发动机振动特性分析与试验(精)

发动机振动特性分析与试验(精)
发动机振动特性分析与试验(精)

发动机振动特性分析与试验

作者:长安汽车工程研究院 来源:AI 汽车制造业

完善的项目前期工作预示着更少的项目

后期风险,这也是CAE 工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH 试验,很难通过试验的方法预测产品的NVH 水平。因此,通过仿真的方法对整机NVH 性能进行分析甚至优化显得十分重要。

众所周知,发动机NVH 是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。

发动机结构振动分析方法简介

图1 发动机结构振动分析方法

如图1所示,发动机结构噪声分析方法包括以下几个步骤:

1. 动力总成FE 建模及模态校核

建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩

缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。

3. 运动件简化模型建立

发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。

4. 动力总成多体动力学分析

在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。

5. 动力总成结构振动分析

基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。

实例分析

1. 分析对象

以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。

2. 坐标定义

为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

图2 动力总成坐标系

3. 动力总成有限元建模及模态校核

整个动力总成包括42万节点和54万单元。其中,缸体、缸盖和缸盖罩为六面体单元;油底壳、进排气歧管为四边形壳单元;变速器及支架为二阶四面体单元;其他外围零件则简化为质量点,并通过梁单元与机体相连。图3为其有限元模型,模态分析结果和试验结果如表所示。

图3 动力总成有限元模型

动力总成固有频率结果

通过上表可以看出,CAE分析和模态试验得到的动力总成主要模态结果比较接近,在允许的误差以内。所以,此模型具有可信性,可以用于强迫响应计算。当然,从分析和试验的结果也可以看出,本款发动机的整体弯曲模态偏低,有必要进行结构优化。

动力总成动力学分析

1. 整机台架振动试验

在半消声室中进行整机振动测试(见图4),其中,对多处重要的发动机及其外围部件表面位置安装了传感器。本实例选择了3处传感器位置进行分析,包括变速器支架端(三向传感器)、差速器底部(三向传感器)以及缸体群部中部(单向传感器)。传感器输出为速度信号。试验中测试了发动机在2 000r/min、4500r/min和5 500r/min共3个转速下的振动特性,其中,每个转速下分别对空载、半载和满载进行了测试。

图4 台架及部分传感安装

2. 动力学仿真分析

通过EXCITE Power Unit建立的动力学模型主要包括发动机零部件、零部件间连接和加载载荷信息。动力学模型为非线性系统,其中包括所有的线性零部件和部分非线性的零部件连接。

由于客观条件的限制,加载载荷只考虑了燃烧压力、主轴承载荷,而配气机构载荷、变速器载荷和活塞敲击没有考虑在内。另外,分析得到的结果为动力总成的表面速度,用于与试验结果进行对比。主轴承载荷和气缸爆发压力见图5、图6。

图5 主轴承载荷

图6 气缸爆发压力

计算工况选择发动机满载工况,转速从2 000r/min到5500r/min,每500r/min 计算一次。3.仿真结果与试验结果的比较

(1)变速器支架端振动结果比较

仿真和试验的1/3倍频程结果和Campbell如图7~9所示。

图7 变速器支架端振动结果比较(2 000r/mim)

图8 变速器支架端振动结果比较(5 500 r/mim)

图9 变速器支架端振动结果比较-Campbell

从结果可以看出,X方向上:计算与试验结果都在4 000r/min以上出现宽频带的响应;500Hz 以下的频率范围中,计算与试验同时反映出3.5和5.5谐次的振动响应,幅值接近105dB;250~500Hz范围内,计算和试验的幅值状态也一致;高速下,高频带700~800Hz反映出另一共振区域,但频率稍有差异。

Y 方向上:计算与试验结果都明确反映了2.5谐次的振动响应;4 500r/mim以上,计算与试验结果都明确反映出200~700Hz的宽频带响应,幅值大小也基本一致。

Z方向上:计算与试验结果都明确反映了2谐次和3.5谐次的振动响应;计算与试验结果都明确反映出,Z向振动以300以下的谐频响应为主,在220Hz附近受动力总成弯曲模态的影响,但无明显的共振现象发生。

(2)差速器底部振动结果比较

类似于变速器支架端振动结果的比较,进行差速器底部仿真和试验结果的比较,得到以下结论:各个转速下,除低频外,两者在整个分析频域下都比较接近;低频处的不协调可能是由于悬置橡胶参数的不准确造成的,需要对橡胶参数进行进一步测试。

(3)缸体群部中部振动结果比较

类似于变速器支架端振动结果的比较,进行缸体群部中部仿真和试验结果的比较可以看出:大部分分析频率范围内,试验和仿真结果比较接近。

结语

基于有限元及系统动力学耦合方法进行发动机振动分析,在一定程度上能够有效地、准确地预测发动机(包括变速器)本身的振动特性。在没有试验样机的情况下,能够使用该方法结合AVL-EXCITE和相应的有限元分析软件,对发动机的振动特性进行正确地预测和合理的优化工作。该方法可用于整机振级的判定、悬置位置选择及特性校验、振源及传递特性分析等

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

简谐振动特性研究实验

实验一、简谐振动特性研究与弹簧劲度系数测量【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力和它的变形量成正比,即: (1) (1)式中,为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量和的对应关系,就可由(1)式推算出弹簧的劲度系数。 2. 将质量为的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: (2) 式中是待定系数,它的值近似为,可由实验测得,是弹簧本身的质量,而被称为弹簧的有效质量。通过测量弹簧振子的振动周期,就可由(2)式计算出弹簧的劲度系数。 3. 磁开关(磁场控制开关): 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2 脚”间加直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状 态,这时处于“”脚和“”脚之间输出电压极小,近似为零,当磁感

强度小于某值时,输出电压等于“1脚”、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪,测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数:(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图)

振动检测

3.水泵振动监测及研究 3.1振动测量简介 振动测量时对振动量和系统振动特性进行的测量。振动量包括振动幅值、振动频率和相位;振动特性指系统的刚度、阻尼系数、固有系数、固有频率、振型和动态响应等。 泵的振动测量,通常只测量振动幅值及振动频率,并由此给出烈度级,需要时还可进行频谱分析。对泵的振动特性常用振动位移幅值、振动峰值、振动频率和振动烈度级作出评价。 振动测量的方法:按力学原理分为相对式测量法和惯性式测量法;按振动信号转换方式分为电测法、光测法和机械测振法。对泵通常采用电测法。 振动的电测法 3.1.1振动电测法的基本测试系统,其各部分仪器种类繁多,性能也有差别,应根据不同的测试要求合理选择配套。 3.1.2工程常用测振仪简介 工程常用测振仪由振动传感器、测振仪和记录分析仪器组成。 a)振动传感器又称拾振器,工程商常用的有位移传感器、惯性式速度型传感 器和惯性式加速度型传感器。速度型传感器除直接测量振动速度外,在把其输出电压经过积分线路与微积分线路后,还可以测量振动位移和加速度。此外,拾振器和用于噪声测量的声级计可以配套使用,测量振动。 b)测振仪也称放大器,具有显示和输出两种功能。 c)记录分析仪器常用的记录分析仪器有光线示波器、磁带记录仪、电平记录 仪和X-Y记录仪等。 3.1.3参数测量 参数测量包括振动基本参数测量和振动特性参数测量。前者测量的参数为振动频率、振动幅值和相位;后者测量的参数为固有频率、阻尼系数和振型等。泵主要测量基本参数。 (1)振动频率的测量有以下几种方法: a、用数字式频率计直接测读频率。这种方法简便,精确度高,稳定性也较好,还可以对简谐波型以外的振动进行测量。 b、用录波比较法测频率。它是把振动波形的时程曲线记录在记录纸上,同时记录时标信号,如果时标信号为1s(即两条时标线的时间间隔为1s),则两条时标线间的完整波个数为振动频率。波形的时程曲线常用光线示波器记录。 c、用声级计和光线示波器联合测量频率,并进行频谱分析。 (2)振动幅值的测量振动幅值指位移幅值、速度值和加速度值。通常也把位移幅值称为振幅。 a、位移幅值测量:以下三种情况都要测量位移幅值。振动幅值较低,速度和加速度值大,不便使用速度和加速度传感器时,则用位移传感器测量位移幅值;某些设备或结构物需限定其振幅不超过允许值,此时就要直接测量位移幅值;需要通过测量位移进行应力计算时,则必须测量位移幅值,如水工闸门的振动问题就是如此。 b、速度值测量:如果振动频率处于中频段,且位移较小时,可用速度传感器测

振动实验报告剖析

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

压电陶瓷振动的干涉测量实验报告

一、实验目 压电陶瓷振动的干涉测量实验报告 的与实验仪 器 1.实验目的 (1)了解压电陶瓷的性能参数;? (2)了解电容测微仪的工作原理,掌握电容测微仪的标定方法; ? (3)、掌握压电陶瓷微位移测量方法。 2.实验仪器 压电陶瓷材料(一端装有激光反射镜,可在迈克尔逊干涉仪中充当反射镜)、光学防震平台、半导体激光器、双踪示波器、分束镜、反射镜、二维可调扩束镜、白屏、驱动电源、光电探头、信号线等。 二、实验原理 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 1) 正压电效应:压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力时,晶体将在 X,Y,Z 三个方向出现与应力成正比的极化强度,即: E = g·T(g为压电应力常数), 2) 逆压电效应:当给压电晶体施加一电场 E 时,不仅产生了极化,同时还产生形变,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效

应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系: S = d·U(d为压电应变常数) 对于正和逆压电效应来讲, g和d 在数值上是相同的。 2. 迈克耳逊干涉仪的应用 迈克耳逊干涉仪可以测量微小长度。上图是迈克耳逊干涉仪的原理图。分光镜的第二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射。分光镜与光束中心线成 45°倾斜角。M1和 M2为互相垂直并与分束镜都成 45°角的平面反射镜,其中反射镜 M1后附有压电陶瓷材料。 由激光器发出的光经分光镜后,光束被分成两路,反射光射向反射镜 M1(附压电陶瓷),透射光射向测量镜 M2(固定),两路光分别经 M1、M2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏,产生干涉条纹。M1和 M2与分光镜中心的距离差决定两束光的光程差。因而通过给压电陶瓷加电压使 M1随之振动,干涉条纹就发生变化。由于干涉条纹变化一级,相当于测量镜 M1移动了λ/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量。 三、实验步骤 1)将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷 附件接驱动电压插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器 CH1 和 CH2; 2)在光学实验平台上搭制迈克尔逊干涉光路,使入射激光和分光镜成 45 度,反射镜 M1 和 M2与光垂直,M1 和 M2 与分光镜距离基本相等;

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

发动机振动理论分析a

发动机隔振 1 发动机振动的常用分析方法 发动机工作时,由于自身和来自地面的干扰,引起多种复杂的振动。发动机作为一般机械,分析其振动可用如下几种方法。 拉格朗日方程 对于振动,如果能用函数形式写出其势能及动能的表达式,可以用拉格朗日方程。 设由n 个质点组成的系统,其n 个独立的广义坐标为1q ,2q ,……n q 若系统的约束条件式定常的,则系统的动能可表示为: ∑∑===n r n s s r rs q q m T 11 21 (1) 系统的势能可表示为: ∑∑===n r n s s r rs q q k V 11 21 (1) 如果写成矩阵形式,为: ~ {}??? ???????????=n q q q q 21广义坐标阵列 (3) []?? ??? ?????=nn n n m m m m M 1111质量矩阵 (4) []?? ?? ? ?????=nn n n k k k k K 1111刚度矩阵 (5) 则有: {}[]{}q M q T T 2 1= (6)

{}[]{}q M q V T 2 1= (7) 令V T L -=表示质点系的动能与势能之差,成为拉格朗日函数,于是有: 0d d =??? ???????-??????????j j q L q L t (8) 这就是保守系统的拉格朗日方程。 由拉格朗日方程,得: ( []{}[]{}0=+q K q M (9) 上列方程就是无阻尼多自由度系统的运动微分方程一般形式。 对于有阻尼系统利用表征系统阻尼性质的物理量耗散函数{}[]{}q C q T 2 1= Φ来考虑线性阻尼的影响,在利用拉格朗日方程,可得到有阻尼多自由度系统振动运动微分方程的一般形式: []{}[]{}[]{}{}f q K q C q M =++ (10) 式中:[]M ——质量矩阵; []C ——阻尼矩阵; []K ——刚度矩阵; {}f ——激振力。 有限元法 计算机技术的发展,为复杂结构的振动的分析提供了新的途径,发展了另一 种更为使用而先进的方法——有限元法。 ; 有限元法的基本思想是把连续体视为有有限个基本单元在结点处彼此相连接的结合体,把具有无穷多个自由度的连续结构振动问题变成为有限多个自由度的振动问题。有限元法的分析过程为 模态分析法 如果复杂构件难以离散化就要利用模态分析技术来建立振动系统的数学模型。 通过模态分析的方法求解出振动系统的模态参数,即系统的固有频率、振型及阻尼,从而建立起分析模型。模态分析的一般过程如下: (1)、求解广义坐标下多自由度系统的质量矩阵和刚度矩阵;

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

机械设备振动特性分析

机械设备振动特性分析 佟德纯 教授 一 振动波形变换 设备的振动监测与诊断,振动波形的分析,提取表征状态信息的特征量是最常用的有效方法之一,振动波形的分析主要有两种:一是时域分析,即将振动作为时间τ(秒)的函数x(τ)来观测。二是频域分析,即按傅立叶变换方法将x(τ)变换成频率f (赫芝)的函数X(f)。这个变换关系和过程可用空间简图来表示,见图5.1。 图5.1 振动波形分析 1. 振动的时域波形特征量 (1) 均值x :描述振动过程的静态成分,又称为直流分量,即 ?=T dt t x T x 0)(1 (5.1) 式中T —平均时间(样本长度),以秒或毫秒计。 (2) 绝对值平均x ,即 dt t x T x T ?=0)(1 (5.2) (3) 均方值2x :表示振动的平均能量或平均功率的指标,即 ?=T dt t x T x 022)(1 (5.3) (4) 均方根值(有效值)rms X :描述振动的有效正振幅,即 ?=T rms dt t x T X 0 2)(1 (5.4) (5) 方差2x σ :描述振动偏离均值散布情况,其标准差σx 表示振动的动态分量 ,即 []?-=T x dt x t x T 02 2 )(1σ (5.5) 为了进一步理解上述振动特征量的物理意义,特用模拟电路表示特征量的运算过程,具

体如图5.2所示。 图5.2 振动特征量的运算电路 3. 复杂周期振动的分解 复杂的周期振动)()(nT t x t x T +=都可用傅立叶级数的形式展开,即分解成若干个 谐波(简谐)振动之各,即 ∑∑∞=∞=++=++=1 010)cos()sin cos (2n n n n n n T t n A A t n b t n a a x θωωω (5.6) 式中 ω为角频率,T f ππω220== 0A 为直流分量,200a A = n A 为n 阶谐波的振幅,)2,1(,?????=+=n b a A n n n n θ为n 阶谐波的相角,)2,1(),(???=-n a b arctg n n n θ 由(5.6)式可知,复杂的周期振动)(t x τ是由直流分量0A 和各次谐波振动 )3,2,1(,???=n A n 所组成。这就是振动信号的频率分析,又称谐波分析,是振动监测与诊断的基本方法之一。 示例:柴油机扭振分析 柴油机是六缸四冲程星形连接,点火次序如图5.3所示。转速n=195rpm ,即基频f 0

实验十 弦振动特性的研究

实验十 弦振动特性的研究 一 实 验 目 的 1. 观察弦振动时形成的驻波。 2. 用两种方法测量弦线上横波的传播速度,比较两种方法测得的结果。 3. 验证弦振动的波长与张力的关系。 二 仪 器 和 用 具 电振音叉(约100Hz ),弦线分析天平,滑轮,砝码,低压电源,米尺。 三 实 验 原 理 1 弦线上横波传播速度(一),如图1所示,将细弦线的一端固定在电振音叉上,另一端绕过滑轮挂上砝码。当音叉振动量,强迫弦线振动(弦振动频率应当和音叉的频率ν等),形成列向滑轮端前进的横波,在滑轮处反射后沿相反方向传播。在音叉与滑轮间往反传播的横波的叠加形成一定的驻波,适当调节砝码 重量或弦长(音叉端到滑轮轴间的线长官,在弦上将 出现稳定的强烈地振动,即弦与音叉共振。弦共振 时,驻波的振幅最大,音叉端为稍许振动的节点(非 共振时,音叉端不是驻波的节点),若此时弦上有n 个半波区,则n l /2=λ,弦上的波速v 则为 n l v v 2γγλ ==或 (1) 2 弦线上横波传播速度(二),若横波在张紧的弦线上沿x 轴正方向传播,我们取 δd AB =的微元段加以讨论(图2)。设弦线的线密度(即单位长质量)为, 则此微元段弦线ds 的质量为ρds. 在A 、B 处受到左右邻段的张力分别为21,T T ,其方向为沿弦的切线方向,与x 轴交成1a 、2a 角。 由于弦线上传播的横波在x 方向无振动,所以作用在微元 段ds 上的张力的x 分量应该为零,即 0cos cos 1122=-a T a T (2) 又根据牛顿第二定律,在y 方向微元段的运动方程为 221122sin sin dt y d ds a T a T ρ=- (3) 对于小的振动,可取dx ds ≈,而1a 、2a 都很小,所以 221121sin ,sin ,1cos ,1cos tga a tga a a a ≈≈≈≈。 又从导数的几何意义可知dx x z dx dy tga dx dy tga +??? ??=??? ??=21, 式(2)将成为T T T T T ===-1212,0即表示张力不随时间和地点而变,为一定值。式(3)将成为 22dt y d pds dx dy T dx dy T z dx x =??? ??-??? ??+ (4)

总复习(振动测试与分析)

“振动测试与分析”主要内容 概述 振动信号的分类 振动测试及其主要任务 振动系统的力学模型及参数 振动系统的动力学模型 振动系统的主要参数 结构振动系统三元素(件) 单自由度无阻尼自由振动特性 有阻尼系统的自由振动特性 周期振动的峰值、有效值和平均值及其相互关系周期振动的频谱表示法 振动基本参量(动态特性)的常用测试方法简谐振动幅值的测量 简谐振动频率的测量 衰减系数及相对阻尼系数的测量 同频简谐振动相位差的测量 质量或刚度的测量 振动测量系统及其主要特性 振动测试系统组成 振动测试系统的主要特性参数 振动信号传感器 测振传感器 测振传感器分类 惯性式传感器力学原理

位移计型惯性式拾振器的构成特点 加速度计的构成特点 动圈型磁电式速度拾振器 压电式加速度计及其应用问题 电涡流传感器 振动信号处理和分析(基本理论) 数字信号分析 数据处理的基本知识 傅氏级数及其复数表达法 傅氏积分变换,傅氏变换的主要性质 典型函数的傅氏变换 FT、FFT、选带傅氏分析(ZOOM-FFT) LT&ZT 混淆与采样 泄漏与窗函数 随机振动统计特性 数字特征 概率分布函数 概率密度函数 高斯分布和瑞利分布 二元随机变量的概率分布 相关分析(自相关函数,互相关函数) 实验模态分析 多自由度系统实验模态分析(频域方法,时域方法)多自由系统响应的模态迭加法 振动系统物理模型和模态模型间的转换

频响函数与模态参数的关系 频响函数的留数表示法 模态试验设计(试件支承状态,测点及测量方法,试验频段的选择,激振器的支承) 模态试验常用激励方法(步进式正弦激励法,自动正弦慢扫描激励,快速扫描正弦激励,冲击激励,纯随机激励,伪随机激励,周期随机激励,瞬态随机激励) 结构系统频响函数的估计(H1、H2估计,模态振型标准化)

车用发动机振动测试研究

第30卷 第2期湖南大学学报 (自然科学版)Vo1.30,No.2 2003年4月J o urnal of Huna n U niv er sity(N atural Sciences)Apr.2003文章编号:1000-2472(2003)02-0041-03 车用发动机振动测试研究 李梅林,李毅强,谢惠民,田 丹 (湖南大学机械与汽车工程学院,湖南长沙 410082) 摘 要:阐述了车用发动机振动测试方法,并对安装在实验台架上的6105Q-1C型车 用柴油机进行了振动测试与分析,发现柴油机前端及横向振动较大.建议采用提高有关零部 件制造精度与质量,减少活塞侧向力,改进机体结构形式、合理布置加强筋以提高机体刚度 等措施来减轻振动. 关键词:柴油机;整机振动;当量振动烈度 中图分类号:O464;O134+4 文献标识码:A Study o n V ehicle Engine Vibratio n Test LI M ei-lin,LI Yi-qiang,XIE Hui-min,TIAN Dan (Co lleg e of M echanical a nd Automo tiv e Eng ineering,Hunan U niv,Chang sha 410082,China) Abstract:The metho d o f v ehicle engine vibra tio n test w as discussed.The vibra tion of mo del 6105Q-1C vehicle diesel engine fitted o n the labo ratorial bed is tested and analysised.It was found tha t the vibratio n of the head and crosswise of diesel engine are rather larg e.So it's sug gested that improv ing relev ant m anufacture precision and quality,reducing lateral force o f the pisto n,raising the structure sha pe o f engine body and ratio nally a rra nging ribs to improv e the stiffness of engine body can mitig ate vibration. Key words:diesel engine;com plete engine vibration;normal v ibratio n intensity 目前世界上绝大多数汽车采用的都是往复活塞式发动机.这种发动机运转时产生的激振力和力矩主要是曲柄连杆机构的往复惯性力及其力矩、旋转惯性力及其力矩,输出扭矩不均匀性引起的倾覆力矩,曲轴和机体弹性变形引起的力矩和工作过程中的气体脉冲力.这些周期性变化的力和力矩如果得不到平衡,发动机将产生整机振动和曲轴的扭转振动.发动机产生强烈振动时,不仅使机体本身振动,而且会激励机内零部件及各种附属装置、车架等振动,从而引起各种冲击振动损坏,剧烈的振动同时还会激发强大的噪声,这些都会严重地引起驾驶员身心疲劳,影响汽车行驶的安全性、平顺性和汽车寿命,影响周围环境,这些影响在共振时后果更为严重.因此,必须采取有效的主动与被动减振、隔振措施,以削减、消除发动机各种振动,使其不传或少传到车架及外界环境.本文介绍了对中型货车应用较多的6105Q-1C型柴油机的振动测试,通过对测试结果的分析,提出了相应地改进建议. 1 整机振动评估方法 1.1 整机振动的量标 我国现行有关标准规定,发动机振动的量标以振动烈度,即以振动速度的均方根值(有效值)表示: V rms= 1 T∫ T V2(t)d t (m m/s) 式中V(t)——振动速度随时间变化的函数(mm/s); T——振动周期(s). 采用整机的当量振动烈度V s为评定量标 收稿日期:2002-09-13 作者简介:李梅林(1946-),男,湖南湘潭人,湖南大学副教授.

相关文档
最新文档