发动机振动特性分析与试验(精)

发动机振动特性分析与试验(精)
发动机振动特性分析与试验(精)

发动机振动特性分析与试验

作者:长安汽车工程研究院来源:AI汽车制造业

完善的项目前期工作预示着更少的项目

后期风险,这也是CA=工作的重要意义

之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验, 很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。

众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。

发动机结构振动分析方法简介

运动科化模壁建.■-

动力总尿FE建棋■动力倉虑

图1发动机结构振动分析方法

如图1所示,发动机结构噪声分析方法包括以下几个步骤:

1.动力总成FE建模及模态校核

建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2.动力总成模态压缩缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。

3.运动件简化模型建立

发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体

动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。

4.动力总成多体动力学分析

在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。

5.动力总成结构振动分析

基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。

实例分析

1. 分析对象

以一款成熟的直列四缸1.5L 发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm ,冲程85mm ,

缸间距84mm ,最大缸压6MPa 。

2. 坐标定义

为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

3.动力总成有限元建模及模态校核

整个动力总成包括 42万节点和54万单元。其中,缸体、缸盖和缸盖罩为六面体单元;油 底壳、进排气歧管为四边形壳单元;变速器及支架为二阶四面体单元;其他外围零件则简 化为质量点,并通过梁单元与机体相连。图 3为其有限元模型,模态分析结果和试验结果

如表所示。

动力总成固有频率结果

223

302 试竖皓果他 200

220

291 樹对勒们

1,帕

2.7%

通过上表可以看出,CAE 分析和模态试验得到的动力总成主要模态结果比较接近,在允许 的误差以内。所以,此模型具有可信性,可以用于强迫响应计算。当然,从分析和试验的 结果也可以看出,本款发动机的整体弯曲模态偏低,有必要进行结构优化。

Front

Bottom

制t (古)

Rear d

Left (A)

图2动力总成坐标系

Top CXJ

L E U 左丿「

图3动力总成有限元模型

动力总成动力学分析

1.整机台架振动试验

在半消声室中进行整机振动测试(见图4),其中,对多处重要的发动机及其外围部件表面位置安装了传感器。本实例选择了3处传感器位置进行分析,包括变速器支架端(三向传感器)、差速器底部(三向传感器)以及缸体群部中部(单向传感器)。传感器输出为

速度信号。试验中测试了发动机在 2 OOOr/min、4500r/min和5 500r/min共3个转速下的

振动特性,其中,每个转速下分别对空载、半载和满载进行了测试。

图4台架及部分传感安装2.动力学仿真分析

通过EXCITE Power Un it建立的动力学模型主要包括发动机零部件、零部件间连接和加载载荷信息。动力学模型为非线性系统,其中包括所有的线性零部件和部分非线性的零部件连接。

由于客观条件的限制,加载载荷只考虑了燃烧压力、主轴承载荷,而配气机构载荷、变速器载荷和活塞敲击没有考虑在内。另外,分析得到的结果为动力总成的表面速度,用于与试验结果进行对比。主轴承载荷和气缸爆发压力见图5、图6。

3S0 ?2了0 ?48O

0 90 180 270 360

Crjnk Angle(deg)

图6气缸爆发压力

2 OOOr/min 到 5500r/min ,每 500r/min 计算一次。

3 ?仿真结果与试验结果的比较

(1) 变速器支架端振动结果比较

仿真和试验的1/3倍频程结果和 Campbell 如图7?9所示。

MBForc?

-TOOM 7

035

03 O.W 04 OM 07

0?5 Oft

T mie[5]

图5主轴承载荷

6050403020100

计算工况选择发动机满载工况,转速从 TdWFOfOf-YSM T^For?-Z|N]

鼻I 事也g th J14 SQfc

f?iH 疋

图7变速器支架端振动结果比较(2 000r/mim)

C H*中ox ni;-Y i*Q

1^0

iza

no

loo

w

M)

70

iw j^s I* > m w* ?■Svw '卜- H-jr

◎与>????■■翼<1 *1

Ctvww r rp<*pt

图8变速器支架端振动结果比较(5 500 r/mim)

■ar烛

图9变速器支架端振动结果比较-Campbell

从结果可以看出,X方向上:计算与试验结果都在4 OOOr/min以上出现宽频带的响应;500Hz 以下的频率范围中,计算与试验同时反映出3.5和5.5谐次的振动响应,幅值接近105dB ; 250?500Hz范围内,计算和试验的幅值状态也一致;高速下,高频带700?800Hz反映

出另一共振区域,但频率稍有差异。

Y方向上:计算与试验结果都明确反映了 2.5谐次的振动响应;4 500r/mim以上,计算与

试验结果都明确反映出200?700Hz的宽频带响应,幅值大小也基本一致。

Z方向上:计算与试验结果都明确反映了2谐次和3.5谐次的振动响应;计算与试验结果

都明确反映出,Z向振动以300以下的谐频响应为主,在220Hz附近受动力总成弯曲模态的影响,但无明显的共振现象发生。

(2)差速器底部振动结果比较

类似于变速器支架端振动结果的比较,进行差速器底部仿真和试验结果的比较,得到以下结论:各个转速下,除低频外,两者在整个分析频域下都比较接近;低频处的不协调可能是由于悬置橡胶参

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

实验三受控源特性的研究

实验三受控源特性的研究 一、实验目的 (1)通过测试受控源的控制特性和负载特性,加深对受控源特性的认识; (2)通过实验初步掌握含有受控源线性网络的分析方法; (3)掌握直流稳压源正、负电源(±Ucc)的供电方式。 二、实验仪器 三、实验原理 受控源是一种非独立电源,这种电源的电压或电流是电路中其他部分的电压或电流的函数,或者说它的电压或电流受到电路中其他部分的电压或电流的控制。根据控制量和受控量的不同组合,受控源可分为电压控制电压源(VCVS)、电流控制电压源(CCVS)、电压控制电流源(VCCS)和电流控制电流源(CCCS)四种。如图: (a)电压控制电压源(VCVS)(b)电压控制电流源(VCCS) (c)电流控制电压源(CCVS)(d)电流控制电流源(CCCS) 图1-3-1 受控源的类型

实际的受控源,控制量与被控制量之间不是线性关系,它们可用一条曲线来表示。通常,曲线在某一范围内比较接近直线,即在直线范围内,受控量的大小与控制量称正比,其斜率(如图1-3-1中的μ,g,γ,β)为常数。若超过直线范围就不能保持这一关系了。 四、实验内容 1.电压控制电压源(VCVS) 双路直流稳压源±12V电源的供电方式: 1)控制特性U o=f (U i) 的测试 测量电路如图1-3-4所示。调节1kΩ电位器,按表1-3-3内容进行测量和计算,并求出放大器输入电压的线性工作范围。 图1-3-4 反相比例放大器的实验电路图 表1-3-3 VCVS控制特性的测试 Ui Uo 超出反相比例放大器线性放大范围。而数据(0.5,-2.4)、(2,-9.6)等,虽然与其他测量点斜率不一致,但其在误差范围之内,依然为有效数据。由算得的斜率可知,输出电压与输入电压反相,且放大5倍。(应该把线性范围标出,即测出转折点)图画否?

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

数理方程关于振动方程的分析matlab

数理方程基于MATLAB 的问题分析报告 一、问题的提出、背景、意义 振动是指物体经过它的平衡位置所作的往复运动或某一物理量在其平衡值附近的来回变动。而波动则是一种能量传播的方式。虽然形式不同,但是两者的联系十分紧密,振动是波动的根源,波动是振动的传播形式。因此在分析问题乃至实际操作中,往往是把两者放在一起分析的,首先讨论振动的各方面特性,这样就相当于已知了波动一点上的相应特性,再对波动进行分析时,就只用讨论距

离的影响了。一般来说,振动只受时间影响,加上距离的参数,最终波动就只受两个变量影响,而且也知道了它们是无关的,就可以使用分离变量法进行求解。弦振动是波动的一类特殊形式,它在音乐物理学、材料学、地理学、物质分析学等许多领域都得到了应用,而弦振动所属声学又是力学的一个非常独立的分支,因此它在各领域的作用几乎是不可取代的。由于近年来的各方面硬件设施和软件的发展,曾经停止发展很长一段时间的对弦振动的分析又开始体现出它独特的优势。 在产生音乐的过程中,琴弦的振动是很常见的一种方式,本文就将对琴弦振动进行一定的研究,通过对弦振动方程的理解,给出不同初始条件,并分析出琴弦不同地方产生波的特性,再用MATLAB做好程序,画出相应的图像,经比较后得到琴弦的拨发与产生声音的联系。 二、问题分析思路 2.1建立偏微分方程 分析一根琴弦的振动问题,通过针对具体要分析的问题,可以列出弦振动方程以 及初始条件 2,0,0 (0,)0,(,)0 (,0)(),(,0)() tt xx t u a u x L t u t u L t u x x u x x ? ?=<<> ? == ? ?==ψ ? (L为弦的长度,因为是两端固定的弦, 初始条件一定有(0,)0,(,)0 u t u L t ==),用分离变量法很容易求得它相应的解,即弦振动的函数。 2.2对琴弦参数的求解 已知常量T=128N,普通钢琴弦密度3 7.9/ g cm ρ=, 根据琴弦传播速度公式 v=v。

汽车发动机振动噪声测试系统方案

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10 C ~50C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

琴弦振动分析

琴弦振动分析

机械工程郑佳文学号:1508520102 小提琴琴弦振动分析 琴弦振动分析,以小提琴为为研究对象。提琴由拉弦系统和琴体两个系统组 成。小提琴的拉弦系统即是张紧的琴弦,当小提琴的琴弓和琴弦相互摩擦时,弦 受激产生自激励振动。 小提琴振动发音原理 众所周知,所有的声音都是由于振动而产生的,小提琴也不例外,以下对小提琴的振动进行探讨,研究小提琴的发声机理。小提琴的发声原理如下:小提琴声音是通过把琴弦的振动经过琴码传递到共鸣腔体,使得共鸣腔体产生共振,带动箱内外空气振动而产生的,而弦的振动则来源于琴弓与琴弦的相互作用。小提琴发声产生的振动可以大致分为弦的振动、琴码的振动和共鸣箱的振动三种,以下分别进行介绍。 振动的分类 从广义上来讲,振动是指物体在平衡位置(或平均位置)附近来回往复的运 动或系统的物理量在其平均值(或平衡值)附近的来回变动。按照对振动系统的 激励的类型分类,振动可以分为 (1)自由振动:系统受初始激励作用(以后不再受外界激励),也就是在特定 的初始位移和(或)初始速度下产生的振动。 (2)强迫振动:系统在给定的外界激励作用下产生的振动。 (3)自激振动:在这种情况下,激励是受系统振动本身控制的,在适当的反馈 作用下,系统将自动地激起定幅的振动。但是,一旦系统的振动被抑止,激励也 就随着消失。 (4)参数振动:这种振动的激励方式是通过改变系统的物理特性参数来实现的。

琴弦的纵振动 (3) 扭转振动(torsional vibration )。若在弦上粘一个小尖角纸片,用手指捻转绷紧在两点之间的弦,就能显现出弦的扭转振动。如果扭动是连续的(如用弓拉动弦),基音也由谐波系列相伴随,幅度按 1/n 衰减(n 指谐波次数)。扭转振动的频率决定于琴弦的切变模量 G ,其基频公式为1 1f 2r G l ρ= 琴弦的扭转振动 (4) 倍频振动。是指弦振动一个完全的周期时,装弦的装置就振动两次,于是便产一个音高为横基频两倍的声音,这就是倍频振动。倍频振动是与横振动同时存在的。 琴弦的倍频振动 把弓和琴弦当做一个系统,用弓拉琴弦产生的振动实际上是自激振动。琴弦振动的过程中,会产生能量消耗,主要有两个原因:1 )琴弦在运动的过程中,周围

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

摩托车发动机技术及工作原理

摩托车发动机技术及工作原理 (一)摩托车发动机工作原理概述 1.四冲程发动机工作原理(如图1所示) (1)第一行程-进气行程 活塞在上止点前某一规定曲柄转角时,进气门开启,可燃混合气被吸入汽缸。当活塞由上止点向下止点运动,排气阀则在上止点某一规定的曲轴转角时关闭,同

时活塞上方的汽容积增大,使汽缸形成真空度,可燃混合气继续通过进气门吸入。当活塞行至下止点后某一规定曲柄转角时,进气门关闭。此时,进气工作过程结束。 (2)第二行程-压缩行程 活塞由下止点向上止点运动,当进气工作过程终了时,进气门和排气门都处于关闭状态,此时汽缸内的可燃混台气形台被压缩。 (3)第三行程-翻烧膨胀作功行程 在压缩行程,当活塞向上行至上止点前某-规定曲柄转角时,火花塞电极间发出火花,将被压缩的可燃混合气点燃。燃烧着的可燃混合旬吏汽缸内的温度和压力急剧升高,活塞则在此高温高压气压的作用下,再由上止点向下止点运动,且通过连杆驱使曲轴旋转而做有用功。 (4)第四行程-排气行程 在燃烧膨胀行程,当活塞行至下止点前某一规定曲轴转角时,扫汽阀开启,废气即通过排气门开始排出。曲轴仍继续旋转,并推动活塞再由下止点向上止点运动,将废气推出汽缸。此排气过程直到活塞行至上止点后某一规定曲轴转角,扫汽门被关闭时终止。 2.四冲程发动机优缺点 (1)优点 进气、压缩、膨胀(爆发)、排气各过程各自单独进行,因此工作可靠效率高,稳定性好。低速至高速的转速范围大(500-1000r/min以上)。不存在二冲程发动机那样的窜气回流损失,燃油消耗率低。低速运转平稳,依靠闰渭系润滑,不易过热。进气就压缩过程时间长,容积效率及平均有效压力高。热负荷比二冲程发动机小。不用担心变形和烧蚀问题。扫漫大,可设计成大功率发动机。 (2)缺点 气门配气机构复杂,零部件多,保养困难;机械噪声大;由于曲轴旋转二圈爆发1次,所以旋转平衡不稳定。

弦振动实验的研究.

论文题目来源: 国家自然科学基金项目 编号: 四川省自然科学研究项目 编号: 校级自然科学研究项目 编号:

弦振动实验的研究 学生:王彬 指导老师:吴英 摘要:弦振动实验存在着诸多困难,弦的张力会因弦的振动发生变化,弦的线密度会发生微小变化,当波腹数增多时现象不明显,低频信号器共振频率读取不准确等。本研究通过文献综述、理论研究、比较研究等方法,针对上述原因,利用实验室的装置验证弦振动理论采集相应数据并进行结果处理,通过在体验实验过程和数据处理方面的困难,对本实验装置提出切合实际的改进方法,以克服主观和客观方面的困难,使实验现象更加明显。 关键字:弦振动;共振;波腹;张力;线密度

The Research of String Vibration Experiment Undergraduate:Wang Bin Supervisor:Wu Ying Abstract:String vibration experiment is an important experiment of college physics. The experiment is also a deep exploration and application of string vibration knowledge. There are many difficulties in the experiment. For example, string tension will change because of the vibration of the string. And the linear density of the string will inevitably have subtle change. Besides, we can not get precise data of the resonance frequency of low frequency signal generator when the increase of the wave loop is not obvious. As for the above reasons, this research, with the following methods, such as literature review, theoretical research and comparative approach and so on, uses the equipments in the lab to prove the theory of string vibration and collects relevant data and then deal with the data. After knowing the difficulties in the experiment and in dealing with the data, I will propose some practical methods to improve and reform the experiment equipments so that we can overcome subjective and objective difficulties and so that the experimental phenomenon can become more obvious. Key words:string vibration; resonance frequency; wave loop; string tension; linear density.

受控源的研究实验报告

受控源的研究实验报告 一、实验目的: 1. 获得运算放大器的感性认识,了解由运算放大器组成各类受控源的原理和方法,理解受控源的实际意义。 2. 掌握受控源特性的测量方法。通过测试受控源的外特性及其转移参数,进一步理解受控源的物理概念,加深对受控源的认识和理解。 二、实验原理: 1、运算放大器的基本原理(在上一次实验中已经介绍了,本次再补充说明一下) 运算放大器是一种有源二端口元件,图3-1是理想运算放大器的模型及其电路符号。 它有两个输入端,一个输出端和一个对输入、输出信号的参考地线端。信号从“-”端输入时,其输出信号U0与输入信号反相,故称“-”端为反相输入端;信号从“+” 端输入时,其输出信号U0与输入信号同相,故称“+”端为同相输入端。U0为输出端的对地电压,AO是运放的开环电压放大倍数,在理想情况下,AO和输入电阻Ri均为无穷大,而输出电阻RO为零。 理想运算放大器的电路模型为一个受控源,它具有以下重要的性质:当输出端与反相输入端“-”之间接入电阻等元件时,形成负反馈。这时,“-”端和“+”端是等电位的,称为“虚短”,若其中一个输入端接地,另一输入端虽然未接地,但其电位也为0,称它为“虚地”;理想运算放大器的输入端电流约等于0。上述性质是简化分析含有运算放大器电路的重要依据。 本实验将研究由运算放大器组成的4种受控源电路的特性,选用LM741型或LM324型的集成运算放大器。LM741运算放大器的引脚功能如图3-2所示。

2、由运算放大器构成四种受控源的原理 (1)电压控制电压源(VCVS) 上图电路是由运算放大器构成的电压控制电压源,图中是反馈电阻,是负载电阻。因为 ,且 所以, 又因为

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

弦振动的研究

弦振动的研究 1.测量驻波波长时,为了更准确测量取其形成驻波哪一段弦。用米尺进行多次测量, 其平均值,然后除以半波长的的数目得到半波长。 ,/2 1mg2.用作图法处理数据是依据:作图,以为纵标座标,以为横座M,,,f,标,为了使图作得更好,横座标邓点要均匀一些,最好尽可能多地用不同砝码测出其相应的 波长,然后取点作图较好。 3.弦线越细则柔韧性越好,越接近理想条件,所以弦细一点好。弦线的弹性对实验的 影响较大。由于作实验时,需加不同的砝码,如果弦线有弹性则不同的砝码弦线拉长的程度 就不一样。弦线的长度改变,则弦线的线密度也相应改变。由于计算频率时是按线密度为常 数计算的,所以弦线的弹性对实验有较大影响。 4.弦线的线密度是弦振动,实验计算时重要参量,为了准确地测量弦线的线密度,其 测量的方法,可用弦振动实验测量。 由公式:nTnT可导出 f,,,222L,2fL 由于砝码质量,音叉振动频率,弦长L和n均可以较准确测量,所以此法测弦线线密度较为准确。 ,1T5.因为,又 L,,,2f, 1T 则: L,2f,

11 对上式两边取对数,有 IgL,IgT,Ig4,,Igf22 所以,从Ig,IgT图的截距可以求得f。 1.η代表在单位面积、单位速度梯度下的内摩擦力。假如两种液体,它们的速度梯度 及两流层接触面积相同,而摩擦力不同,则可以说它们是有不同的粘性;反过来;不同流体, 它们的粘性不同,它们的比例系数η也就不同,因而称描述粘性大小比例的比例常数η为流 体的粘滞系数。 2.由于泊肃叶公式应用的条件要求,液体沿均匀管稳定流动的过程中,管两端的压强差 是恒定的,流速不随时间改变,流过流管截面的液体体积V随时间t成线性变化。但是,对 于奥氏粘度计,在液体沿竖直毛细管流动的过程中,毛细管两端液体的压强差随液面的下降 而减小,流速也逐渐减小,因此,体积V不再随时间成线性变化,并且公式的推导也未考虑 其它能量的损失,经理论推导和实验证实,计算公式只能说是一个近似公式。 1答:若悬线不是固定在盘边上,则盘的向何半径跟有效半径是不相等的。由于园盘 中心不易确定,可测出悬孔间的平均距离 R,d/3,然后通过几何关系算出 d 2待测物的转动惯量比下盘小得多时,相对空盘测周期时所得周期值变化不大。

发动机振动理论分析a

发动机隔振 1 发动机振动的常用分析方法 发动机工作时,由于自身和来自地面的干扰,引起多种复杂的振动。发动机作为一般机械,分析其振动可用如下几种方法。 拉格朗日方程 对于振动,如果能用函数形式写出其势能及动能的表达式,可以用拉格朗日方程。 设由n 个质点组成的系统,其n 个独立的广义坐标为1q ,2q ,……n q 若系统的约束条件式定常的,则系统的动能可表示为: ∑∑===n r n s s r rs q q m T 11 21 (1) 系统的势能可表示为: ∑∑===n r n s s r rs q q k V 11 21 (1) 如果写成矩阵形式,为: ~ {}??? ???????????=n q q q q 21广义坐标阵列 (3) []?? ??? ?????=nn n n m m m m M 1111质量矩阵 (4) []?? ?? ? ?????=nn n n k k k k K 1111刚度矩阵 (5) 则有: {}[]{}q M q T T 2 1= (6)

{}[]{}q M q V T 2 1= (7) 令V T L -=表示质点系的动能与势能之差,成为拉格朗日函数,于是有: 0d d =??? ???????-??????????j j q L q L t (8) 这就是保守系统的拉格朗日方程。 由拉格朗日方程,得: ( []{}[]{}0=+q K q M (9) 上列方程就是无阻尼多自由度系统的运动微分方程一般形式。 对于有阻尼系统利用表征系统阻尼性质的物理量耗散函数{}[]{}q C q T 2 1= Φ来考虑线性阻尼的影响,在利用拉格朗日方程,可得到有阻尼多自由度系统振动运动微分方程的一般形式: []{}[]{}[]{}{}f q K q C q M =++ (10) 式中:[]M ——质量矩阵; []C ——阻尼矩阵; []K ——刚度矩阵; {}f ——激振力。 有限元法 计算机技术的发展,为复杂结构的振动的分析提供了新的途径,发展了另一 种更为使用而先进的方法——有限元法。 ; 有限元法的基本思想是把连续体视为有有限个基本单元在结点处彼此相连接的结合体,把具有无穷多个自由度的连续结构振动问题变成为有限多个自由度的振动问题。有限元法的分析过程为 模态分析法 如果复杂构件难以离散化就要利用模态分析技术来建立振动系统的数学模型。 通过模态分析的方法求解出振动系统的模态参数,即系统的固有频率、振型及阻尼,从而建立起分析模型。模态分析的一般过程如下: (1)、求解广义坐标下多自由度系统的质量矩阵和刚度矩阵;

实验十 弦振动特性的研究

实验十 弦振动特性的研究 一 实 验 目 的 1. 观察弦振动时形成的驻波。 2. 用两种方法测量弦线上横波的传播速度,比较两种方法测得的结果。 3. 验证弦振动的波长与张力的关系。 二 仪 器 和 用 具 电振音叉(约100Hz ),弦线分析天平,滑轮,砝码,低压电源,米尺。 三 实 验 原 理 1 弦线上横波传播速度(一),如图1所示,将细弦线的一端固定在电振音叉上,另一端绕过滑轮挂上砝码。当音叉振动量,强迫弦线振动(弦振动频率应当和音叉的频率ν等),形成列向滑轮端前进的横波,在滑轮处反射后沿相反方向传播。在音叉与滑轮间往反传播的横波的叠加形成一定的驻波,适当调节砝码 重量或弦长(音叉端到滑轮轴间的线长官,在弦上将 出现稳定的强烈地振动,即弦与音叉共振。弦共振 时,驻波的振幅最大,音叉端为稍许振动的节点(非 共振时,音叉端不是驻波的节点),若此时弦上有n 个半波区,则n l /2=λ,弦上的波速v 则为 n l v v 2γγλ ==或 (1) 2 弦线上横波传播速度(二),若横波在张紧的弦线上沿x 轴正方向传播,我们取 δd AB =的微元段加以讨论(图2)。设弦线的线密度(即单位长质量)为, 则此微元段弦线ds 的质量为ρds. 在A 、B 处受到左右邻段的张力分别为21,T T ,其方向为沿弦的切线方向,与x 轴交成1a 、2a 角。 由于弦线上传播的横波在x 方向无振动,所以作用在微元 段ds 上的张力的x 分量应该为零,即 0cos cos 1122=-a T a T (2) 又根据牛顿第二定律,在y 方向微元段的运动方程为 221122sin sin dt y d ds a T a T ρ=- (3) 对于小的振动,可取dx ds ≈,而1a 、2a 都很小,所以 221121sin ,sin ,1cos ,1cos tga a tga a a a ≈≈≈≈。 又从导数的几何意义可知dx x z dx dy tga dx dy tga +??? ??=??? ??=21, 式(2)将成为T T T T T ===-1212,0即表示张力不随时间和地点而变,为一定值。式(3)将成为 22dt y d pds dx dy T dx dy T z dx x =??? ??-??? ??+ (4)

摩托车发动机的构造与工作原理

摩托车发动机的构造与工作原理(图文) (2009-12-05 06:37:48) 转载 分类:实用生活常识 标签: cdi点火器 磁电机 曲轴 气缸 江门 摩托车 化油器 启动 杂谈 摩托车发动机原理终生受用[原文地址] Array 分类:摩托车使用技术 手机口袋:用手机阅读我收藏过的文章? 摩托车发动机原理

[/url]图1-1新大洲GY6-125发动机 w_图1-2江门中裕GY6发动机"}y 也许大多数人都曾感受,当我们还是菜鸟时,我们甚至连化油器是什么样子都不知道,菜得连怠速都不会调整。现在,也许将来,我们仍然会很菜,摩托车上的技术总是不断更新发展着,作为机车羔羊这样一个网站,我们的初衷就是提供一个大家交流学习的场所,不断提高大家的机车知识、普及机车文化。 - 宗申集团官方论坛 -- 宗申集团官方论坛 T 作为一个摩托车手,具有一些发动机知识是必要的。在这里,我们试图做一些最基本的知识图解,把我们知道的告诉大家,也许它确实是很初步,但是,也许它对摩托菜鸟会很有用。而且以后,我们希望我们之中的好手,提供这方面的文章,大家共同分享,共同提高。 }w\xos 宗申集团官方论坛 -- 宗申集团官方论坛 MpQ 这次我们首先要提供的是GY6的资料,图1-1,图1-2是两个GY6发动机。图1-1是用于新大洲白雪公主的GY6,图1-2是江门中裕产的。GY6在国内按照国家规定的汽油机型号标示方法,一般摩托厂家标式为XX152QMI,例如JC152QMI,其中JC是金城厂的缩写、1是指单缸、52是指缸径、Q指强制风冷。 TeFfY_ 我们首先要提供的是GY6的资料,一方面因为它是目前国内踏板上最普遍的发动机。另一方面,虽然它是很老的设计,但是由于它的简单和可靠,所以可以做为我们了解的第一个对象。当你了解了GY6发动机结构,再去看本田水冷大鲨、株洲雅马哈凌鹰等车,就会感觉容易许多。GY6的参数几呼是固定的:缸径52.4X 57.8mm,压缩比9.2:1,但是国内生产的GY6,功率和扭距都远远不及光阳原厂,参数高低不一,有的标示最大功率可达6.2KW/7500r,有的则只能达到 5.4KW/7500r,但其共同点几呼是都是在4000转时达到最大扭距,踏板的起步转速一般是2700转,所以感觉GY6起步还是较为有力的。另一共同点是7500转时达到峰值功率,所以GY6的最大转速并不高。 化油器:化油器的功用是产生适宜浓度的可燃混和气。目前国内GY6踏板大都使用等真式化油器,且一般都带自动加浓装置(又叫电子风门),如下图2-1所示: 图2-1合资MIKUNI BS24v I

《实验分析报告》受控源

《实验报告》受控源

————————————————————————————————作者:————————————————————————————————日期:

大连东软信息学院 学生实验报告 课程名称:_电路分析_________ 专业班级:_微电子14001班 _ 姓名:___刘盛意_,殷俊______ _ 学号:_14160600105,14160600119_____ 2014--2015 学年第 2 学期

实验报告注意事项 1. 课前必须认真预习实验,认真书写预习报告,了解实验步骤,未预习或预习 达不到要求的学生不准参加实验; 2. 实验完毕,必须将结果交实验指导教师进行检查,并将计算机正常关机、将 仪器设备、用具及椅子等整理好,方可离开实验室; 3. 按照实验要求书写实验报告,条理清晰,数据准确; 4. 当实验报告写错后,不能撕毁,请在相连的实验报告纸上重写; 5.实验报告严禁抄袭,如发现抄袭实验报告的情况,则抄袭者与被抄袭者该次 实验以0分计; 6. 无故缺实验者,按学院学籍管理制度进行处理; 7. 课程结束后实验报告册上交实验指导教师,并进行考核与存档。

实验项目(受控源VCVS、VCCS、CCVS、CCCS的实验) —预习报告 项目 名称实验一受控源VCVS、VCCS、CCVS、CCCS的实验 实验 目的 及 要求 l.学习使用基本电学仪器及线路连接方法。 2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。 3.学习根据仪表等级正确记录有效数字及计算仪表误差。 100mA量程,0.5级电流表最大允许误差mA 5 . % 5 . mA 100= ? = ? m x,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差V 015 . % 5 . V 3= ? = ? m V,应读到小数点后2位,如2.36(V) 4.了解用运算放大器组成四种类型受控源的线路原理。 5.测试受控源转移特性及负载特性。 实验 内容 及 原理 1、运算放大器(简称运放)的电路符号及其等效电路如图A所示。运算放大 器是一个有源三端器件,它有两个输入端和一个输出端,若信号从“+”端输入, 则输出信号与输入信号相位相同,故称为同相输入端,若信号从“-”端输入,则 输出信号与输入信号相位相反,故称为反相输入端。运算放大器的输出电压为: U O =A O (U P -U n ) 其中A O 是运放的开环电压放大倍数,在理想情况下,A O 与运放的输入电阻R 1均为无穷大,因此有 U P =U n i P =U P /R iP =0 i n =U n /R in =0 这说明理想运放具有下列三大特征: (1)运放的“+”端与“-”端电位相等,通常称为“虚短路”。 (2)运放输入端电流为零,即其输入电阻为无穷大。 (3)运放的输出电阻为零。 以上三个重要的性质是分析所有具有运放网络的重要依据,要使运放工作,还须接有正、负直流工作电源(称双电源),有的运放也可用单电源工作。

弦振动研究1

弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件。 2.测量不同弦长和不同张力情况下的共振频率。 3.测量弦线的先行密度。 4.测量弦振动时波的传播速度。 【实验仪器】 弦振动研究实验仪及弦振动实验信号源各一台、双踪示波器一台。 实验仪器结构描述见图3-23-1 【实验原理】 驻波是有振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播时,波动方程为 )(2cos λ πx ft A y -= 当波到达端点时会反射回来,波动方程为 )(2cos λπx ft A y += 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两波叠加后的波方程为 ft x A y y y πλ π2cos 2cos 221=+= 这就是驻波的波函数,称之为驻波方程。式中,λ πx A 2cos 2是各点的振幅,它只与x 有关,即各点的振幅随着其与远点的距离x 的不同而异。上式表明,当形成驻波 时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。

由式(3-23-3)可知,另02cos 2=λ πx A ,可得波节的位置坐标为 4 ) 12(λ +±=k x ???=,,, 210k 另12cos 2=λπx A ,可得波腹的位置坐标为 2 λ k x ±= ???=,,, 210k 由式(3-23-4)、式(3-23-5)可得相邻两波腹(波节)的距离为半个波长,由此可见,只要从实验中的测得波节或波腹间的距离,就可以确定波长。 在本实验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的连个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 即有 2λ=L 或 n L 2=λ ???=,,, 210n 式中,L 为弦长;λ为驻波波长;n 为半波数(波腹数)。 另外,根据波动理论,假设弦柔韧性很好,波在弦上的传播速度v 取决于线 密度μ和弦的张力T ,其关系为 μ T v = 又根据波速、频率与波长的普遍关系式λf v =,可得 μ λT f v = = 由式(3-23-6)、式(3-23-8)可得横波传播速度 n L f v 2= 如果已知张力和频率,由式(3-23-6)、式(3-23-8)可得线密度 2 )2( Lf n T =μ 如果已知线密度和频率,则由式(3-23-10)可得张力 2 )2(n Lf T μ= 如果已知线密度和张力,则由式(3-23-11)可得张力 μ T L n f 2= 【实验内容】 一、实验前准备

实验三 受控源特性的研究

实验三受控源特性的研究 专业:09通信工程学号:120091102117 姓名:徐爱兵实验日期:2010-10-21 实验地点:D302 指导老师:曹新容 一、实验目的 1、加深对受控源概念的理解; 2、测试VCVS、VCCS或CCVS、CCCS加深受控源的受控特性及负载特性的认识。 二、原理及说明 1、根据控制量与受控量电压或电流的不同,受控源有四种: 电压控制电压源(VCVS); 电压控制电流源(VCCS); 电流控制电压源(CCVS); 电流控制电流源(CCCS)。 其电路模型如图5-1所示。 2、四种受控源的转移函数参量的定义如下: (1) 电压控制电压源(VCVS),U2=f(U1),μ=U2/U1称为转移电压比(或电压增益)。 (2) 电压控制电流源(VCCS),I2=f(U1),g m=I2/U1称为转移电导。 (3) 电流控制电压源(CCVS),U2=f(I1),r m=U2/I1称为转移电阻。 (4) 电流控制电流源(CCCS),I2=f(I1),α=I2/I1称为转移电流比(或电流增益)。 三、实验设备 电工实验装置:DG011 、DY04 、DY031 、DG053

四、实验内容 将DG011试验箱和DY04电源板的±12V偏置电压及地线接好。 1、受控源VCVS的转移特性U2=f(U1)及外特性U2=f(I L) (1)按图5-2接线,R L取2KΩ。 ●按表5-1调节稳压电源输出电压U1,测量U1及相应的U2值,填入表5-1中。 ●绘制U2=f(U1)曲线,并由其线性部分求出转移电压比μ。 VCVS 表5-1 由U2=f(U1)曲线曲线得:μ=2。 (2)保持U1=2V,按表5-1调节R L值,测量U2及I L值,填入表5-2中,并绘制U2=f(I L)曲线。 VCVS 表5-2

相关文档
最新文档