化水中COD 含量出现偏高,超出设计值。 1.2 污水汽提塔汽提效率 作为直接降低净化水中COD 含量的单元,污水汽提塔的汽提效率至关重要。目前发现,随着甲醇制烯烃装置运行周期的延长,污水汽提塔塔塔底重沸器效率会逐渐降低,蒸汽通量降低,使得汽提塔汽提热源不足,汽提塔汽提分离效果下降。其主要原因是汽提塔在长时间运行后,塔内出现挂壁污垢物脱落沉积在塔底重沸器,导致换热效率逐渐降低,通量下降,压降增大,此种情况会随着装置运行周期的延长而逐渐恶化。 1.3污水汽提塔进料组成 污水汽提塔的进料包括甲醇制烯烃装给反应气降温洗涤的急冷水和水洗水、反应气压缩机段间冷凝液、洗涤氧化物废水等。洗涤的急冷水和水洗水、洗涤氧化物废水中的有机物含量直接随着反应气的组成种类和组分含量的多少而变化,主要有机物组成为甲醇、二甲醚、酮、醛、长链烷烃、芳烃类等。水洗塔含油水、烯烃分离装置的洗涤氧化物废水直接进入汽提塔,随着反应工段的操作变化,反应气的组成种类和组分的含量变化,会将轻烃、油类物质带至污水汽提塔,而当这些水进入污水汽提塔回收时,短时间内会造成污水汽提塔的负荷增加,使得油类物质不能有效汽提,也会使污水汽提塔底部采出的净化水中COD 含量出现大幅波动。 2 降低净化水中COD 及油含量的方案 2.1调整优化甲醇制烯烃反应参数 优化甲醇制烯烃反应,减少甲醇制烯烃反应产物中重组分有机物的产生,是从源头上解决净化水COD 含量高的途径,但反应参数的调整会造成很多其他因素波动,需要不断地缓慢调整观察。一般来说,在保证反应产率的情况下,应尽量降低反应温度,控制稳反应器催化剂藏量以及催化剂循环量,控制再生、待生催化剂的含碳量,可减少反应气中的多甲醇、二甲醚以及甲基苯含量,但具体的变化情况还需要进一步验证。 2.2优化污水汽提塔操作 优化污水汽提塔操作并提高污水汽提塔的汽提精馏效率是减少净化COD 含量波动的直接途径。比如提高污水汽提塔塔底再沸温度、加大塔顶采出、根据操作情况及时加大除油量、停工检修期间清洗汽提塔内壁及塔底重沸器管束延长设备使用周期,可提高污水汽提塔运行效率有效保证净化水COD平稳。 2.3调整污水汽提塔进料工艺流程 优化进料组成,并研究甲醇制烯烃各水系统中COD 组成和含量,对重点废水增设油水分离设施进行预处理,也可改善净化水的含油量并降低净化水中COD 含量。废水中的油类按照存在形式不同,可分为浮油、分散油、乳化油和溶解油,进入污水汽提塔中的水中油类主要以浮油和乳化油为主,因此,选取的油水分离方式应为先破乳,然后进行油水分离。比如,对甲醇制烯烃装置水洗塔进行改造时,在塔底部位置增设隔油槽,将水洗塔底部的上层液体不断采出,经水洗水悬液除油器除油,再经聚结器去除微量油后进入污水汽提系统,悬液除油器、聚结器的右侧进入沉降罐沉降脱水后,送至罐区油罐,定期按照一般废油外卖。某甲醇制烯烃装置增设油水分离装置前、后净化水中COD 含量见1。

甲醇制丙烯工艺

甲醇制丙烯工艺 与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。 1、鲁奇公司(Lurgi)的MTP工艺 1996年鲁奇公司使用南方化学公司的高选择性沸石基改性ZSM-5催化剂,开始研发MTP工艺。1999年,鲁奇公司在德国法兰克福研发中心建立了一套单管绝热固定床反应装置,装置设计规模为数百克/时甲醇处理能力,主要完成了催化剂性能测试,并验证了MTP设计理念、优化了反应条件。2000年,鲁奇公司在法兰克福研发中心建立了三管(3x50%能力)绝热固定床反应装置,装置处理甲醇能力为1千克/小时,该装置打通了MTP总工艺流程,模拟了系统循环操作,进一步优化了反应条件,并为MTP示范厂的建立积累了大量基础数据。2002年1月,鲁奇公司在挪威Tjeldbergodden地区的Statoil甲醇厂建成甲醇处理能力为360千克/天的MTP示范厂。2004年5月,示范工作结束。通过测试,催化剂在线使用寿命满足8000小时的商业使用目标;产物丙烯纯度达到聚合级水平,并副产高品质汽油。 鲁奇公司MTP技术特点是甲醇经两个连续的固定床反应器,第一个反应器中甲醇首先转化为二甲醚,第二个反应器中二甲醚转化为丙烯。该技术生成丙烯的选择性高,结焦少,丙烷产率低。整个MTP工艺流程对丙烯的总碳收率约为71%。催化剂由德国南方化学公司生产。 鲁奇公司MTP反应器有两种形式:即固定床反应嚣(只生产丙烯)和流化床反应器(可联产乙烯/丙烯)。

2008年3月,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。 2008年9月,LyondeIIBasell,特立尼达多巴哥政府,特立尼达多巴哥国家气体公司(NGC),特立尼达多巴哥国家能源公司(NEC)和鲁奇(Lurgi)公司联合宣布,已经签署了一项项目发展协议,共同建设和运营在特立尼达多巴哥的一体化甲醇制丙烯(MTP)和聚丙烯(PP)项目。通过三条世界级的工厂,包括大规模天然气制甲醇和MTP以及PP工厂,该项目最终将实现49万吨PP产能。其中,大规模甲醇和MTP的工艺分别由鲁奇公司提供,而丙烯聚合将利用巴塞尔公司的Spherizone工艺。 采用鲁奇MTP技术的神华宁煤50万吨/年煤基聚丙烯项目于2010年12月打通全流程,2011年4月底产出终端合格聚丙烯产品,由试车阶段全面进入试生产阶段,并于5月实现首批产品外运销售。 2、中国化学工程集团、清华大学和淮化集团联合开发的FMTP工艺 流化床甲醇制烯烃(FMTP)技术由中国化学工程集团公司、清华大学和淮化集团联合开发,三方在安徽淮南建设甲醇处理量3万吨/年的流化床甲醇制丙烯(FMTP)中试装置,于2008年底建成,截至2009年8月,该装置己完成11吨催化剂生产任务,进行了二次流态化试车,全面打通了系统工艺流程。 该技术采用SAPO-18/34分子筛催化剂和流化床反应器,与MTO工艺一样。但是通过把生成物中的丙烯分离出之后,使C2组分和C4以上组分进入一个独立的烯烃转化反应器使其转化成丙烯。 该技术可调节丙烯/乙烯比例,从1.2:1到1:0(全丙烯产出)均可实现。据称,利用该技术生产以丙烯为目标产物的烯烃产品,丙烯总收率可达77%,原料甲醇

甲醇制乙烯丙烯原理

甲醇制烯烃技术(MTO/MTP) 甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro 等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。金属离子的引入会引起分子筛酸性及孔口大小的变化,孔

甲醇制烯烃技术(MTOMTP)

甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 上世纪七十年代美国Mobil公司在研究甲醇使用ZSM-5催化剂转化为其它含氧化合物时,发现了甲醇制汽油(Methanol to Gasoline,MTG)反应。1979年,新西兰政府利用天然气建成了全球首套MTG装置,其能力为75万吨/年,1985年投入运行,后因经济原因停产。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,

建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品 以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要

孙景海-甲醇制烯烃分离

孙景海-2000kt/a甲醇制烯烃分离工段安全验收评价 生产流程简述 2.2.1甲醇制烯烃反应工段 从甲醇储罐来的粗甲醇经出反应器的反应气预热后进入反应器D0101,反应器中反应温度为450℃,压力为1.2MPa,反应气经反应器设置的两级旋分分离器及外挂式三级旋风分离器除去所夹带的催化剂后引出与甲醇原料换热(C0101)后进入E0101急冷塔。 反应后积碳的待生催化剂进入催化剂再生系统,空气在催化剂再生系统入口与蒸汽换热(C0102)升温后与催化剂接触除去聚积在催化剂表面的积碳,然后催化剂返回反应器重新利用,高温烟气从催化剂再生系统顶部去烟气余热回收系统。 2.2.2 反应气分离预处理工段 出反应器的反应气首先进入急冷塔底部(E0101)与从塔顶来的急冷水逆流接触。大量热量被水带走温度降低到120℃,压力降到压力0.91MPa再经过换热后进入水洗塔E0102,在水洗塔E0102中,反应气中的各类醇、酸,以及大部分的二甲醚都溶解于水中被水带走。然后反应气经过换热器C0103与来自高压脱丙烷塔塔底物流换热,再经过减压阀,温度升高到50℃,压力降低到0.68MPa进入碱洗塔E0103,在碱洗塔中反应气先经过两段碱洗主要洗掉CO2,然后再经过一段水洗洗掉反应气中携带的大部分碱。出碱洗塔的气体经物流冷却器C0104,温度降到干燥器的工作温度43℃,进入干燥器,气体经过干燥器除水后经过压缩机J0107压缩压力升高到1.85MPa进入后续的精馏工段。本工段中产生的洗水废水,含碱液废水,以及含有催化剂颗粒的急冷水汇总后集中去水处理中心净化处理,然后循环利用。 2.2.3 精馏分离工段 来在上一个工段的干燥器的净化气进入高压脱丙烷塔E0201,其塔底物流经物流换热器C0103和冷却器C0201后温度降为48.5℃,进入低压脱丙烷塔,低

甲醇制烯烃技术发展现状及应用

甲醇制烯烃技术发展现状及应用 发表时间:2019-05-13T16:08:29.723Z 来源:《防护工程》2019年第2期作者:赵峰涛刘登攀 [导读] 随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。 陕西煤化工技术工程中心有限公司陕西渭南 714104 摘要:随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。丙烯作为一种应用范围同样十分广泛的低碳烯烃,该材料的应用对于我国化工产业的发展意义重大。甲醇制烯烃技术作为以生产乙烯、丙烯为主要目的的化工技术,其对于我国化工产业乃至社会发展的推动作用毋庸置疑。本文就甲醇制烯烃技术发展现状及应用展开探讨。 关键词:甲醇制烯烃;技术分析;应用 引言 烯烃是衡量一个国家化工产业实力的标准,在过去10多年中,我国50%以上的乙烯和丙烃大多为石油烃类蒸汽裂解而形成,而所采用的原料为石脑油,但由于近年来原油的价格持续攀升,致使生产烯烃的成本也逐年提升,为改变此种被动的局面,通过科研人员的不断探索与反复试验,一种新型的制烯烃技术进入人们的视野,并逐渐受到社会各界的广泛关注,此种技术即是甲醇制取烯烃技术。甲醇制烯烃技术不仅消耗成本较低,且符合我国的能源格局衍生需要,因此,对于“甲醇制烯烃技术进展及与石油烃裂解制烯烃技术的对比分析”研究,就具有极大的现实意义。 1甲醇制烯烃技术的简介 通俗的来说,甲醇制烯烃技术正是以煤或天然气合成的甲醇为原料,用来生产低碳烯烃。低碳烯烃在国内市场比较短缺,采用这一项技术,烯烃的供应不足问题可以得到很大程度的改善。尤其是生产出来的乙烯,对各项工业技术的发展有着巨大的推动作用。乙烯不仅仅是各项化工产业的基本原料,它更是合成材料的重要单体。在通用塑料的生产中也是必不可少的原料之一。甲醇制烯烃技术生产的烯烃主要以低碳烯烃为主。除了常用的乙烯之外,丙烯也是另一种应用较广泛的低碳烯烃,它的应用范围也仅次于乙烯。该项技术的发展,极大地推动了我国化工业的发展,可以说是一项历史性的突破。该工艺最终的目的是为生产乙烯和丙烯,然而整个工艺反应之后剩余的副产品中主要包括汽油、焦炭、水、C4等杂质。这些杂质的存在使得整个工艺的选择难度进一步加大,必须使用合理的选择性催化剂,只选择需要的乙烯和丙烯,将其他的杂质都排除在外,并且要装置乙烯和丙烯的分离器,将这两种主要的烯烃分离开来,便于后续的工业生产,同时也为后续的生产提供了很多的便利。 2甲醇制烯烃技术的发展现状 2.1 MTO技术的发展现状分析 作为当下一种较为普遍的应用技术,MTO技术的本质是通过对甲醇的利用,在历经反应器的反应之后,实现乙烯与丙烯的生产。该技术最早是由美国研发,并逐渐在世界范围内应用。该技术的应用主要分为再生系统与反应器分离系统。两个系统在应用的过程中相互配合,最终促进技术目标的达成。生产后得到的乙烯与丙烯在分离器的帮助下实现分离,最终可获得较高纯度的烯烃。相比于MTP技术,MTO技术的综合利用价值更高,MTO技术对于乙烯与丙烯都具有较高的生产价值。 2.2 MTP技术的发展 MTP技术是在德国成功研发的。它与MTO技术还是存在较大的不同。MTP技术的工艺流程主要是先将原料甲醇进行加热,待其温度达到一定范围之后,再将其通入到甲醚反应器中,此时需要采用高活性、高选择性的催化剂,先将甲醇转化为二甲醚、水、甲醇—水—二甲醚的混合物,接着将这些产物通入到分凝器中,再放入MTP反应器中。整个反应得到的主要产物是丙烯,乙烯含量较少,不如MTO技术生产的乙烯多。总的来说,MTP技术是优点与缺点并存,在实际生产的时候需要根据具体情况进行选择。 2.3甲醇制烯烃技术在国内的应用分析 下文针对神华包头煤化工有限公司的烯烃项目进行分析。神华包头煤化工有限公司的甲醇制烯烃项目的发展历程并不悠久,但是该公司紧跟时代潮流,勇于就公司自身进行大刀阔斧的改革,且对于市场定位与公司发展有着较为独到的视角。所以该公司的甲醇制烯烃项目发展至今如鱼得水。伴随着企业的发展,该项目对于社会进步的推动作用也不可忽视。该项目在2010年的七月份正式投入使用,随着该项目的持续发展与优化,乙烯与丙烯的产出率也在不断的提升,与此同时该项目的发展也已经逐步实现了商业化的运营。甲醇制烯烃技术的应用一方面可以有效的缓解我国对进口石油的依赖程度,另一方面也可以有效的实现烯烃原料的多元化发展,这对于我国能源结构的改善具有重要的践行意义。根据《石油和化学工业“十三五”发展指南要求》,在“十三五”期间,我国应就现有乙烯装置的升级与改造予以重视,到2020年我国应达到乙烯产能3200万吨/年,比较2016年底我国MTO/MTP装置产能1293万吨/年的发展数据,可以预知在未来的几年中,我国的甲醇制烯烃技术仍旧具备较大的发展空间。尽管如此,由于现阶段的规划与管理的缺失,使得具体工艺开展的过程中面临着前期投入过大,环境污染严重以及因竞争激励而导致的产生过剩等因素。加强对相关工作的管理与引导,也是未来工作开展的重中之重。 3甲醇制烯烃技术发展动向 当前的MTO技术,烃类产物中乙烯和丙烯的质量总和可以达到80%左右,混合碳四约为13%,其组分以1-丁烯和2-丁烯为主(占90%),其余组分是丁烷、异丁烯、丁二烯和丁炔等,而丙烷为2%~3%,混合碳五为约2%,碳六及以上烃在1%左右。每生成1t乙烯约产生0.34t的C4~C5+烃类,如何利用这些副产物使之更多、更有效地转化为乙烯和丙烯是目前甲醇制烯烃研究的主要技术方向。将这些MTO 反应的副产物一起进入反应器参加对SAPO-34分子筛催化剂的流化,同时可将这些物质进一步转化成为乙烯和丙烯。则发现这些副产物直接返回反应器会对催化剂的性能造成一定的影响(如结焦速率更快等),因此,采用副产物先加氢处理再返回反应器的方案。当加氢催化剂含有Ni、Cu、MO、W等活性组分,可将其中所含的烯烃转化成为烷烃,所含的醛、酮等含氧化合物转化成烃类物质或醇类,这样可有效地减少返回物料对催化剂的影响。将副产物经过多次分离,只将高浓度的含氧化合物返回反应器,这样可减少反应器的负荷,同时返回物料中

煤制烯烃成本分析

煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的竞争力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场竞争力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的竞争力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济竞争力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO 工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成

甲醇制烯烃工艺技术及经济性分析

甲醇制烯烃工艺技术及经济性分析 李建新安福何祚云 (中国石化咨询公司) 甲醇制烯烃(Methanol to Olefins,简称MTO)工艺是美国UOP公司和挪威HYDRO公司于1995 年合作开发成功的一种新技术,该工艺以甲醇为原料,通过甲醇裂解制得以乙烯和丙烯为主的烯烃产品。 按甲醇原料的不同,可以有天然气和煤两种路线。MTO工艺的开发成功拓宽了烯烃原料来源渠道,同 时为天然气和煤的化工利用开辟了一条新的途径。 目前,MTO工艺虽尚未实现在工业化大型装置上的应用,但已实现技术转让。作为一种新兴工艺, 其技术成熟度及与其它烯烃生产工艺相比的经济性怎样成为人们普遍关心的问题。 下面将重点对MTO工艺的技术可靠性及天然气、煤路线及传统蒸汽裂解工艺路线烯烃产品的成本 经济性状况进行分析研究,供大家参考。 1 MTO工艺技术可靠性分析 1.1 MTO工艺开发进程 甲醇制取烯烃的概念最早由美国Mobil公司在20世纪80年代提出。美国UOP公司和挪威Hydro 公司相继从1992年开始有关MTO技术的研究,两家公司利用筛选出的新型SAPO-34型催化剂开展 MTO工艺的研究。该催化剂是硅铝磷酸盐型具有择形能力的分子筛催化剂,可控制酸性中心的位置和 强度,使低碳烯烃齐聚的反应减少,从而大幅提高甲醇转化为乙烯和丙烯的选择性,SAPO-34催化剂 的研发成功是对MTO工艺研究的极大推进。目前,UOP公司MTO工艺的定型催化剂为MTO-100。 UOP和Hydro开发了类似催化裂化装置的MTO工艺流程,并于1992年开始小试工作,1995年两 公司合作在挪威建设了原料处理量为0.75 t/d的工业演示装置。甲醇的转化率始终保持在100%附近。 催化剂再生次数超过450次,其稳定性和强度得到一定的验证。该工艺的乙烯/丙烯的生成比例可从最 大量生产乙烯时的1.5到最大量生产丙烯时的0.75。该工业演示装置典型的产品收率数据见表1。 表1 MTO工业演示装置典型产品收率 组份产率Wt%,以甲醇进料为基产率,Wt%,以甲醇中碳为基 C l~C4饱和烃 1.5 3.5 乙烯 21.1 48.0 丙烯 14.6 33.0 碳四 4.2 9.6 C5+ 1.0 2.4 COX+焦炭 0.5 3.5 生成水 57.1 一 合计 100 100 1995年11月UOP和HRDRO在南非第四届国际天然气转化会议上宣布可以进行MTO技术的转让, 并称该过程已可实现年产50万t/a乙烯的工业化生产,可从UOP和Hydro获得建厂许可证。目前,该 技术已成功转让给尼日利亚一家天然气联合企业,MTO装置规模为年产80万t烯烃,下游配套建设40 万t/a HDPE和40万t/a PP,配套建设250万t/a甲醇装置。 我国中科院大连化物所从20世纪80年代也开始了有关甲醇制烯烃工艺的研究,现在围绕合成气转 化为低碳烯烃已申请专利20余项,在甲醇或二甲醚制取低碳烯烃方面构成了自主的知识产权。大连化 物所在1993年完成了以ZSM-5为催化剂的固定床MTO工艺中试研究,90年代提出了由合成气制二甲 醚进而制取烯烃的SDTO工艺,并于1995年在上海青浦化工厂建设了原料二甲醚处理量为0.06~0.10 t/d 146

【精品】煤制烯烃成本分析

【关键字】精品 煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的比赛力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场比赛力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的比赛力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济比赛力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP 对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成本不到100元/吨,车板价约200多元/吨,东

相关文档
最新文档