高中物理动能与动能定理解题技巧及练习题(含答案)

高中物理动能与动能定理解题技巧及练习题(含答案)
高中物理动能与动能定理解题技巧及练习题(含答案)

高中物理动能与动能定理解题技巧及练习题(含答案)

一、高中物理精讲专题测试动能与动能定理

1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:

(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;

(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】

(1)在B 点时有v B =

cos60?

v ,得v B =6m/s (2)从B 点到E 点有2

102

B mgh mgL mgH mv μ--=-

,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有

2

1'202

B mgh mgh mg L mv μ--?=-,得h ′=1.2m

回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得

2

102

B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在

C 点右侧6m 处.

2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:

(1)当细线与水平杆的夹角为β(90αβ<

【答案】(1)2211

1cos sin sin A gh v ααβ??=-

?+??

(2)T sin h W mg h α??

=- ??? 【解析】 【详解】

(2)A 、B 的系统机械能守恒

P K E E ?=?减加

22

11sin sin 2

2A B h h mg mv mv αβ??-=+ ???

cos A B v v α=

解得

22111cos sin sin A gh v ααβ

??=

-

?+??

(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得

P K E E ?=?减加

21sin 2Am h mg h mv α??-= ???

对A 列动能定理方程

2

T 12

Am W mv =

联立解得

T sin h W mg h α??

=- ???

3.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离

【答案】(1)160N (2)0.82m 【解析】 【详解】

(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =

1

2

mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:

2B

v N mg m R

-=

联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N

由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:

2D

v mg m R

=

可得:v D =2m/s

设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,

2R =

12

gt 2

解得:x =0.8m

则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x =

=

4.如图所示,光滑水平轨道距地面高h=0.8m ,其左端固定有半径R=0.6m 的内壁光滑的半圆管形轨道,轨道的最低点和水平轨道平滑连接.质量m 1=1.0kg 的小球A 以v 0=9m/s 的速度与静止在水平轨道上的质量m 2=2.0kg 的小球B 发生对心碰撞,碰撞时间极短,小球A 被反向弹回并从水平轨道右侧边缘飞出,落地点到轨道右边缘的水平距离s=1.2m .重力加速度g=10m/s 2.求:

(1)碰后小球B 的速度大小v B ;

(2)小球B运动到半圆管形轨道最高点C时对轨道的压力.

【答案】(1)6m/s(2)20N,向下

【解析】

【详解】

(1)根据

得:

规定A的初速度方向为正方向,AB碰撞过程中,系统动量守恒,以A运动的方向为正方向,有:m1v0=m2v B-m1v A,

代入数据解得:v B=6m/s.

(2)根据动能定理得:

代入数据解得:

根据牛顿第二定律得:

解得:,方向向下

根据牛顿第三定律得,小球对轨道最高点的压力大小为20N,方向向上.

【点睛】

本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运动,综合性较强,关键要理清过程,选择合适的规律进行求解.

5.如图所示,在竖直平面内的光滑固定轨道由四分之一圆弧AB和二分之一圆弧BC组成,两者在最低点B平滑连接.过BC圆弧的圆心O有厚度不计的水平挡板和竖直挡板各一块,挡板与圆弧轨道之间有宽度很小的缝隙.AB弧的半径为2R,BC弧的半径为R.一直

径略小于缝宽的小球在A点正上方与A相距2

3

R

处由静止开始自由下落,经A点沿圆弧轨

道运动.不考虑小球撞到挡板以后的反弹.

(1)通过计算判断小球能否沿轨道运动到C点.

(2)若小球能到达C点,求小球在B、C两点的动能之比;若小球不能到达C点,请求出小球至少从距A点多高处由静止开始自由下落才能够到达C点.

(3)使小球从A点正上方不同高度处自由落下进入轨道,小球在水平挡板上的落点到O点的距离x会随小球开始下落时离A点的高度h而变化,请在图中画出x2-h图象.(写出计算过程)

【答案】(1)13

mg (2) 4∶1 (3)

过程见解析

【解析】 【详解】

(1)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0 设小球的质量为m ,在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有

N +mg =2

C mv R

小球由开始下落至运动到C 点过程中,机械能守恒,有

2

2132

C mgR mv = 由两式可知

N =

1

3

mg 小球可以沿轨道运动到C 点.

(2)小球在C 点的动能为E k C ,由机械能守恒得

E k C =

23mgR

设小球在B 点的动能为E k B ,同理有

E k B =

83

mgR

E k B ∶E k C =4∶1.

(3)小球自由落下,经ABC 圆弧轨道到达C 点后做平抛运动。由动能定理得:

21

2

C mgh mv =

由平抛运动的规律得:

212

R gt =

x =v C t

解得:

2x Rh =

因为3x R <,且C v gR ≥

所以

324

R R h ≤< x 2-h 图象如图所示:

6.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是多少?

【答案】1

2

f w mgR =克 【解析】 【分析】

本题首先用牛顿第二定律列示求出圆周运动最低点与最高点得瞬时速度的大小,再由最低点到最高点列动能定理解题,得出空气阻力做的功.本题属于绳子栓小球模型,注意最高点重力提供向心力. 【详解】

最低点 2

17mv mg mg R

-= 16v gR =最高点: 22

mv mg R

= 2v gR = 由动能定律 得 222111222

f mgR w mv mv -+=- 解得 1

2

f w mgR =-

所以克服空气阻力做功

1

2

f

w mgR

【点睛】

本题是圆周运动模型解题,结合牛顿运动定律与动能定理解圆周问题.

7.如图所示,AB是光滑的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,将弹簧水平放置,一端固定在A点.现使质量为m的小滑块从D点以速度v0=进入轨道DCB,然后沿着BA运动压缩弹簧,弹簧压缩最短时小滑块处于P点,重力加速度大小为g,求:

(1)在D点时轨道对小滑块的作用力大小F N;

(2)弹簧压缩到最短时的弹性势能E p;

(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.

【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7

【解析】(1)

解得

(2)根据机械能守恒

解得

(3)小滑块恰能能运动到B点

解得μ=0.7

小滑块恰能沿着轨道运动到C点

解得μ=0.5

所以0.5≤μ≤0.7

小滑块恰能沿着轨道运动D点

解得μ=0.2 所以μ≤0.2

综上 μ≤0.2或0.5≤μ≤0.7

8.一质量为m =0.5kg 的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s 末功率达到最大值,之后保持该功率不变继续运动,运动的v -t 图象如图所示,其中AB 段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g =10m/s 2.

(1)求玩具车运动过程中的最大功率P ;

(2)求玩具车在4s 末时(图中A 点)的速度大小v 1; (3)若玩具车在12s 末刚好到达轨道的顶端,求轨道长度L . 【答案】(1)P =40W (2)v 1=8m/s (3)L =93.75m 【解析】 【详解】

(1)由题意得,当玩具车达到最大速度v =10m/s 匀速运动时, 牵引力:F =mg sin30°+0.3mg 由P =Fv

代入数据解得:P =40W

(2)玩具车在0-4s 内做匀加速直线运动,设加速度为a ,牵引力为F 1, 由牛顿第二定律得:F 1-(mg sin30°+0.3mg )=ma 4s 末时玩具车功率达到最大,则P =F 1v 1 由运动学公式v 1=at 1 (其中t 1=4s ) 代入数据解得:v 1=8m/s

(3)玩具车在0~4s 内运动位移x 1=2112

at 得:x 1=16m

玩具车在4~12s 功率恒定,设运动位移为x 2,设t 2=12s 木时玩具车速度为v ,由动能定理

P (t 2-t 1)-(mg sin30°+0.3mg )x 2=2211122

mv mv 代入数据解得:x 2=77.75m 所以轨道长度L =x 1+x 2=93.75m

9.如图所示在竖直平面内,光滑曲面AB 与长度l =3m 的水平传送带BC 平滑连接于B 点,传送带BC 右端连接内壁光滑、半径r =0.55m 的四分之一细圆管CD ,圆管内径略大于物块尺寸,管口D 端正下方直立一根劲度系数为k =50N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐.一个质量为m =0.5kg 的物块(可视为质点)从曲面上P 点静止释放,P 点距BC 的高度为h =0.8m .(已知弹簧的弹性势能E p 与弹簧的劲度系数k 和形变量x 的关系是:E p =12

kx 2

,水平传送带与物间的动摩擦因数μ=0.4,重力加速度g 取10m/s 2.)求:

(1)若传送带静止不动物块在水平传送带BC 上前进的距离;

(2)若传送带向右匀速运动的速度v 0=2m/s ,物块刚进入细圆管CD 时对管道的弹力,物块在压缩弹簧过程中的最大速度(压缩弹簧过程未超过弹性限度);

(3)若传送带向右匀速运动的速度v 0=2m/s ,物块从第一次进入细圆管后将做周期性的运动.由于物块与传送带发生相对运动,一个周期内带动传送带的电动机多消耗的电能. 【答案】(1)2m (2)4m/s (3)4J 【解析】 【分析】 【详解】

(1)物块从P 点静止释放到停在传送带某处的过程中,根据动能定理得mgh -μmgx =0-0 解得x =2m ;

(2)若传送带向右匀速运动的速度v 0=2m/s ,因为传送带长度l =3m 大于2m ,所以物块到达C 点的速度v C =2m/s

物块经过管道C 点,根据牛顿第二定律得mg -N =m 2C

v r

解得,管道对物块的弹力N =

15

11

N≈1.36N ,方向竖直向上

根据牛顿第三定律得知,物块对管道的弹力大小N ′=N ≈1.36N ,方向竖直向下. 物块从C 点运动到速度最大的过程,根据平衡条件得mg =kx ′ 得x ′=0.1m

由动能定理得mg (r +x ′)-21'2kx =212m mv -212

C mv 解得,最大速度v m =4m/s

(3)物块再次回到C 点的速度仍为2m/s ,它在传送带上先向左匀减速运动到速度为零,再向右匀加速运动至C 点,速度大小仍为2m/s ,因此,电动机多消耗的电能即为物块与传送带之间的摩擦生热.

物块向左减速的位移x 1=

22C v g μ=2

220.410

??=0.5m 物块与传送带间的相对位移△x 1=x 1+v 0?0

v g

μ 解得△x 1=1.5m

物块向右加速运动的位移x 2=

22C

v g

μ=0.5m 物块与传送带间的相对位移△x 2=v 0?

v g

μ-x 2=0.5m 因此,一个周期内带动传送带的电动机多消耗的电能是E =μmg (△x 1+△x 2) 解得:E =4J

10.如图所示,一个质量为m =0.2kg 的小物体(P 可视为质点),从半径为R =0.8m 的光滑圆强轨道的A 端由静止释放,A 与圆心等高,滑到B 后水平滑上与圆弧轨道平滑连接的水平桌面,小物体与桌面间的动摩擦因数为μ=0.6,小物体滑行L =1m 后与静置于桌边的另一相同的小物体Q 正碰,并粘在一起飞出桌面,桌面距水平地面高为h =0.8m 不计空气阻力,g =10m/s 2.求:

(1)滑至B 点时的速度大小; (2)P 在B 点受到的支持力的大小; (3)两物体飞出桌面的水平距离; (4)两小物体落地前损失的机械能.

【答案】(1)14m/s v = (2)6N N F = (3)s =0.4m (4)△E =1.4J 【解析】 【详解】

(1)物体P 从A 滑到B 的过程,设滑块滑到B 的速度为v 1,由动能定理有:

211

2

mgR mv =

解得:14m/s v =

(2)物体P 做匀速圆周运动,在B 点由牛顿第二定律有:

2

1N F g mv m R

-= 解得物体P 在B 点受到的支持力6N N F = (3)P 滑行至碰到物体Q 前,由动能定理有:

222111

22

mv mg v L m μ--=

解得物体P 与Q 碰撞前的速度22m/s v =

P 与Q 正碰并粘在一起,取向右为正方向,由动量守恒定律有:

()23mv m m v =+

解得P 与Q 一起从桌边飞出的速度31m/s v = 由平碰后P 、Q 一起做平抛运动,有:

2

12

h gt =

3s v t =

解得两物体飞出桌面的水平距离s =0.4m

(4)物体P 在桌面上滑行克服阻力做功损失一部分机械能:

1 1.2J E mgL μ?==

物体P 和Q 碰撞过程中损失的机械能:

2222311

()0.2J 22

mv m m v E -+=?=

两小物体落地前损失的机械能12E E E ?=?+? 解得:△E =1.4J

11.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。现将一质量m =1kg 的小球从AB 段距地面高h 0=2m 处静止释放,小球滑上右边斜面轨道并能通过轨道的最高点E 点。已知CD 、GH 与水平面的夹角为θ=37°,GH 段的动摩擦因数为μ=0.25,圆轨道的半径R =0.4m ,E 点离水平面的竖直高度为3R (E 点为轨道的最高点),(g=10m/s 2,sin37°=0.6,cos37°=0.8)求:

(1)小球第一次通过E 点时的速度大小;

(2)小球沿GH 段向上滑行后距离地面的最大高度;

(3)若小球从AB 段离地面h 处自由释放后,小球又能沿原路径返回AB 段,试求h 的取值范围。

【答案】(1)4m/s (2)1.62m ;(3)h≤0.8m 或h≥2.32m 【解析】 【详解】

(1)小球从A 点到E 点由机械能守恒定律可得:()20132

E mg h R mv -= 解得:4m/s E v =

(2)D 、G 离地面的高度122cos370.48o

h R R m =-=

设小球在CH 斜面上滑的最大高度为h m ,则小球从A 点滑至最高点的过程, 由动能定理得()1

0cos370sin37

m m h h mg h h mg μ?

?

---= 由以上各式并代入数据 1.62m h m =

(3)①小球要沿原路径返回,若未能完成圆周运动,则20.8h R m ≤=

②若能完成圆周运动,则小球返回时必须能经过圆轨道的最高点E ,在E 点,2m E

v mg R

=

此情况对应小球在CH 斜面上升的高度为h ',小球从释放位置滑至最高点的过程,根据动

能定理得:()1

cos370sin37

h h mg h h mg μ?

---?

=' 小球从最高点返回E 点的过程,根据动能定理得:

()2

113cos37sin372

E h h mg h R mg mv μ?

'---??

=' 由以上各式得h =2.32m

故小球沿原路径返回的条件为h ≤0.8m 或h ≥2.32m

12.如图所示的实验装置,可用来探究物体在斜面上运动的加速度以及弹簧储存的弹性势能。实验器材有:斜面、弹簧(弹簧弹性系数较大)、带有遮光片的滑块(总质量为m )、光电门、数字计时器、游标卡尺、刻度尺。实验步骤如下:

①用适当仪器测得遮光片的宽度为d ;

②弹簧放在挡板 P 和滑块之间,当弹簧为原长时,遮光板中心对准斜面上的A 点; ③光电门固定于斜面上的B 点,并与数字计时器相连;

④压缩弹簧,然后用销钉把滑块固定,此时遮光板中心对准斜面上的O 点; ⑤用刻度尺测量A 、B 两点间的距离L ;

⑥拔去锁定滑块的销钉,记录滑块经过光电门时数字计时器显示的时间△t ; ⑦移动光电门位置,多次重复步骤④⑤⑥。 根据实验数据做出的21t ?-L 图象为如图所示的一条直线,并测得2

1

t ?-L 图象斜率为k 、纵轴截距为 b 。

(1)根据

2

1

t ?-L 图象可求得滑块经过A 位置时的速度v A =____,滑块在斜面上运动的加速度a =_____。

(2)实验利用光电门及公式v =d

t

?测量滑块速度时,其测量值____真实值(选填“等于”、“大于”或“小于”)。

(3)本实验中,往往使用的弹簧弹性系数较大,使得滑块从O 到A 恢复原长过程中弹簧弹力远大于摩擦力和重力沿斜面的分量,则弹簧储存的弹性势能E p =___,E p 的测量值与真实值相比,测量值偏_____(填“大”或“小”)。 【答案】b 12kd 2 小于 1

2

mbd 2 大 【解析】 【详解】

第一空:滑块从A 到B 做匀加速直线运动,设加速度为a ,由于宽度较小,时间很短,所以

瞬时速度接近平均速度,因此有B 点的速度为:B d

v t

=

?,根据运动学公式有:

2

22B

A

v v aL -=,化简为2

22212A v a

L t d d =+?,结合图象可得:22A v b d =,22a k d =

解得:A v = 第二空:由22a k d =

,解得:

2

12

a kd =; 第三空:由于弹簧弹力远大于摩擦力和重力沿斜面的分量,所以摩擦力和重力沿斜面的分量

忽略不计,根据能量守恒可得:2211

22

P A E mv mbd =

=; 第四空:考虑摩擦力和重力沿斜面的分量,根据动能定理可得:2

12

N G f A W W W mv +-=

, 而N P E W =真,摩擦力小于重力沿斜面的分量,p E 的测量值与真实值相比,测量值偏大。

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

戴维南定理的解析与练习

戴维宁定理 一、知识点: 1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。无源二端网 络:二端网络中没有独立电源。有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为联的等效电路来代替。 如图所示:U OC 的理想电压源和一个电阻R0 串

L 等裁巴路J 等效电路的电压U OC是有源二端网络的开路电压,即将负载R-断开后a、b两端之间 的电压。 等效电路的电阻R o是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后,所得到的无源二端网络a、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1?把电路划分为待求支路和有源二端网络两部分,如图 1中的虚线。 2?断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOG 3?将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab 。 4?画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性), 内阻 R0=Rab= 5?将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知 5= 40V , U2=20V ,R1=R2=4,R3=13,试用戴维宁定理求电流 b 。 解:(1)断开待求支路求开路电压 UOC U 1 U 2 40 20 4 4 2.5A UOC =U2 + IR2 = 20 + 4 = 30V 或:UOC = U1 -I R1 = 40 - 4 30V UOC 也可用叠加原理等其它方法求。 (2) 求等效电阻R0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) R R ^~R L 2 R R 2 ]:师 画出等效电路求电流I 3 U OC R 。 R 3 2 13

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

勾股定理知识点和典型例题

新人教版八年级下册勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三 角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面 积为222()2S a b a ab b =+=++ 所以222a b c +=方法三: 1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = b = ,a ②知道直角三角形一边,可得另外两边之间的数量 关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长 边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

相关文档
最新文档