利用ANSYS 检验新型直流断路器接触电阻是否处于合理范围

利用ANSYS 检验新型直流断路器接触电阻是否处于合理范围
利用ANSYS 检验新型直流断路器接触电阻是否处于合理范围

摘要:为检验新型直流断路器接触电阻是否处于合理范围,应用有限元软件ANSYS 对触头应力进行仿真。总结一些实体建模和网格划分技巧,结合接触电阻的经验估算和试验数据,验证在重点考虑接触电阻影响时触头设计的合理性。

舰船直流电力系统容量不断增大,对系统保护装置要求更高。为弥补现有舰船直流电力系统保护装置已无法满足系统发生短路时分断巨大短路电流的不足,国内外不同机构从新型直流断路器、超导限流器、固态限流器、混合式限流断路器等几个途径针对直流电力系统限流进行了探索和研究[1 ] 。本文研制了基于电磁斥力机构和永磁操动机构的新型直流断路器。

1 触头结构与材料

触头结构见图1 。AgNi10 触头的尺寸为60 mm ×25 mm ×2 mm ,桥臂采用紫铜。动触头铜桥臂中心开圆孔,经直径12 mm 连杆与永磁机构相连,为保持较好的力学性能,桥臂顶部固定有碳钢盘。合闸时,永磁机构产生的压力通过连杆与碳钢盘接触的圆环面传递给桥臂,完成合闸动作。

考虑到装置的特点: ①电磁操动机构的巨大作用力可使动静触头快速分离; ②触头分断将短路电流换流到电力电子支路,并由电力电子器件来分断短路电流,分断电弧非常小; ③操动机构动作不频繁,设计选用AgNi10 作为触头材料[2 ] 。

2 ANSYS 软件仿真

由于触头机构顶部受力相对集中,动静触头采用面接触,接触压力的传递路径变化较大,接触面上的压力分布不均匀。要得出这种分布趋势及其对接触电阻的影响,直接采用解析方法比较困难,一般需要采用各种数值计算方法来获得近似数值解。有限元方法是目前应用最广泛的一种数值模拟计算方法。

2. 1 单元选择

ANSYS 提供了近150 种涵盖了不同维度、不同学科、不同阶数的单元类型,要确定合适的单元类型,必须对所要解决问题的性质、所选材料的特性和后续划分网格的形式有清晰的认识。这里选择高阶数三维结构实体SOL ID95 进行仿真。

它有20 个节点,每个节点有3 个自由度,可以反映塑性、蠕变、应力硬化、大挠度、大应变,可以由六面体退化成正四面体、棱锥、棱柱,较好地模拟变化剧烈的结构。在必须使用自由网格划分三维体时,因要求使用四面体单元,就应尽量选取二次四面体单元,如SOL ID92 单元。

2. 2 网格划分

ANSYS 中的网格划分方法主要有自由网格划分,映射网格划分和体扫掠网格划分3 种。用自由网格划分效率很高,但是由于它只能将体划分成四面体网格,造成有限元模型网格数量过大,降低了计算精度和速度,所以在对体进行网格划分时尽量避免使用自由网格划分。

映射网格划分是对规整模型的一种网格划分技术,在面上生成四边形网格,在体上生成六面体网格,生成的有限网格形状规则,数量要比相应的自由网格少很多,可以节省计算时间,提

高计算精度。但是,因为这种网格生成技术对面和体的形状有苛刻要求,划分时需要耗费大量时间。例如,在处理触头顶部圆孔的不规则边缘到矩形外侧的规则边缘的过渡时,要保证直线构成的实体之间可以用映射划分相连接,必须用布尔操作将一个相对大的面按与其共面的另一个面积相对小的面的边线划开,见图2 所示,然后分别对几个面划分网格,否则在划分体的

时候,即使两个面都是规则形状,并且在两面的交线处以统一数目划分交线, 也会提示实体拓

补结构不正确,划分无法进行。然后可以在不规则边缘与规则边缘之间的过渡区域采用自由划分。

因面单元的特殊需要,对空心圆柱外侧至最近的矩形边之间的过渡面区域的自由划分必须在XO Y 面上进行,这在划分网格之前的建模阶段就要考虑到。划分体结构采用扫掠的方法,这样可以保证在Z 方向上每个横截面的节点分布都是相同的,从而保证整体模型的其他

部分可采用映射划分。

2. 3 求解

程序自动选定SPARSE MA TRIX DIRECTSOLVER 求解器,当线性分析中迭代求解收敛较慢时为首选,这种求解器对内存消耗中等,但对磁盘空间要求非常大。如对图3 所示模型

划分网格后加载求解, 由于网格较密, 方程数量达到655 152个,计算无法完成。为减少资

源消耗量,增加运算速度,根据模型对称性,切割并保留其整体的1/ 4 ,见图3 ,求解可以顺利

完成。

为考查网格划分方式和单元类型选择对运算结果的影响,以整个模型所有节点的最大位移DMX 为标准,对选取不同单元建模、使用映射与自由划分网格进行运算结果对比,见表1 。

由仿真结果可知,不同的网格划分方式及不同的单元类型对运算结果有一定影响,特别是45号单元在分网和求解时软件均有警告弹出,提示计算会出现较大误差。但在本文所涉及的固体静态分析中,这种程度的误差是微乎其微的。这里选用95 号单元的映射划分模型的计算结果,可知接触面上应力对面积的积分为248. 52 N ,与1/ 4模型所受合闸压力250 N 相差很小,从而验证了将连杆向下传递的压力看作触头接触面压力的可行性。

2. 4 后处理

分析节点解的变形图可知,在1 000 N 集中压力作用下,碳钢盘的形变很小,不会引起触头的严重变形。从应力分布云图(见图4) 可以看出,触头接触面外侧边缘受力方向与合闸压力方向相反,且量值分布不均匀。靠桥臂中心部分应力较大,可以保证良好的接触。靠铜排延伸方向的外侧部分应力较小,导电斑点较内侧要少很多,通流会引起热量聚集。参考法国FERRAZ 公司高压交流混合式熔断器设计,将导电铜排的截面尺寸定为120 mm ×15 mm ,能够有效抑制温升。

3 接触电阻及触头压力

接触压力对接触电阻有重要影响。实验表明,在满足格林渥和威灵逊假设的情况下,即触头粗糙表面微观凸丘高度分布为高斯分布时,对于一定的名义接触面积,计算所得实际接触面积几乎与接触力成正比[ 223 ] 。

试验测得永磁斥力机构可以提供的斥力峰值为2 400 N ,而同时为保证分闸动作的快速性,需要克服的合闸压力应当减小,经仿真和计算,可以将操动机构合闸斥力减小至低于1 000 N。由于动静触头有两个相同的接触面,连杆向下传递的斥力可以对称地传递到两侧的动静触头接触面上,而不会由于触头结构的不同分散到其他方向。

如果取平均压力来代替接触面压力分布的效应,可以求得当斥力为1 000 N 时,接触压力为500 N ,接触电阻理论值为1. 84μΩ。

对整台设备做稳态通流压降试验,在恒定1 000 、2 000 A 直流短时通流下,经多次测量取平均值核算,两侧触头接触电阻分别为4. 8 μΩ和2. 55μΩ。由于触头材料表面加工工艺和氧化作用综合效应的影响,此值比计算值偏大。工程实际应用中的触头情况复杂,理论上无法精确预计,只能求助于满足一定条件的经验公式。然而,由于所处实验条件和选用的实验方法不尽相同,得出的结果往往有所差别,对于接触电阻经验公式中接触系数Kc 的选取,还未见精确量化的文献,这是造成试验值与计算值差异的另一重要因素。

新型直流断路器的工作特性要求设计触头时重点考虑接触电阻值的影响,而衡量触头接触电阻是否处于合理区间的重要标准是应使接触压降低于触头材料软化压降[4 ] 。即使取

样机偏高一侧的接触电阻值,在通流4 000 A 并留有2~3 倍裕度,其接触压降也远低于银的软化压降0. 09 V。由此可以看出,触头的设计是合理的。

4 结论

1) 结合新型直流断路器触头应力分析,总结ANSYS 软件的一些建模和网格划分技巧。

2) 由于该断路器触头属于面接触,导致应力不均匀。靠近桥臂中心一侧应力较大,接触

良好; 两侧应力较小,但按照低压电器设计标准合理设计触头接触面积和导电铜排的尺寸,可

以有效抑制温升。

3) 因为该限流断路器动作不频繁,磨损等指标对触头性能影响不大,设计触头时重点考

查接触电阻的影响。实际测量接触电阻值与计算值差别不大,在现有加工工艺和长期氧化的综合作用下符合工程应用实际,量值处于合理区间。

值得指出的是,接触压力会引起触头接触面微观凸丘的塑性变形,导致实际的接触面积发生极为复杂的变化;加之微观凸丘与宏观设备在尺度数量级上相差很大,给实体建模造成困难。这些问题的解决,有赖于电接触理论的深入研究和建模技术的创新发展。

参考文献

[1 ] 庄劲武,张晓锋,杨锋,等. 船舶直流电网短路限流装置的设计与分析[J ] . 中国电机工程学报,2005 ,25(20) :26230.

[2 ] 贺湘琰. 电器学[M] . 北京:机械工业出版社,1985.

[3 ] 程礼椿. 电接触理论及应用[M] . 北京:机械工业出版社,1985.

[4 ] 张茂祥. 低压电器设计手册[M] . 北京:机械工业出版社,1992.

断路器接触电阻测量仪-延志辉

单片机课程设计 山东科技大学 信息与电气工程学院 电气工程及其自动化 断路器接触电阻测量仪 一、断路器接触电阻测量仪总体框图 二、断路器接触电阻测量原理 1、断路器导电回路的电阻主要取决于断路器的动、静触头间的接触电阻,接触电阻又由收缩电阻和表面电阻两部分组成。 2、接触电阻的存在,增加了导体在通电时的损耗,使接触处的温度升高,其值的大小直接影响正常工作时的载流能力,在一定程度上影响短路电流的切断能力。 3、在实际应用中,测量电气开关 (断路器) 的接触电阻回路电阻的测试仪表中常见的是微欧仪。断路器导电回路电阻的测量是在断路器处于合闸状态下进行的,是采用直流电压降法进行测量。常见的测量方式有电压降法 (电流、电压表法)和微欧仪法。 电压降法:在被测回路中,通以直流电流时,在回路接触电阻上将产生电压降,测出通过回路的电流值以及被测回路上的电压降,根据欧姆定律计算出接触电阻。由于电阻很小,用一般的万用表测量电压和电流的误差大、精度较小,得到的结果不准确,所以不使用这种方法

电压降法 微欧仪法:而微欧仪的工作原理仍是电压降法。通常将交流220V电压整流后,通过开关电路转换为高频电流,最后再整定为100A的恒定直流,用作测量电源。测量时,微欧仪内的标准电阻Rf与被测回路电阻Rd串联,则有I=Ud/Rd=Uf/Rf,所以Rd=(Ud/Uf)*Rf。从Rd=(Ud/Uf)*Rf中可知被测回路电阻阻值与电流无关,所以在电路中通过的电流即使稍有偏差,也不会对测量结果产生影响。每次测试,合上微欧仪电源,按下测试按钮,便可将被测回路电阻(接触电阻)自动测出,并显示结果。在测试过程中不需调节电流。 微欧仪法 三、提高测量精度的措施 1.克服测量引线电阻的影响 对于微电阻的精密测量,测量引线电阻的影响是不容忽视的,必须采取有效措施加以克服。为达此目的,采用了四端子的引线方式,四端子引线示意图中Rx是被测电阻,R1--R4是引线电阻(包括接触电阻),AP是仪用放大器,恒流源的输出电流Ic 经R1、R2加在Rx上。电流恒定时,R1、R2的大小对于Rx上的电压降没有影响。由于AP的输入阻抗高达50M欧姆,因此完全可以认为流经AP的电流Iv=0,而且AP的输入电压即为Rx两端电压,这样就克服R3、R4的影响。当增益为1时,AP的输出电压Vs等于Rx两端电压。

断路器型号选择

低压断路器型号的含义是什么? 举例: HUM18-63C32/1 HU-----企业代号(环宇),M18---产品型号,63-----壳架等级, C------使用类别:照明电路(或者一般电路) 32-----额定电流,1-------1P(1极) 断路器DW17-400/3:DW-万能自动空气断路器; 17-设计代号;“-400”-额定电流(A);“/3”-3极。 (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。 (3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。 (4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。 问:空气开关(断路器)的极性和表示方法是怎样的? 单极220V 切断火线(小型断路器) 双极220V 火线与零线同时切断(DPN零线火线双进双出断路器) 三级380V三相线全部切断 四级380V三相火线一相零线全部切断。 断路器极数选用 对于微型断路器来说,1P+N、1P、2P一般都用来作为单相用电器的通断控制,但效果不同。 1P------单极断路器,具有热磁脱扣功能,仅控制火线(相线); 1P+N----单极+N断路器,同时控制火线、零线,但只有火线具有热磁脱扣功能;2P------单相2极断路器,同时控制火线、零线,且都具有热磁脱扣功能。 所以,可以得出以下结论: 1、为减少成本,用1P就可以,但上级断路器必须有漏电脱扣功能,检修时为防止火、零错乱造成事故,必须切断上级电源; 2、为检修时避免1条的问题,可用1P+N(即DPN); 3、用2P的理由:对于同样是18mm模数的断路器壳体而言,内部装1P和装1P+N 是有区别的,前者在短路事故状态下的“极限分断能力”肯定要高于后者,毕竟空间是影响分断能力的一个重要因素。所以,对于比较重要、检修与操作频繁、容易出现故障的用电回路,最好还是用2P(成本高些)。 1P+N=一极+零线保护的(如室内用电保护),常用于室内;1P=单极的,常用于单相小负荷(如室内照明回路);2P=二级,常用于较大负荷(如室外照明回路)。P---极。1P就是一个单个的开关,2P就是俩开关,1P+N就是开关内部一个

军用连接器专业知识

第一章概论 一、什么是连接器 连接器的作用非常单纯:在电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,保证电流顺畅连续和可靠地流通,使电路实现预定的功能。 连接器是电子设备中不可缺少的部件,顺着电流流通的通路观察,你总会发现有一个或多个连接器。连接器形式和结构是千变万化的,随着应用对象、频率、功率、应用环境等不同,有各种不同形式的连接器。例如,球场上点灯用的连接器和硬盘驱动器的连接器,以及点燃火箭的连接器是大不相同的。 二、为什么要使用连接器 设想一下如果没有连接器会是怎样?这时电路之间要用连续的导体永久性地连接在一起,例如电子装置要连接在电源上,必须把连接导线两端,与电子装置及电源通过某种方法(例如焊接)固定接牢。这样一来,无论对于生产还是使用,都带来了诸多不便。 以汽车电池为例。假定电池电缆被固定焊牢在电池上,汽车生产厂为安装电池就增加了工作量,增加了生产时间和成本。电池损坏需要更换时,还要将汽车送到维修站,脱焊拆除旧的,再焊上新的,为此要付较多的人工费。有了连接器就可以免除许多麻烦,从商店买个新电池,断开连接器,拆除旧电池,装上新电池,重新接通连接器就可以了。这个简单的例子说明了连接器的好处。它使设计和生产过程更方便、更灵活,降低了生产和维护成本。 连接器的好处 改善生产过程连接器简化电子产品的装配过程。也简化了批量生产过程 易于维修如果某电子元部件失效,装有连接器时可以快速更换失效元部件 便于升级随着技术进步,装有连接器时可以更新元部件,用新的、更完善的元部件代替旧的

三、连接器行业涉及的主要相关理论知识 (一)电接触理论 电接触理论的范围很广,接触的物理—化学过程包括:接触时的热、电、磁、半导体等各种效应,接触电阻的物理本质及其计算,触头接触点温度场、触点的温差热电势及其对金属迁移的影响,触头金属小桥理论与计算,触点间热量和质量转移的物理过程及其数学模型等。在电接触理论方面,荷尔姆作出了重大贡献,他的巨著《电接触》总结了他数十年的研究心得,为了纪念他,国际上成立了HOLM 电接触学会,各主要国均有相应的年会,国内有北京邮电大学、福州大学、贵州大学等电接触方面进行研究。 (二)电弧理论 带电插拔的电连接器涉及到电弧问题,电弧理论包括触头分离时如何引弧和熄弧的理论,气体放电和激励的过程,火花放电、辉光放电和弧光放电的界限和过程,离子平衡和电离消电离的过程,极旁和弧柱理论,剩余电流热积累,电击穿和热击穿的过程,电弧的静态和动态特性,电弧的能量与过电压等等。 (三)电器的发热理论 除了介质损耗是热源外,电器的发热主要是载流导体的电流效应,在大电流和强的交变磁场下,载流体间不仅产生巨大的电动力,而且还产生集肤效应和邻近效应,载流体电流线分布不均匀将直接影响发热和温升。 四、常用术语 电连接器的术语较多,国标GB4210-84(相当于IEC50)对相关的术语进行了描述,本节仅列出了主要的术语,其他可查阅标准。 (1)连接器(Connector):一般是指有能使电缆和电缆接线端迅速连接或分离的

高精度接触电阻测量系统

一.设计名称:高精度接触电阻测量系统 二.具体要求: 用于检测各种电器的接地电阻、接触电阻等,以确定良好接地或导通。 1.被测对象 用电器与蓄电池负极电阻值 接触器、开关的接触电阻值 2.测量范围 0.5mΩ—100mΩ 3.测量精度 10uΩ(0.01mΩ) 4.测量点数 20点 5.超限报警 三.具体设计 接触电阻是触点接触工作性能的最基本的参数, 接触电阻直接反映继电器触点接触的可靠性。在研究继电器可靠性过程中, 一般都要对触点接触电阻进行监测。因此触点接触电阻的测量是继电器可靠性研究中的重要一环, 接触电阻的测量有多种方法。工程中, 通常采用四端法(其测试条件为开路电压6V , 电流10mA ) 来测量实际触点的接触电阻, 对于大容量的触点,也有采用27V ×100mA 的方法来测量接触电阻。本设计采用矩形脉冲电流来测量接触电阻。 在正常情况下, 继电器触点的接触电阻Rj约在10m8 左右, 触点流过10mA 电流时, 触点两端的电压降Uj为100LV , 由于此电压降数值较小, 对测量接触压降U j 的仪表要求具有较高的灵敏度, 但是灵敏度提高信杂比变小, 要想获得较高的测量精度颇为困难。为了提高测量精度, 同时为了根据接触电阻来研究触点接触可靠性, 可以设法提高通过触点的电流的数值。一般认为测量电流提高, 接触电阻也升高, 触点上的电流电压呈现非线性关系。当通电电流增加时, 触点间的电压降也随之增大, 由接触电阻而产生的焦耳热使触点温度升高, 而接触电阻与温度间关系可表示为: 如果大电流通过触点, 但通电时间很短(如小于300Ls) , 接触电阻产生的焦耳热使触点温度升高不多, 则由(1) 式可知, 接触电阻值变化不大。另一方面, 由于温度上升不多, 虽然接触压降可能超过触点材料的软化压降或熔化压降, 但触点接触面也不会发生软化或熔化。同时, 由于电流值较大, 在触点上的接触压降较高, 使得测量精度提高, 减少了信杂

接触器 断路器 隔离开关的区别

1.脱扣器与继电器 两者的原理相同,都是通过线圈的通断电实现动作功能的。 区别在于:脱扣器的输出信号为机械动作信号;继电器的动作信号为电气信号。简单来说: 脱扣器通过动铁芯传动,用于开关跳闸或安全闭锁; 继电器通过动铁芯传动,使继电器自带的触头分合状态发生变化。 可以认为:继电器是由脱扣器和若干组继电器触头组成的。 2.断路器和隔离开关 两者都用于电路的通断控制。 区别在于:断路器既可分断额定电流,也可分断短路电流; 隔离开关只可分断空载电路,或通过配置灭弧附件分断额定电流。 两者各有好处: 断路器的电路保护功能完善,但一般不具有明显断开点,一般不能用于检修断口使用; 隔离开关对电路基本没有保护功能,但具有明显断开点,主要作为检修断口使用。 3.断路器和熔断器 两者都用于对电路的保护。 区别在于: 断路器的保护功能更全面,且跳闸后可反复使用,但跳闸速度较慢,一般为几十ms级; 熔断器只能使用一次,熔断后需更换,但其熔断速度非常快,一般为μs级。 一般情况下,断路器作为主保护,熔断器作为后备保护; 熔断器较便宜,也可用于经济水平较低场合的主保护。 4.断路器和接触器 两者都用于对电路的通断。 区别在于:断路器用于对电路的不频繁通断;接触器用于对电路的频繁通断。并且:断路器对电路具有保护作用,而接触器没有此功能,其开断短路电流能力非常差,因为其分断速度很慢,一般为几百ms级。 5.空气开关 上述其它名词均为电气元件的规范名称。而空气开关不是,仅为俗称或通称。广义上说:采用空气作为隔弧、灭弧介质的开关均可称为空气开关。在这个意义上,低压空气断路器、压气负荷开关、隔离开关都可称为空气开关。 狭义上讲:专指低压空气断路器。 另外:国外所称air circuit-breaker,专指低压框架式断路器

连接器接触电阻

连接器接触电阻 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2.1 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的 5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻

断路器的操作

断路器的操作 一、操作断路器基本要求 (1)一般情况下断路器不允许带电手动合闸。如特殊需要时,应迅速果断,使操作机构连续通过整个行程,此时合闸信号灯应发亮。 (2)远方操作断路器时,应使控制断路器(或按钮)进行到相应的信号灯亮为止,不得快速操作后很快就返回,那样将使操作失灵。 (3)如果操作断路器后,进行的下一步操作使隔离开关,则不能以信号灯或测量仪表指示为准判断断路器是否确已真实操作完毕。此时应至现场断路器所在地,以断路器机械位置指示器判断断路器真正开闭情况。 (4)在下列情况下,须将断路器的操作电源切断: 1)检修断路器或在二次回路或保护装置上作业时。 2)倒母线过程中,须将母联断路器操作电源切断。 3)检查断路器开闭位置及操作隔离开关前。 4)继电保护故障。 5)油断路器无油,或气体断路器漏气。 6)液压、气压操动机构贮能装置压力降至允许值以下时。 7)当断路器的操作不在主控室和配电室内,在断开操作电源的同时,必须在断路器操作手柄上悬挂“不可合闸”的警告牌。 8)当系统接线从一组母线倒换到另一组母线时。 断开操作电源的办法是摘去操作回路中的操作断路器。 (5)设备停电操作前,对终端线路应先检查负荷是否为零。对并列运行的线路,在一条线路停电前应先考虑有关整定值的调整,并注意在该线路拉开后另一线路是否过负荷。如有疑问应问清调度后再操作。断路器合闸前必须检查有关继电保护已按规定投入。 (6)断路器操作后,应检查与其相关的信号,如红绿灯、光示牌的变化,测量表计的指示。装有三相电流表的设备,应检查三相表计,并到现场检查断路器的机械位置以判断断路器分合的正确性,避免由于断路器假分假合造成误操作事故。 (7)操作主变压器断路器停役时,应先断开负荷侧断路器后断开电源侧断路器,服役时顺序相反。 (8)如装有母差保护时。当断路器检修或二次回路工作后,断路器投入运行前应先停用母差保护再合上断路器,充电正常后才能投入母差保护(有负荷电流时必须测量母差不平衡电流并应为正常)。 (9)断路器出现非全相合闸时,首先要恢复其全相运行(一般两相合上一相合不上,应再合一次,如仍合不上则将合上的两相断开;如一相合上两相合不上,则将合上的一相断开),然后再作处理。 (10)断路器出现非全相分闸时,应立即设法将未分闸相断开。如断不开,应利用母联或旁路进行倒换操作,之后通过隔离开关将故障断路器隔离。 (11)对于储能机构的断路器,检修前必须将能量释放,以免检修时引起人员伤亡。检修后的断路器必须放在分开位置上,以免送电时造成带负荷合隔离开关的误操作事故。 (12)断路器累计分闸或切断故障电流次数(或规定切断故障电流累计值)达到规定时,应停役检修。还要特别注意当断路器跳闸次数只剩一次时,应停用重合闸,以免故障重合时造成跳闸引起断路器损害。 二、断路器的操作 (一)合闸送电前的检查 (1)在合闸送电前要收回发出的所有工作票,拆除临时接地线,并全面检查断路器。

连接器工艺流程

电子连接器种类繁多,但制造过程基本可分为下面四个阶段: ·冲压(Stamping) ·电镀(Plating) ·注塑(Molding) ·组装(Assembly) 2.1 冲压 电子连接器的制造过程一般从冲压插针开始。通过大型高速冲压机,电子连接器(插针)由薄金属带冲压而成。大卷的金属带一端送入冲压机前端,另一端穿过冲压机液压工作台缠入卷带轮,由卷带轮拉出金属带并卷好冲压出成品。 2.2 电镀 连接器插针冲压完成後即应送去电镀工段。在此阶段,连接器的电子接触表面将镀上各种金属涂层。与冲压阶段相似的一类问题,如插针的扭曲、碎裂或变形,也同样会在冲压好的插针送入电镀设备的过程中出现。通过本文所阐述的技术,这类品质缺陷是很容易被检测出来的。 然而对於多数机器视觉系统供应商而言,电镀过程中所出现的许多品质缺陷还属於检测系统的"禁区"。电子连接器制造商希望检测系统能够检测到连接器插针电镀表面上各种不一致的缺陷如细小划痕和针孔。尽管这些缺陷对於其他产品(如铝制罐头底盖或其他相对平坦的表面)是很容易被识别出来的;但由於大多数电子连接器不规则和含角度的表面设计,视觉检测系统很难得到足以识别出这些细微缺陷所需的图像。 由於某些类型的插针需镀上多层金属,制造商们还希望检测系统能够分辨各种金属涂层以便检验其是否到位和比例正确。这对於使用黑白摄像头的视觉系统来说是非常困难的任务,因为不同金属涂层的图像灰度级实际上相差无几。虽然彩色视觉系统的摄像头能够成功分辨这些不同的金属涂层,但由於涂层表面的不规则角度和反射影响,照明困难的问题依然存在。 2.3 注塑 电子连接器的塑胶盒座在注塑阶段制成。通常的工艺是将熔化的塑胶注入金属胎膜中,然後快速冷却成形。当熔化塑胶未能完全注满胎膜时出现所谓 "漏?quot; (Short Shots), 这是注塑阶段需要检测的一种典型缺陷。另一些缺陷包括接插孔的填满或部分堵塞(这些接插孔必须保持清洁畅通以便在最後组装时与插针正确接插)。由於使用背光能很方便地识别出盒座漏缺和接插孔堵塞,所以用於注塑完成後品质检测的机器视觉系统相对简单易行 2.4 组装 电子连接器制造的最後阶段是成品组装。将电镀好的插针与注塑盒座接插的方式有两种:单独对插或组合对插。单独对插是指每次接插一个插针;组合对插则一次将多个插针同时与盒座接插。不论采取哪种接插方式,制造商都要求在组装阶段检测所有的插针是否有缺漏和定位正确;另外一类常规性的检测任务则与连接器配合面上间距的测量有关。 和冲压阶段一样,连接器的组装也对自动检测系统提出了在检测速度上的挑战。尽管大多数组装线节拍为每秒一到两件,但对於每个通过摄像头的连接器,视觉系统通常都需完成多个不同的检测专案。因而检测速度再次成为一个重要的系统性能指标。 组装完成後,连接器的外形尺寸在数量级上远大於单个插针所允许的尺寸公差。这点也对视觉检测系统带来了另一个问题。例如:某些连接器盒座的尺寸超过一英尺而拥有几百个插针,每个插针位置的检测精度都必须在几千分之一英寸的尺寸范围内。显然,在一幅图像上无法完成一个一英尺长连接器的检测,视觉检测系统只能每次在一较小视野内检测有限数目的插针品质。为完成整个连接器的检测有两种方式:使用多个摄像头(使系统耗费增加);或当连接器在一个镜头前通过时连续触发相机,视觉系统将连续摄取的单祯图像"缝合"起来,以判断整个连接器品质是否合格。後一种方式是PPT视觉检测系统在连接器组装完成後通常所采用的检测方法。 "实际位置"(True Position)的检测是连接器组装对检测系统的另一要求。这个"实际位置"是指每个插针顶端到一条规定的设计基准线之间的距离。视觉检测系统必须在检测图像上作出这条假想的基准线以测量每个插针顶点的"实际位置"并判断其是否达到品质标准。然而用以划定此基准线的基准点在实际的连接器上经常是不可见的,或者有时出现在另外一个平面上而无法在同一镜头的同一时刻内看到。甚至在某些情况下不得不磨去连接器盒体上的塑胶以确定这条基准线的位置。这里的确出现了一个与之相关的论题-可检测性设计。 可检测性设计(Inspectablity) 由於制造厂商对提高生产效率和产品品质并减少生产成本的不断要求,新的机器视觉系统得到越来

断路器、隔离开关、接触器、继电器、万能转换开关原理

断路器、隔离开关、接触器、继电器、万能转换开关原理 低压断路器 低压断路器又称自动开关,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,一获得了广泛的应用。 结构和工作原理低压断路器由操作机构、触点、保护装置(各种脱扣器)、灭弧系统等组成。低压断路器的主触点是靠手动操作或电动合闸的。主触点闭合后,自由脱扣机构将主触点锁在合闸位置上。过电流脱扣器的线圈和热脱扣器的热元件与主电路串联,欠电压脱扣器的线圈和电源并联。当电路发生短路或严重过载时,过电流脱扣器的衔铁吸合,使自由脱扣机构动作,主触点断开主电路。当电路过载时,热脱扣器的热元件发热使双金属片上弯曲,推动自由脱扣机构动作。当电路欠电压时,欠电压脱扣器的衔铁释放。也使自由脱扣机构动作。分励脱扣器则作为远距离控制用,在正常工作时,其线圈是断电的,在需要距离控制时,按下起动按钮,使线圈通电,衔铁带动自由脱扣机构动作,使主触点断开。 隔离开关

隔离开关是高压开关电器中使用最多的一种电器,它本身的工作原理及结构比较简单,但是由于使用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。刀闸的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路。主要作用是: 1)分闸后,建立可靠的绝缘间隙,将需要检修的设备或线路与电源用一个明显断开点隔开,以保证检修人员和设备的安全。 2)根据运行需要,换接线路。 3)可用来分、合线路中的小电流,如套管、母线、连接头、短电缆的充电电流,开关均压电容的电容电流,双母线换接时的环流以及电压互感器的励磁电流等。 4)根据不同结构类型的具体情况,可用来分、合一定容量变压器的空载励磁电流。 户外刀闸按其绝缘支柱结构的不同可分为单柱式,双柱式和三柱式。其中单柱式刀闸在架空母线下面直接将垂直空间用作断口的电气绝缘,因此,具有的明显优点,就是节约占地面积,减少引接导线,同时分合闸状态特别清晰。在超高压输电情况下,变电所采用单柱式刀闸后,节约占地面积的效果更为显著。 在低压设备中主要适用于民宅、建筑等低压终端配电系统。主要功能:带负荷分断和接通线路隔离功能。 接触器 直流接触器的工作原理如下:当接触器线圈通电后,线圈电流产

如何选择交流接触器、空开、过热继电器、电缆截面

已知一台低压380V电动机功率,试问应如何选择交流接触器、空开、过热继电器、电缆截面 电机如何配线?选用断路器,热继电器? 如何根据电机的功率,考虑电机的额定电压,电流配线,选用断路器,热继电器 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 一台三相电机,除知道其额定电压以外,还必须知道其额定功率及额定电流,比如:一台三相异步电机,7.5KW,4极(常用一般有2、4、6级,级数不一样,其额定电流也有区别),其额定电路约为15A 。 1、断路器:一般选用其额定电流1.5-2.5倍,常用DZ47-60 32A, 2、电线:根据电机的额定电流15A,选择合适载流量的电线,如果电机频繁启动,选相对粗一点的线,反之可以相对细一点,载流量有相关计算口决,这里我们选择4平方, 3、交流接触器,根据电机功率选择合适大小就行,1.5-2.5倍,一般其选型手册上有型号,这里我们选择正泰CJX2--2510,还得注意辅助触点的匹配,不要到时候买回来辅助触点不够用。 4、热继电器,其整定电流都是可以调整,一般调至电机额定电流1-1.2倍。 断路器继电器电机配线 电机如何配线? (1)多台电机配导线:把电机的总功率相加乘以2是它们的总电流。 (2)在线路50米以内导线截面是:总电流除4.(再适当放一点余量) (3)线路长越过50米外导线截面:总电流除3.(再适当放一点途量) (4)120平方以上的大电缆的电流密度要更低一些, 断路器: (1)断路器选择:电机的额定电流乘以2.5倍,整定电流是电机的1.5倍就可以了,这样保证频繁启动,也保证短路动作灵敏。 热继电器?热继电器的整定值是电机额定电流是1.1倍。 交流接触器:交流接触器选择是电机流的2.5倍。这样可以保证长期频繁工作。 其他答案 根据电流来选择但一定要留有余量 看电机的铭牌,电流有好大,只有热继电器要选合适的,其它东西的电流大一倍就可以了。主要取决与电动机的功率,也就是工作电流的大小,交流接触器的额定电流应该比电动机的启动电流要大些,空气开关应大于或等于接触器的额定电流,热继电器一般有调节范围,应该把电动机的工作电流包括在热继电器电流调整的范围内即可.电缆可根据电机电流的大小及长度进行选择,15KW内近距离每平方毫米铜电缆可带3.5KW左右. 额定功率就是电动机铭牌上标注的的功率,计算公式是电流等于功率除以(1.732乘以电压乘以功率因数再乘以效率)功率因数一般选0.85,效率一般选取0.9.

连接器弹性接触件设计与材料

连接器弹性接触件设计与材料 苏州接插元件研究所邓志奎沈鑫万庆葛粉兆尹秋 《国际线缆与连接》应用版—2002年4月刊 摘要:文章就弹性件设计与材料之间的内在关系,通过公式推导,并通过电接触原理的介绍加以论述,以便使设计人员在设计连接器弹性元件时,为合理选择材料,提供一种可行的方法。 前言 连接器产品一般依据连接器的使用范围和功能要求来考虑其结构尺寸。如果材料选择不当,或结构尺寸参数不合适,将不会设计出一个好品质的连接器产品;同样弹性元件的材料选择不恰当,也不会设计出一个好的连接器产品。即使对一个工作多年的设计师来说,面对几十,上百种可供选择的材料,要能选择一种合理的材料也是很困难的。 设计人员在设计连接器时,必须考虑诸多因素,特别是要将结构尺寸设计和弹性材料的选择加以综合考虑。随着材料科学的发展,现在市场上可供选择的弹性材料种类越来越多,这就给设计人员选择时带来了一定的困难。一般而言,针对具体的元件结构尺寸,首先是选择弹性性能能满足要求的材料,而在几种可供选择的材料中,又要选择一种价格相对便宜、工艺简单(工艺成本低)的材料,这种材料是最佳的选择对象。 为了选好一种材料,本文首先从连接器的核心部分-接触对的电接触理论加以简单的介绍。 1 产品性能对连接器弹性接触对的要求 电连接器接触性之好坏与连接器接触对间的接触电阻大小有关。一般要求接触电阻小一点为好,这样可减少接触电阻造成的功能损耗。并且也可减少接点发热,接点发热太高反而增加了接触电阻值。另外,过高的热量如散发不好就会使金属软化,加快了金属表面的氧化和磨损,使连接器的品质下降,严重的会使连接器塑壳软化变形,老化等。因此,接触电阻一般仍以偏小以好。 同时,对数字电路用的连接器来说,要求连接器在工作时,其接触电阻不仅要小,数值也要求较为稳定为好。如工作中阻值变化太大,容易形成脉冲,从而使整机不能正常工作。我们在试制中曾用一只开关代替施密特电路给一数字电路发脉冲信号,发现由于弹性元件多次弹跳,开关每次开合击发引起计数紊乱。这是由于开关开合时,弹片抖动,引起接触电阻变化,从而产生电压变化所致,所以接触电阻值在工作过程中其数值要尽量稳定。 1. 1连接器接触对的接触电阻 连接器接触对是指连接器一个插头片和一个插座片相互接触实现电连接的金属元件。它们在接触区形成一个电阻,称之为接触电阻。接触电阻有以下几部分组成: 1.1. 1压缩电阻Rc 清洁的金属表面通过施加一定的压力(弹力)互相接触在一起时形成的电阻Rc称之为压缩电阻,见图1,由于接触区的接触面积很小,电流一到接触区相互被压缩在一起,使电流密度增加,此对产生的电阻称之为压缩电阻。

连接器接触电阻检验

连接器接触电阻检验 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。部分约占实际接触面积的5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻 实际测量电连接器接触件的接触电阻时,都是在接点引出端进行的,故实际测得的接触电阻还包含接触表面以外接触件和引出导线本身的导体电阻。导体电阻主要取决于金属材料本身的导电性能,它与周围环境温度的关系可用温度系数来表征。 为便于区分,将集中电阻加上膜层电阻称为真实接触电阻。而将实际测得包含有导体电阻的称为总接触电阻。 在实际测量接触电阻时,常使用按开尔文电桥四端子法原理设计的接触电阻测试仪(毫欧计),其专用夹具夹在被测接触件端接部位两端,故实际测量的总接触电阻R由以下三部分组成,可由下式表示: R= RC + Rf + Rp,式中:RC—集中电阻;Rf—膜层电阻;Rp—导体电阻。 接触电阻检验目的是确定电流流经接触件的接触表面的电触点时产生的电阻。如果有大电流通过高阻触点时,就可能产生过分的能量消耗,并使触点产生危险的过热现象。在很多应用中要求接触电阻低且稳定,以使触点上的电压降不致影响电路状况的精度。 测量接触电阻除用毫欧计外,也可用伏-安计法,安培-电位计法。 在连接微弱信号电路中,设定的测试数条件对接触电阻检测结果有一定影响。因为接触表面会附有氧化层,油污或其他污染物,两接触件表面会产生膜层电阻。由于膜层为不良导体,随膜层厚度增加,接触电阻会迅速增大。膜层在高的接触压力下会机械击穿,或在高电压、大电流下会发生电击穿。但对某些小型连接器设计的接触压力很小,工作电流电压仅为mA和mV级,膜层电阻不易被击穿,接触电阻增大可能影响电信号的传输。 在GB5095“电子设备用机电元件基本试验规程及测量方法” 中的接触电阻测试方法之一,“接触电阻-毫伏法” 规定,为防止接触件上膜层被击穿,测试回路交流或直流的开路峰值电压应不大于20mV,交流或直流的测试中电流应不大于100mA。 在GJB1217“电连接器试验方法” 中规定有“低电平接触电阻” 和“接触电阻” 两种试验方法。其中低电平接触电阻试验方法基本内容与上述GB5095中的接触电阻-毫伏法相同。目的是评定接触件在加上不改变物理的接触表面或不改变可能存在的不导电氧化薄膜的电压和电流条件下的接触电阻特性。所加开路试验电压不超过20mV,试验电流应限制在100mA。在这一电平下的性能足以表现在低电平电激励下的接触界面的性能。而接触电阻试验方法目的是测量通过规定电流的一对插合接触件两端或接触件与测

空开断路器中间继电器交流接触器区别

空开断路器中间继电器交流接触器区别 1 断路器:不仅能够断开额定电流,还能够断开短路电流后再正常运行,用来开断电气设备的供电回路; 2 空气开关:断路器中的一种型式,其灭弧原理采用空气综吹或横吹方式,所以称为空气开关。不仅可以开断额定电流,也能开断回路的短路电流; 3 交流接触器:只能开断回路的额定电流,不能开断回路的短路电流。由于其操作寿命在30万次,一般用其作为回路的操作元件,而将空气开关作为回路的保护元件; 4 中间继电器:继电器的一种,带有多对常开和常闭接点,可以将一个信号转换为多个相同的信号。使用在二次回路中。 电气设备常用文字符号新旧对照表 名称文字符号 新旧 (一)常用基本文字符号 电桥 AB DQ 晶体管放大器 AD DF 集成电路放大器 AJ 印刷电路板 AP 抽屉柜 AT 旋转变压器(测速发电机) TG CF 电容器 C C 发热器件 EH RJ 照明灯 EL ZD 空气调节器 EV 过电压放电器件避雷器 F BL 具有瞬时动作的限流保护器件 FA SX 具有延时动作的限流保护器件 FR YX 具有延时和瞬时动作的限流保护器件 FS YSX 熔断器 FU RD 限压保护器件 FV RD 同步发电机 GS TF 异步发电机 GA YF 蓄电池 GB XC 声响指示器 HA YS 光指示器 HL GS 指示灯 HL SD 瞬时有或无继电器,交流继电器 KA J 接触器 KM C 极化继电器 KP JJ 簧片继电器 KP 延时有或无继电器 KT SJ

电感器 L L 电抗器 L DK 电动机 M D 同步电动机 MS TD 异步电动机 MA YD 电流表 PA I 电压表 PV U 电能表 PJ Wh 断路器 QF DL 电动机保护开关 QM 隔离开关 QS GLK 电阻器 R R 电位器 RP W 控制开关 SA KK 选择开关 XK 按钮开关 SB AK 电流互感器 TA LH 控制变压器 TC KB 电力变压器 TM LB 电压互感器 TV YH 整流器 U ZL 二极管 V D 晶体管 B 晶闸管 KG 电子管 VE G 控制电路用电源的整流器 VC KZ 连接片 XB LP 测试插孔 XJ 插头 XP CT 插座 XS CZ 端子板 XT JX 电磁铁 YA DT 电磁制动器 YB ZD 电磁离合器 YV CLH 电磁吸盘 YH CX 电动阀 YM 电磁阀 YV (二)常用辅助文字符号 电流 A L 交流 AC JL 自动 A,AUT Z

连接器检验方法[1]非常实用-可做检验试验

连接器检验方法 上海航天技术研究院808所杨奋为 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。 但根据作者多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,作者认为:针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 具体: 2接触电阻检验 2.1作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。 实际接触面可分为两部分; 一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的5-10%。 二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1)集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2)膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。

继电器和接触器的区别是什么

继电器和接触器的区别是什么? 2016-06-12 继电器和接触器都是电磁式开关电器,但前者属于工作在控制回路中的开关电器,而后者属于工作在主回路中的开关电器。 我们先看两者的共同特征: 第一个概念,叫做转换深度: 式中的叫做断开或者截止时的电阻, 叫做接通或者导通时的电阻,h叫做转换深度 对于有触点的开关电器,;对于无触点的电器, 。 正是由于有触点的开关电器,它的转换深度比较高,从而保证在接通电路时,开关电器的执行电流电能损耗小,对被控电路的影响也小;断开电路时,有触点的开关电器,其执行电路ide电阻非常高,从而可以保证电器的耐压水平。 相比之下,无触点电器在开断后,它不会产生电弧。但无触点电器的转换深度比较低,因此其损耗较大,且发热相对要严重得多。 第二个概念,关于电磁式电器的结构 电磁式电器的结构包括触头部件、操动系统和线圈等部件,还有灭弧系统及部件。电磁式电器分为三类,有电压继电器、电流继电器和其它专门功能的继电器(例如温度继电器、时间继电器和热继电器等等)。 接触器也具有这些结构特征。

简单描述: (1)当电磁式继电器的激磁线圈通电后,激磁线圈电流逐渐增加并在电磁系统中产生磁通,其中衔铁与铁心之间气隙中的磁通将作用于衔铁。 随着工作磁通逐渐增加,作用于衔铁上的电磁吸力(转矩)也越来越大。当电磁吸力大于系统反力时,衔铁将绕其转动轴转动带动其执行部分(触头系统)的动触头C0运动,从而实现常开触头和常闭触头变位。 (2)激磁线圈断电后,激磁线圈电流逐渐减小,电磁系统中的磁通也逐渐降低,工作气隙磁通也随之降低,作用于衔铁上的电磁吸力越来越小。当电磁吸力小于衔铁反力时,衔铁在系统反力的作用下开始向其初始位置返回,带动动触点C0向其初始位置运动,直至常开触点和常闭触头复位。 第三个概念,叫做电磁式电器的返回特性

连接器常用知识

连接器常用知识 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

连接器常用知识 连接器的选用包含了使用环境条件、电参数、机械参数、端接方式等的选用,正确的选用是使用好的先决条件,同时正确的使用也必不可少,正确的使用又是保证产品可靠性的关键。一、使用环境条件: 1、环境温度——是指产品工作的环境,应在产品规定的环境温度内使用。即使外部环境温度不高但若产品工作在机箱内,散热条件差且加上其它元器件发热都会造成产品所处的环境温度大大高于外部的环境温度。超出规定的环境温度使用将使金属镀层或绝缘体受损,同时过低的温度也会使绝缘体龟裂,最终使连接器性能降低或功能丧失。 2、潮湿或水——潮湿或水都会使绝缘体表面形成水膜使绝缘性能降低甚至造成相临接触件之间误导通。一般长期在高潮湿或在有水的条件下使用的连接器都应采用有密封作用的连接器。 3、低气压:高空条件下气压会降低(恒定气压密封仓内除外),当产品处于低气压条件下,产品的介质耐压会下降,若传输的电压高于产品技术条件的规定,就有可能发生电击穿,造成失效。 4、腐蚀环境:是指产品周围的气氛,比如盐雾严重的海上,酸碱严重的化工原料储存仓库等,这些条件都会对连接器的金属件、绝缘体等产生腐蚀和侵蚀作用,在选用时应注意向生产方提出特殊要求或选用能满足你要求的产品。同时也应注意,有个别连接器的塑料件是不耐如香蕉水、苯、丙酮等溶剂的,请注意产品样本中的规定。 5、力学条件:是指振动、冲击、碰撞、加速度等力学作用,按产品样本中的参数选用,一般来说,同类产品中麻花针的力学参数较高,也容易保证。注意,实际使用中线缆与接触件端接后应采用线

断路器可能出现的故障有很多讲课稿

真空断路器的其他故障 一、真空断路器常见不正常运行状态 1.故障的现象 (1)断路器拒合、拒分。 表现为在断路器得到合闸(分闸)命令后,合闸(分闸)电磁铁动作,铁心顶杆将合闸(分闸)掣子顶开,合闸(分闸)弹簧释放能量,带动断路器合闸(分闸),但断路器灭弧室不能合闸(分闸)。 (2)断路器误分。 表现为断路器在正常运行状态,在不明原因情况下动作跳闸。 (3)断路器机构储能后,储能电机不停。 表现为断路器在合闸后,操动机构储能电机开始工作,但弹簧能量储满后,电机仍在不停运转。 (4)断路器直流电阻增大。 表现为断路器在运行一定时间后,灭弧室触头的接触电阻不断增大。 (5)断路器合闸弹跳时间增大。 表现为断路器在运行一定时间后,合闸弹跳时间不断增大。 (6)断路器中间箱CT表面对支架放电。 表现为断路器在运行过程中,电流互感器表面对中间箱支架放电。 (7)断路器灭弧室不能断开。 表现为断路器在进行分闸操作后,断路器不能断开或非全相断开。 2、故障原因分析 (1)断路器拒分、拒合 操动机构发生拒动现象时,一般先分析拒动原因,是二次回路故障还是机械部分故障,然后进行处理。在检查二次回路正常后,发现操动机构主拐臂连接的万向轴头间隙过大,虽然操动机构正常动作,但不能带动断路器分合闸联杆动作,导致断路器不能正常分合闸。 (2)断路器误分。 断路器在正常运行状态下,在没有外施操作电源及机械分闸动作时,断路器不能分闸。在确认没有进行误操作的情况下,检查二次回路及操动机构。发现操动机构箱内辅助开关接点有短路现象,分闸电源通过短路点与分闸线圈接通,造成误分闸。原因是断路器机构箱顶部漏雨,雨水沿着输出拐臂向下流,正好落在机构辅助开关上,造成接点短路。 (3)断路器机构储能后,储能电机不停。 断路器在合闸后,操动机构储能电机开始工作,弹簧能量储满后,发出弹簧已储能信号。储能回路中串有断路器一对常开辅助接点和一对行程开关常闭接点,断路器合闸后,辅助开关的常开接点接通,储能电机开始工作,弹簧储满能量后,机构摇臂将行程开关常闭接点打开,储能回路断电,储能电机停止工作。储能电机一直工作的原因是在弹簧储满能量后,机构摇臂未能将行程开关常闭接点打开,储能回路一直带电,储能电机不能停止工作。 (4)断路器直流电阻增大 由于真空灭弧室的触头为对接式,触头接触电阻过大在载流时触头容易发热,不利于导电和开断电路,所以接触电阻值必须小于出厂说明书要求。触头弹簧的压力对接触电阻有很大影响,必须在超行程合格情况下测量。接触电阻值的逐渐增大也能反映出触头电磨损情况,是相辅相成的。触头电磨损和断路器触头开距的变化,是造成断路器直流电阻增大的根本原因。 (5)断路器合闸弹跳时间增大

相关文档
最新文档