加热炉蒸汽放散及降噪优化改造

加热炉蒸汽放散及降噪优化改造
加热炉蒸汽放散及降噪优化改造

加热炉蒸汽放散及降噪的优化改造摘要:文章主要针对济钢中厚板厂加热炉蒸汽放散过程中出现的汽水分离效果差、蒸汽放散噪音高等问题,介绍了优化改造方案。

关键词:汽水分离噪音汽水混合物

一、概况

济钢中厚板厂现有三座加热炉,两座步进梁式和一座推钢式加热炉。两座步进梁加热炉汽化冷却系统设计参数一样:设计参数:产汽量:7-21t/h,汽包运行压力:~1.27mpa

实际参数:产汽量:10t/h左右,汽包运行压力:~0.65mpa

推钢式加热炉气化冷却系统设计参数如下:

设计参数:产汽量:5-13t/h,汽包运行压力:~1.27mpa

实际参数:产汽量:8t/h左右,汽包运行压力:~0.5mpa

目前在三座加热炉中,1号炉处于大修改造后设备调试阶段,还未完全投入正式生产。2号和3号加热炉处于正常生产状态,其汽化冷却系统产生的蒸汽一部分供应本厂澡堂和食堂,一部分蒸汽通过与动力管网连接的管路供应其他分厂使用,还有部分是社会上宾馆、洗浴等使用,剩余部分蒸汽全部放散。

二、存在问题及分析

现有三座加热炉的汽水分离器,即蒸汽放散装置在使用过程中,逐渐暴露出汽水分离效果不明显,放散的蒸汽中水份越来越多,蒸汽放散的声音越来越大的问题。上述问题的产生给现场安全生产带来诸多难题:一是蒸汽的噪声太大,有时厂界噪声超标,严重影响

地铁环控系统中节能与降噪的优化设计分析

地铁环控系统中节能与降噪的优化设计分析 【摘要】随着经济的发展,城市交通问题也日益凸显出来,很多城市进行了地铁项目的立项和建设;然而地下站及地下隧道区间空间都较为密闭,其环控系统乃至火灾工况下的送风和排烟都需要严谨而全面的考虑。因此,地铁环控设计的作用就显得更加的重要了。本文主要从地铁环控系统中降噪与节能的优化设计方面来进行探讨。 【关键词】地铁环控降噪节能优化 地铁的环控系统是整个地铁系统中不可或缺的重要设施设备系统,它对于地铁的运营起到了重要的辅助作用,在通风、降温以及消防排烟方面发挥着重要的功能,但其能耗较高,运行时间长(部分设备是无间断运行),占运营能耗的很大比重,为了能够更好的进行能耗的有效控制,提高整个系统的运行效率,就必须加强环控系统的降噪和节能的优化设计,引进新技术应用新材料,进而实现地铁空调系统的高效运转。 1 地铁环控系统中的降噪的优化设计 1.1地铁环控系统的噪声分析 (1)地铁的环控系统的构成以及设备。地铁地下车站环控系统一般都是由5个系统构成:大系统、小系统、空调

的水系统、隧道通风系统和轨道排热系统构成,其主要功能就是运用风机、空调机组、风阀、冷却塔、水泵、冷水机组等设备的协同运行来完成和实现的。这些设备在运行的时候回产生一定的噪音和振动,继而构成了地铁环控系统的噪声源。 (2)地铁环控系统设计的必要性分析。地铁的车站和区间隧道一般都是和外界的联系面相对较小的空间。列车在高速运行的过程中,加上车内拥挤的乘客、各种照明和机电设备的运作,会致使大量的热量的产生,这些热量如果不能及时的被排出,就是使地铁内部热量积聚和上升,在运营带来不适的同时给地铁相关设备的运行留下隐患。同时在运行的过程中会有大量噪音污染产生,这些都会给车站的空间环境造成一定的干扰。 1.2地铁环控系统的噪声源及降噪措施 地铁环控系统的噪声源主要有:①列车正常运行经过活塞风道产生噪声;②隧道通风系统和车站通风空调大小系统运行噪声;③水系统中机械设备及管道噪音。 在环控系统中进行片式、阵列式、壳式消声器、消声静压箱、管式消声器等消声设备的设置,同时为了防止局部噪声出现衍射,消声器和管道的连接处必须进行密封处理,机械振动部件的连接采用挠性连接。如果隧道通风系统消声器不能达到噪声允许的标准时,就需要在风亭进行消声百叶窗

影响加热炉热效率的因素及对策

影响加热炉热效率的因素及对策 摘要:21世纪随着石油开采工程的不断深入,全国的各大油田也得到了不断的发展。由于新疆冬季的特殊气候条件,气温低,持续时间长,在原油的输送过程中需要进行中间加热,这就需要大量的加热炉。笔者通过分析加热炉在运行中存在的一系列问题和影响加热炉热效率的因素,提出了提高加热炉运行热效率的技术对策,并介绍了几种提高运行热效率的途径和具体措施,指出了影响热效率的关键因素以及提高热效率的可行性,并在此基础上就进一步提高加热炉热效率提出了建议和改进措施。 关键词:加热炉热效率对策 引言:众所周知,原油在运输和加工过程中,必须要使用加热炉加工。因此,加热炉成为了石油领域中无法取代的重要能源机器,但是由于加热炉在加热原油的过程中很大一部分的热能都散发了出去,并没有应用于加热原油上。所以,找到提高加热炉热效率的方法成为了整个热能领域亟待解决的问题,考虑到加热炉是将原油运输中不可或缺的一道工序,也是至关重要的一项设备,找到影响加热炉热效率的因素,提出解决问题的方法,是整个石油行业需要解决的问题。 一、影响加热炉效率的主要因素 1.加热炉受热面积灰结垢一直是困扰加热炉运行的主要因素,受热面积灰结垢一旦形成,它所造成的负面影响将是持久的及递增的。同时应保证燃料燃烧充分。因为,排烟热损失主要由排烟温度和烟气量决定,烟气量取决于加热炉的过剩空气系数,提高热效率的途径主要是通过降低过剩空气系数或排烟温度来实现。所以,在过剩空气系数和排烟温度增高时,加热炉热效率都将降低。 2.加热炉运行控制中由于多种原因致使运行工况控制不好,包括风门调节不当,供风过大;运行负荷低于设计值;燃料品质不好造成腐蚀和积灰;供风系统操作不当;燃烧器选型问题等,这些问题导致的直接结果是加热炉排烟气氧含量和过剩空气系数普遍偏高。通过调查发现,企业中加热炉烟气中的平均氧含量普遍都高于标准的指标,平均排烟温度也高于标准温度。过高的烟气氧含量导致炉内的过剩空气较多,这样会造成排烟温度偏高,烟气带走的热量越多,对热效率的影响也就越大。过大的过量空气系数还会加速炉管的氧化,促使氮氧化物增加,给环境造成不利的影响,影响炉管使用寿命 3.余热回收系统设备状况的好坏也会影响加热炉的热效率。时刻了解设备的腐蚀状况,加以预防。余热回收系统设备腐蚀主要是硫酸露点腐蚀造成,在该系统低温烟气段普遍存在,系统中的蒸馏装置前置空气预热器因为腐蚀容易泄漏,造成热损失。 4.炉壁散热损失超标仍然是一个不可忽视的因素。通过观察炉膛内部发现,部分炉子炉膛衬里脱落严重,炉壁表面温度普遍高于规定的标准温度,造成这种

加热炉常见事故应急处置预案

目录 一、范围 (2) 二、引用标准和术语 (2) 三、事故应急预案 (2) 1、煤气管路事故爆炸处理 (2) 2、加热炉区域煤气泄漏事故处理 (3) 3、加热炉区域停电事故处理 (4) 4、加热炉区域停煤气事故处理 (6) 5、加热炉区域停软水事故处理 (7) 6、加热炉区域停冷却水(净环水)事故处理 (8) 7、加热炉控制系统故障 (8) 8、板坯在炉内严重跑偏事故 (9) 9、加热炉区域停压缩空气事故处理 (11) 10、加热炉区域电、风、压缩空气、煤气、氮气突然同时停 (11) 11、加热炉区域汽包缺水事故处理 (12) 12、煤气中毒事故的救护措施 (13) 13、加热炉区域全面停电事故处理 (14)

加热炉使用混合煤气是热轧薄板厂受控危险源之一。混合煤气具有着火、中毒、爆炸三大危害,本着“安全第一、预防为主”的工作方针,特制订本事故应急预案。 一、范围 本方案使用于加热炉区域已发生或潜在事故的应急组织与处理办法。 二、引用标准和术语 加热炉工艺技术规程、操作规程、安全规程 三、事故应急预案 1、煤气管路事故爆炸处理 事故后果:造成加热炉停产,煤气大量泄漏,引发扩散性中毒事故,引起大面积火灾。 避免方法: A执行煤气使用安全规程要求,操作中严格执行规定程序。 B避免高温直接烘烤煤气管道,防止其发生变形、开裂,禁止在煤气管道及其设施上进行焊接作业。 C在煤气区域切割或焊接作业,应提前办理作业操作牌。 D停送煤气时做好氮气吹扫,防止空气进入煤气管道。 1.1事故发生通知相关部门和领导

发生火灾时拨打火警电话;发生人员中毒时拨打救护电话;发生煤气泄漏时拨打煤气防护电话电(煤防站)管控调度)。 1.2 作业人员佩戴空气呼吸器、携带煤气报警仪、对讲机到现场开展施救。 1.3 煤气管路爆炸着火处理 A若是煤气总管道爆炸,立即关闭煤气总管快切阀、总管电动蝶阀,关闭盲板阀可靠切断煤气。 B若是加热炉段管道爆炸,应停止使用加热炉煤气,关闭烧嘴前手动蝶阀;手动调动煤气总管切断蝶阀(或点击调动开启度),降低煤气总管压力,保持泄漏点燃烧状态,同时打开煤气总管氮气吹扫阀门,通入氮气进行灭火;灭火后关闭总管快速切断蝶阀、总管蝶阀和盲板阀,可靠切断煤气。 1.4 迅速安排近岗位人员紧急撤离现场至上风口安全处,并按上岗人员清点名单人数,如果有失踪人员,应安排三人一组,进行搜寻,如有人员伤亡采取自救。 1.5 煤气爆炸后处理原则 A加热炉区域禁止明火,加热炉进行停炉,关闭煤气总管快切阀、蝶阀,关闭盲板阀。 B可靠切断煤气避免事故蔓延。 1.6配合协助单位实施救助活动,直至时间被控制。 2、加热炉区域煤气泄漏事故处理 事故后果:当空气中煤气含量超过200PPm时,有大量煤气泄漏

加热炉操作基础

加热炉操作基础 1、阻火器的作用和工作原理是什么? 答:阻火器的作用:是防止明火或常明灯的明火进入燃料气系统,造成燃烧爆炸事故。 其工作原理是:当火焰通过狭小孔隙时,由于热损失突然增大,使燃烧不能继续而熄火。 2、加热炉为什么要设置防爆门? 答:在加热炉未点火之前,如果炉膛内充满易燃气体,一遇明火或静电即会爆炸,这时防爆门被顶开,使炉膛内的压力能迅速泄出,防止炉体被损坏。可见,加热炉设置防爆门的目的是为了防止加热炉爆炸时造成过大的损害。 3、风门的作用?烟道挡板的作用是什么? 答:风门的作用是通过风门调节入炉空气量来调节火焰燃烧情况。 烟道挡板的作用是调整进出加热炉空气量,以此调整炉内负压,达到调节火焰燃烧情况的目的。 4、加热炉的负压是怎样产生的?为什么在负压下操作? 答:由于烟囱内的烟气温度比外界空气高,气体密度相对较小,容易向上流动,这样就使烟囱入口存在抽力。在此抽力的作用下,使炉内产生负压。 负压大小对操作影响很大,负压过大,入炉空气量多,使烟气氧含量增加,降低了炉子的热效率,且炉管氧化加剧,负压过小,空气入炉量过小,导致燃烧不完全,也降低了炉子的热效率,因此要在适当的负压下操作。 5、加热炉为什么要保持一定的负压? 答:燃料需要有一定量的空气存在才能燃烧,只有保持一定的负压,炉内压力比炉外压力低一些,才能使炉外空气进入炉内,若炉内负压很小时,炉内吸入的空气量就很小,燃料燃烧不完全,炉热效率下降,烟囱冒黑烟,炉膛不明亮,甚至往外喷火,会打乱系统的操作。 6、负压值应该保持多少为合适? 答:一般炉膛负压应保持在-50~-100pa,烟道挡板开度增大还不能增加抽力,则应该减少燃料量和降低加热炉的负荷。

加热炉预热器改造施工方案.doc

蒸馏加热炉预热器改造 施工方案 编制: 审核: 会签: 批准: 2017年*月*日 ******工程有限公司 1、工程内容及编制依据 1.1、蒸馏加热炉预热器改造工作量 炼油蒸馏2017年大修,根据设计对蒸馏加热炉预热器改造。

其中,新增预热器为整体制造、安装(根据供货协议),为便于施工,需要将原天圆地方以上部分拆除,包括垂直烟道及水平烟道,部分横梁平台,需要用400吨履带吊车配合。本项目为蒸馏三大修主线,工期30天。 1.2、编制依据及施工验收规范 1.2.1炼油蒸馏加热炉预热器改造施工图纸,工艺管道施工图纸及相关技术要求; 1.2.2蒸馏加热炉预热器改造技术要求方案; 1.2.3《石油化工管式炉钢结构工程及配件安装工程技术条件》SH3086-1998; 1.2.4《石油化工管式炉用空气预热器通用技术条件》SH/T3420-2007; 1.2.5《石油化工管式炉轻质浇注料衬里工程技术条件》SH/T3115-2000; 1.2.6《石油化工企业管式炉钢结构设计规范》SH/T3070-1995 1.2.7《建筑结构荷载规范》GB 50009-2012; 1.2.8《钢结构设计规范》GB5017-2014; 1.2.9《石油化工给水排水管道工程施工及验收规范》SH/T3533-2013 1.2.10《石油化工设备管道钢结构表面色和标志规定》SH∕T 3043-2014 1.2.11《气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口》GB/T985-2008; 1.2.12《石油化工建设工程施工安全技术规范》GB50484-2008; 1.2.13《石油化工建设工程项目技术文件规定》SH/T3503-2007; 1.2.14《石油化工建设工程项目施工过程技术文件规定》SH/T3543-2007; 1.2.15《中华人民共和国建筑法》; 1.2.16《中华人民共和国安全生产法》; 1.2.17《建设工程安全生产管理条例》(国务院令第393号); 1.2.18《建筑施工安全检查标准》JGJ59-2011; 1.2.19《危险性较大的分部分项工程安全管理办法》》(建质[2009]87); 1.2.20《建筑施工作业劳动保护用品配备及使用标准》JGJ184-2009; 1.2.21《施工现场机械设备检查技术规程》JGJ160-2008; 1.2.22《施工现场临时用电安全技术规范》JGJ46-2012; 1.2.23《建筑施工高处作业安全技术规范》JGJ80-2016 1.2.24《安全带》GB6096-2009; 1.2.25《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011; 1.2.26《石油化工钢脚手架安全技术规范》SH/T3555-2014 1.2.27《工程建设安装工程起重施工规范》HG20201-2000 1.2.28《石油化工工程起重施工规范》SH/T3536-2011 1.2.29《起重吊运指挥信号》GB5028 1.2.30《建筑机械使用安全技术规程》JGJ33-2012; 2、施工方案 2.1、加热炉预热器改造施工方法 2.1.1施工程序 预热器框架横梁预制→搭架→垂直烟道、水平烟道拆除→常压炉水平烟道挡板阀门拆除→常压炉水平烟道拆除→减压炉烟道拆除→拆架→扰流子段预热器,出、入口烟风道拆除(包括衬里)→拆架→扰流子段预热器框架横梁拆除→拆架→热管预热器,出、入口烟风道拆除拆除(包括衬里)→搭架→安装铸铁预热器模块Ⅰ段→安装铸铁预热器模块Ⅱ→安装板式预热器模块Ⅰ→横梁安装→安装板式预热器模块Ⅱ→横梁安装→搭架→空气旁路拆除改造→搭架→风道安装→烟道连接短节安装→垂直烟道安装→搭架→水平烟道安装→减压炉烟道安装→常压炉烟道安装→各安装的烟、风道接口衬里施工、防腐→拆架→总体竣工验收。2.1.2预热器横梁施工方法 预热器横梁改造按照图纸加工完运至现场吊装后安装。 2.1.3垂直烟道、水平烟道、天圆地方、常压炉烟道、减压炉烟道施工方法

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

加热炉供电及控制系统改进

加热炉供电及控制系统改进 发表时间:2019-05-17T10:28:13.683Z 来源:《电力设备》2018年第32期作者:危燕[导读] 摘要:随着我国的快速发展,社会在不断的进步,本文介绍了影响辊底式加热炉系统稳定性的几点因素,及对辊底式加热炉燃烧控制系统及供电系统进行了一系列改造。 (大庆油田有限责任公司第三采油厂第一油矿北二二联合站黑龙江大庆 163000) 摘要:随着我国的快速发展,社会在不断的进步,本文介绍了影响辊底式加热炉系统稳定性的几点因素,及对辊底式加热炉燃烧控制系统及供电系统进行了一系列改造。 关键词:供电系统不稳定;安全回路误操作;参数不合理引言 辊底式加热炉是薄板坯连铸连轧生产线上的一个重要设备,在我国新生代连铸连轧生产线中有50%采用辊底式加热炉。辊底式加热炉既能加热钢坯以达到轧制钢坯的温度,又能将其从铸机出口运送到轧机入口,剔除不合格的钢坯,并且当连铸或轧机换辊或出事故时能起到缓冲的作用以减少连铸的停浇率,节约能源,增加产量。工频加热炉系感应电炉(以下简称电炉)是铁路部门用来将机车车轮加热淬火的一种设备。此设备单相用电负荷(380伏)容量较大。如果电源系统容量较小,而将此负荷单独接于三相系统时,三相系统平衡就会一交到破坏,因此,必须采取措施来解决三相系统不平衡的问题。利用电容器、电抗器与炉子组成三角形负荷,将单相负荷改为三相负荷是实现三相系统平衡的一种方法。本文着重从理论方面进行分析,导出几个有关的计算式,以了解三相平衡的条件、数值关系及其规律. 1影响加热炉系统稳定性的因素 1.1加热炉供电系统不稳定 加热炉供电系统不稳定的一个重要原因是电源“晃电”。“晃电”一般指电网由于雷击、对地短路、及其他外部、内部原因造成电网短时故障、引起的电网电压短时大幅度波动、甚至短时断电数秒钟的现象。加热炉A/B两条线共有7台助燃风机变频器,每年因上述原因均造成3~7次变频器停止运行,从而导致加热炉双线停炉的重大事故。而每次停炉后,大量人员参与从氮气吹扫、空气吹扫、做爆炸试验、引煤气、点炉升温至正常温度的全过程须5~7小时,给双线连铸连轧每年造成数百万的严重经济损失。而且,每次停炉后,高温煤气、空气混入助燃风机风道内,如果氮气吹扫不合格会直接引起风道内煤气爆炸,对人身、设备安全构成了极大威胁。 1.2无功功率自动补偿 设备的电容投切判据是某相或某两相电压与电流的相位差,因此很可能由于该设备的某相进线电流超前相电压一个夹角致使电压升高,危害电网。为此,以现有器件为基础,对感应加热炉供电系统进行自动化改造,最大程度地平衡三相功率,改善功率因数。1.3加热炉设备检测元件参数设置不尽合理因煤气加压站、空压站故障或检修造成煤气空气压力、流量波动以及热电偶自身原因而导致加热炉执行机构和仪表检测元件异常动作并造成切炉的现象,为此根据现场实际情况有必要对AB两条线的设备控制参数进行优化,达到了生产和设备稳定可靠运行。 2系统的改造 2.1助燃风机变频器控制回路改造 因UPS具有“失压”或零切换时间的功能,助燃风机变频器柜内控制电源决定采用UPS(不间断电源)供电。因为我厂UPS配电柜均为220V供电,而变频器柜内控制电源要求为380V,所以变频器控制电源回路可设计修改为:取自UPS配电柜220V电源备用开关,经220/380V升压变压器后,依次分配给A线1-3区、4-5区、7区变频柜,B线1-3区、4-5区变频柜;各变频柜内分别增设一只两相380V控制电源开关,分别供柜内的两个控制电源变压器。(将变频器柜内两个控制电源变压器的配接线进行整改,电源由增设的两相380V控制电源开关进行控制。)这样,如果变频器主回路电源出现瞬间低电压或断电时,变频器控制电源会始终不间断供给,保证控制回路正常工作,变频系统稳定、可靠运行。说明:原柜内两个控制电源变压器作用如下:一台变压器快熔输入侧取自柜内主回路断路器380V两相输出端,供风扇电源和控制板电源;另一台变压器快熔输入侧取自柜内整流器交流输入380V两相输入端,供触发板电源。主回路为二级管整流,经预充电、制动单元、逆变器输出控制电机运行;本设计将后增设的整流器输出并联到预充电前的直流母线两端,以确保变频器直流电压不因电网波动或电机加减速过程中能量交换而引起突变从而造成变频器内部短路或运行故障。 2.2软件设计 据实际经验,设备运行稳定后感应电流变化不会很大,电容、电感的各项参数也不会突变,闭环控制有可能引发投、切振荡,综合考虑系统采用开环控制,PLC通过采样负载电流有效值I1、cosφ1计算补偿电容,平衡电容、电抗的投切量,在Q1、Q2没有触发信号时控制KM2~KM11的开、关组合,在Q1、Q2有触发信号时控制可调电容C5、C6、C15在1s周期内的投、切占空比。根据设备工作特点,程序设计采用一种有别于快速傅立叶变换(FFT)的算法求取电压、电流基波分量A1、B1,进而计算电压、电流有效值和cosφ。为避免用户程序冗长,系统采用外围电路检测电压频率及倍频:电压、电流经过低通滤波处理后经电压比较器(LM393)转换为方波信号,再由锁相环芯片(CD4046)、分频芯片(CD4040)、整形芯片(74HC123)等完成锁相且128倍频,接入PLC的数字输入端I0.0,PLC进行上升沿检测,控制A/D转换的采样时刻,保证每个电压信号周期准确、均匀地采样128点。改造后设备运行表明,单位产量月能耗平均下降5%,设备故障率也大幅下降。 2.3煤气安全回路改造 在煤气安全回路速断阀停止按钮两侧并联一个空气断路器,电源也设置在点火盘内。在正常生产过程中,该空气断路器保持合闸状态;切炉前,将该断路器分闸。这样便有效地防止人为碰触速断阀控制按钮造成区域停炉事故的发生。 2.4变频器零序互感器改造 加热炉供电网络采用三相四线制,因工作电源电压比保安电源电压高,而且直流侧通过变频器与电机进行的能量交换所产生的电流流经变频器交流入线侧的零序电流互感器,造成双路电源送电后该变频器报接地故障而无法使变频器正常工作。为此,将变频器交流输入侧的零序互感器引出线摘除,在变频器输出端(电机侧)增设一个零序互感器,将其引出线接入控制板原插口,仍保留零序保护。这样,变频器或电机出现接地短路等故障发生后变频器功率元件可靠关断,及时切断电源,保护变频器和电机。 2.5主电路设计

加热炉改造方案

河北带钢生产线加热炉改造项目 技术方案 甲方: 乙方: 年月日

一项目背景 河北钢铁有限公司带钢生产线推钢加热炉,产量120t/h,采用双蓄热燃烧技术。原加热炉已经停用多年,加热能力远远无法满足轧线生产需要,运行时单耗大,氧化烧损严重,炉压高,造成生产成本较高。 目前钢铁市场回暖,本生产线计划尽快恢复生产,故计划对加热炉进行检修改造,以满足生产需要。 二改造内容 (1)对燃烧系统的烧嘴进行全部更换,共84只烧嘴。此种烧嘴是专门用于带钢加热炉的蓄热式烧嘴,能力适应性强,节省能源。 (2)蜂窝体及挡砖由甲方供货,乙方施工。 (3)炉墙全部拆除,出炉、入炉两端挡火墙拆除,重新浇筑。出炉、入炉两端水梁浇筑。整体正常使用寿命不低于5年。 (4)出料端水梁更换。钢材由甲方提供,乙方预制安装。 (5)出炉、入炉两端挡火板更换。钢材由甲方提供,乙方预制安装。 (6)为了保证炉墙的整体性,烧嘴喷口采用随炉墙整体浇筑形式。 (7)炉侧立柱部分更换,炉皮钢板部分更换,钢材由甲方提供,乙方预制安装。 (8)嘴前管道调整,钢材由甲方提供,乙方预制安装。 (9)其它系统随改造做部分变动。 (10)箱体支架全部重新制作安装。

(11)炉侧平台根据新设计重新布置,利旧。(12)自动化系统根据烧嘴情况重新编程。(13)其余设备材料利旧。 三技术参数 1燃料 高炉煤气 热值:800 ×4.187 kJ/m3 煤气压力:接点压力(5-10)kPa 2坯料 坯料规格:(150-220)×(300-550)×6000mm 标准坯料:180×550×6000mm 钢种:普碳钢、低合金钢 3钢坯装钢、出钢方式 推钢机端部推进, 出钢机端部取出。 4水梁冷却方式 汽化冷却自然循环。 5加热能力

加热炉控温技术影响因素分析及改进

加热炉控温技术影响因素分析及改进 温度是工业对象中的一个重要的被控参数。由于炉子的种类不同,使用的燃料和加热方法也不同;由于工艺不同,所需要的温度高低不同,所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制方法也不同。 目前铝加工市场的竞争非常激烈,普通产品的盈利净值已不能满足企业生存及发展的需要,而生产高端铝板材对材料的性能要求极高,特别是一些深冲、均热复合等中高端产品,其中均热工艺是影响铝产品性能的重要条件之一。为了使我厂铝产品满足中高端铝产品性能,就必须对加热炉的温度均匀性进行精准控制,以达到产品工艺要求的设定值或允许的偏离值。 该厂共配备2台加热炉,每台的进出料设备配置了受料台、链式运输机、上料机、推料机、轨道桥、取料机、翻料机、液压站及料垫转移车(横向和纵向)为2台共用,其动作过程全部采用PLC自动控制。燃烧系统烧嘴及阀件、控制元器件均采用当前知名度高的进口产品,性能安全可靠。 用于热轧轧制前预热及加热保温的立推式铝板锭加热炉设备由苏州新长光热能科技有限公司制造。单炉装载量为500 t,采用大风量强制热风循环、喷流加热。每台加热炉有5个分区,可独立进行温度控制,每区另装备4个燃烧器,采用美国天时*****集成式自身换热高速燃气烧嘴,具有热效率高、燃烧稳定和结构紧凑的优点。 加热或均热某种型号产品时,操作员可根据工艺员下发的工艺参数列表选取对应的工艺清单,并进行合理地调整优化,设定炉温炉气控制的期望值,确认无误后进行点火加热。 1 存在问题及影响因素分析 自投入使用以来,加热炉的温度控制一直不太理想。铝铸锭的加热质量直接关系到铝材产品的质量、产量、生产能耗以及机械设备寿

热轧加热炉技术对换热器改造效果

热轧加热炉技术对换热器改造效果 摘要:介绍了热轧加热炉实施高效换热器改造的基本情况及改造效果。换热器作为热轧加热炉重要余热利用设备之一,实施高效化改造,有利于降低加热炉燃耗,达到节能减排、提高经济效益之目的。 关键词:加热炉;换热器;螺旋片;高效化 0 引言 加热炉是热轧厂的重要设备之一,同时也是热轧工序的能耗大户,其燃料消耗约占热轧工序总能耗的63%。而换热器又是加热炉重要余热利用设备,一般用于预热加热炉助燃空气,以达到降低加热炉燃耗之目的[1]。新钢钒热轧板厂加热炉原设计采用金属片状管换热器,空气预热温度只能达到350~450 ℃,存在换热效率低,节能效果差等问题,不利于当前节能减排工作的深入开展,同时在换热器使用寿命的末期,其高温管组发生破损现象,漏风问题日益严重,已达到影响正常生产的程度。因此,有必要实施加热炉换热器改造,以提高助燃空气预热温度,降低加热炉燃耗,促进节能减排,满足生产需求,进一步提高经济效益。 1 改造前换热器基本状况 热轧加热炉采用下排烟方式,出炉烟气从装料端炉两侧的排出口经竖烟道进入水平烟道,穿过装炉辊道下部后汇合在一起进入总水平烟道,然后经过安装在水平烟道内的二行程换热器和烟道调节闸板后进入烟囱,由烟囱排入大气中。 改造前换热器存在的主要问题是:采用单纯的片状管式换热器,在同等的热负荷和排烟温度条件下,存在换热效率低,空气预热温度低(只能达到350~450 ℃)等问题,同时由于生产过程中煤气热值波动大,空煤配比不合理等问题,造成部分时段炉内煤气燃烧不充分,燃烧不充分的残余煤气漂流到烟道内继续燃烧,进而造成换热器前烟气温度异常偏高,加剧换热器管壁氧化并逐渐破损漏风,换热器漏风严重时还曾发生加热炉因供风量不足而影响生产的问题,被迫增加备用风机供风,从而进一步降低空气预热温度,并增加电耗。 2 改造方案 为提高换热效率,进一步降低加热炉燃耗,国内外先进企业均广泛开展高效换热器的研发工作,采用带插入件的换热器,利用插入件以强化换热效果是目前研发高效换热器的有效途径。同时,通过换热器材质选择和研究换热器保护措施等方法以提高换热器使用寿命。 2.1 螺旋插入件的选择 为了掌握插入件换热器的传热特性和阻力特性,通过查阅相关技术资料和详细的比较分析,统计与实际换热器使用温度接近的几个温度区和速度区、五种形式的插入件和几种管径的上千组数据,回归得到相应的传热及阻力特性。结果表明:螺旋插入件是各种插入件中增加管内传热系数最大的一种,提高幅度一般为光管的20%~30%;同时在传热系数相同的条件下,采用螺旋插入件后管内阻力只有光管的60%~80%,根据这些特点可以设计出高效的换热器。各种插入件传热系数和阻力的比较见表1。从表1可以看出,采用螺旋片形(大螺距)插入件强化换热,具有传热系数大,阻力损失小的特点。 2.2 防止低温腐蚀 在换热器低温侧,后几排管组的烟气温度和空气温度都较低,尤其在加热炉负荷减小,换热器管壁温度过低时,烟气中含硫气体易结露造成管壁低温硫腐蚀。传统的防止低温硫腐蚀办法是设置冷风管旁通,以减小流向换热器的风量,提高热风温度,但实现这一过程的自动控制较难,且会增大投资费用,否则就达不到有效控制低温阶段含硫气体对管攀钢技术

天然气加热炉的现状与改进研究

天然气加热炉的发展现状与改进探索 2010-10-11郭韵曹伟武严平钱尚源 摘要:作为一种特殊的炉型形式,天然气加热炉采用中间载热介质间接加热的方式,是天然气生产、输送和应用中的主要耗能设备。为了节能降耗、提高加热效率,必须结合工程实际的需要,优化加热炉的结构,设计制造出高效节能的天然气加热炉。为此,分析了天然气加热炉传热的薄弱环节及其强化措施,针对天然气加热炉大筒体内换热面的常规布置形式存在的缺陷,提出了旋转加热和冷却受热面以及在受热面之间加装导流板两种简单而有效的天然气加热炉改良结构,使中间载热介质形成整体有组织的顺畅流动并强化传热,从而达到节能降耗和提高天然气加热炉效率的目的。以上两项技术已获得国家专利授权。 关键词:天然气加热炉;流场组织;旋转;大简体;中间载热介质 天然气加热炉常用于井口、计量站、接转站等,将天然气加热至工艺所要求的温度,以便进行运输、分离和粗加工等(图1)。 天然气在使用过程中也常需要加热,如在燃气发电机组中,其工艺对燃料气的压力、温度和露点要求很高[1],电厂使用的燃料气必须经过调压和加热处理。另外,在液化天然气(LNG)输配应用系统中,要使LNG气化,也必然会用到大量加热气化炉。 1 天然气加热炉的工作原理 天然气加热炉采用整体组装式结构,在卧式大容积筒体内布置火筒、烟管束等加热受热面和多回程对流管束等冷却受热面,筒内充注中间载热介质作为加热和冷却受热面之间的传热媒介,帮助冷、热两种流体达到传热的目的,中间载热介质可采用水、乙二醇溶液和导热油。通常,加热和冷却受热面沿大筒体圆截面中心轴呈轴对称布置,火筒和烟管束位于水平轴的下方,对称布置于垂直轴的左右侧;多回程对流管束位于水平轴的上方,各回程也对称布置于垂直轴的左右侧,如图2所示。

加热炉技术方案

乌鲁木齐石化分公司 110万吨/年延迟焦化装置扩能改造工程加热炉施工技术方案 编制: 审核: 批准: 中石油七公司乌鲁木齐项目部 二○○三年七月

目录 1、前言 2、工程特点 3、施工组织 4、主要施工技术方法 5、技术质量管理 6、安全技术措施 7、施工进度计划 8、计量及小型机具应用计划 9、施工手段材料应用计划 附图一加热炉暂设平台布置图

1、前言 1.1概述 110万吨/年延迟焦化加热炉,设计负荷为23.449MW,重约570吨;该炉辐射管盘管材质采用ASTM A335 P9,对流室炉管采用ASTM A335 P5,对流室过热蒸汽盘管材质为20#;燃烧器选用焦化炉专用气体燃烧器,避免火焰不稳定舔炉管,引起炉管局部过热的情况发生。 1.2编制依据 1.2.1乌鲁木齐石油化工总厂设计院设计图纸 1.2.2《石油化工管式炉钢结构工程及部件安装技术条件》SH3086-1998 1.2.3《石油化工管式炉燃烧器工程技术条件》SH/T3113-2000 1.2.4《石油化工管式炉轻质浇注料衬里工程技术条件》SH/T3115-2000 1.2.5《石油化工管式炉碳钢和铬钼钢炉管焊接技术条件》SH3085-1997 1.2.6《石油化工管式炉急弯弯管技术标准》SH/T3065-1994 1.2.7《石油化工管式炉耐热钢铸铁技术标准》SH3087-1997 1.2.8《管式炉安装工程施工及验收规范》SHJ506-87 1.3适用范围 本技术方案仅适用于乌石化110万吨/年延迟焦化装置扩能改造工程新增焦化炉的安装施工指导,该焦化炉施工完毕本技术方案自动废除。 2、工程特点 2.1施工特点 本焦化炉工区域狭小,吊装难度大;施工时间短,任务重。

点云数据去噪光顺的基本原理

点云数据去噪光顺的基本原理 近几年来三维模型获取的软硬件技术正不断深入,人们可以通过多种数据采样方法来获取现实物体的计算机表示,并对之进行预处理,加工,分析和应用。在获取数据的过程中,因为人为的扰动或者扫描仪本身的缺陷使得生成三维数据往往带有噪声,从而使所获得的测量数据与实物存在一定的偏差,因此在对实测三维数据进行相关数字几何处理和应用之前必须对其进行去噪光顺。点云的去噪光顺是三维数据预处理和建模的重要环节,目的是有效剔除噪声点、使重建表面模型光顺平滑,并保持采样表面原有的拓扑和几何特征不变。 一、点云的概念和分类 点云就是使用各种三维数据采集仪采集得到的数据,它记录了有限体表面在离散点上的各种物理参量。根据点云中点的分布特点(如排列方式、密度等)将点云可分为: a.散乱点云:测量点没有明显的几何分布特征,呈散乱无序状态。随机扫描方式下的CMM、 激光点测量等系统的点云呈现散乱状态。 b.扫描线点云:点云由一组组扫描线组成,扫描线上的所有点位于扫描平面内。CMM、激光 点三角测量系统沿直线扫描的测量数据和线结构光扫描测量数据呈现该特征。 c.网格化点云:点云中所有点都与参数域中一个均匀网格的顶点对应。将CMM、激光扫描系 统、投影光栅测量系统及立体视差法获得的数据经过网格化插值后得到的点云即为网格化点云。 d.多边形点云:测量点分布在一系列平行平面内,用小线段将同一平面内距离最小的若干 相邻点依次连接可形成一组有嵌套的平面多边形。莫尔等高线测量、工业CT、层切法、磁共振成像等系统的测量点云呈现多边形特征。 此外,测量点云按点的分布密度可分为高密度和低密度点云。CMM的测量点云为低密度点云,通常在几十到几千个点。而测量速度及自动化程度较高的光学法和断层测量法获得的测量数据为高密度点云,一般可达几百万点。 二、异常点的剔除 在曲面造型中,数据中的“跳点”和“坏点”对曲线的光顺性影响较大。“跳点”也叫做失真点,通常是由于测量设备的标定参数发生改变和测量环境突然变化造成的。因此测量数据的预处理首先是从数据点集中找出可能存在的“跳点”。如果在同一截面的数据扫描中,存在一个点与其相邻的点偏距较大,可以认为这样的点是“跳点”,判断“跳点”的方法有以下3种。 a.直观观察法:通过图形终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕 上的孤点剔除。这种方法适合于数据的初步检查,可以从数据点集中筛选出一些偏差比较大的异常点。 b.曲线检查法。通过截面的首末数据点, 用最小二乘法拟合得到一条样条曲线, 曲线的阶 次可根据曲面截面的形状决定, 通常为3 ~ 4 阶, 然后分别计算中间数据点P i到样条曲线的距离‖e‖,如果‖e‖≥[ε]([ε] 为给定的允差),则认为P i是坏点,应予以剔除(见图1)。

齿轮箱减振降噪优化设计方法研究

齿轮箱减振降噪优化设计方法研究 摘要:近年来,齿轮箱减振降噪优化设计问题得到了业内的广泛关注,研究其 相关课题有着重要意义。本文首先对相关内容做了概述,分析了齿轮箱减振降噪 技术专利发展状况,并结合相关实践经验,分别从多个角度与方面就齿轮箱减振 降噪优化设计展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工 作的实践。 关键词:齿轮箱;减振;降噪;优化;设计 1前言 随着齿轮箱减振降噪条件的不断变化,对其优化设计问题提出了新的要求, 因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与 实践。基于此,本文从概述相关内容出发,提出了减震降噪优化设计的具体方法。 2概述 齿轮传动因传动效率高、传动寿命长、传动比精确而被广泛应用于航空航天、轨道交通、装备制造等领域。随着人们对振动和噪声问题的重视,齿轮箱减振降 噪优化设计势在必行。齿轮箱在运行过程中主要的振动和噪声来源是齿轮在啮合 时产生的,主要通过三种路径传递到环境中。第一种路径是,啮合力和噪声通过 齿轮、轴传递到齿轮箱箱体,在箱体上表现出声辐射和箱体振动;第二种路径是 齿轮啮合噪声通过箱体内部的空气直接传递到箱体表面,在箱体上表现为较弱的 振动噪声;第三种路径主要是通过齿轮箱的各种缝隙向环境中传播噪声。研究结 果表明有90%以上的振动噪声来自第一种路径。因此,减小齿轮箱箱体上的振动 及噪声量就能有效抑制整体振动噪声,所以齿轮箱减振降噪优化设计就是箱体的 优化设计。 3齿轮箱减振降噪技术专利发展状况分析 截至2015年5月,在德温特DWPI数据库中检索到涉及齿轮箱减振降噪技术 的全球专利申请共计692项;在中文摘要数据库CNABS中检索到涉及齿轮箱减振 降噪技术的专利申请达到606件,其中国内申请482件,国外来华申请124件。 该节在这一数据基础上从专利申请发展趋势、专利申请国家或地区分布、主要专 利申请人分析等角度对齿轮箱减振降噪技术领域的全球专利状况进行分析。 3.1发展趋势分析 齿轮箱减振降噪技术领域全球专利申请趋势变化中,1972年便首次出现2项 专利申请,但其后申请量却出现波动,年均申请量不高,直至2007年前后发展 迅速;在其整个发展过程中呈现出明显的起伏趋势;到2013年时,其年原创申 请量达到184项。从其发展轨迹来看,该领域的专利申请趋势的变化基本上与20 世纪3次全球能源危机的发生相吻合,在能源危机出现时,传统汽车、减速器等 制造业的专利申请量就呈现出明显下降趋势,齿轮箱减振降噪技术的专利申请也 随之降低,这表明齿轮箱减振降噪技术的发展不仅取决于技术因素本身,而且在 很大程度上还是由全球能源状况决定的,也就是说,齿轮箱减振降噪技术的发展 很大程度上受到外部环境的制约。 齿轮箱减振降噪技术领域中国专利申请趋势变化中可以看出,专利申请量总 体呈上升趋势,其中近几年发展迅速,国外来华申请量发展初期大于国内申请量,而近几年要远远小于国内申请量,国内与国外来华申请量趋势基本保持一致。总 体来看,国内与国外来华历年专利申请量差别较大,国外来华申请人早在20世 纪80年代就开始重视在我国的专利布局,国内申请人起步较晚,但从2011年以

加热炉事故应急预案9

加热炉事故应急预案 2020年度

加热炉使用高炉煤气是轧钢厂受控危险源之一。高炉煤气具有着火、中毒、爆炸三大危害,本着“安全第一、预防为主、综合治理”的工作方针,特制订本事故应急预案。 一、范围 本方案使用于加热炉区域已发生或潜在事故的应急组织与处理办法。 二、引用标准和术语 加热炉工艺技术规程、操作规程、安全规程 三、事故应急预案 1、煤气管路事故爆炸处理 事故后果:造成加热炉停产,煤气大量泄漏,引发扩散性中毒事故,引起大面积火灾。 避免方法: A执行煤气使用安全规程要求,操作中严格执行规定程序。 B避免高温直接烘烤煤气管道,防止其发生变形、开裂,禁止在煤气管道及其设施上进行焊接作业。 C在煤气区域切割或焊接作业,应提前办理作业操作牌。 D停送煤气时做好氮气吹扫,防止空气进入煤气管道。 1.1事故发生通知相关部门和领导 发生火灾时拨打火警电话;发生人员中毒时拨打救护电话;发生煤气泄漏时拨打煤气防护电话电(煤防站)管控调度)。 1.2 作业人员佩戴空气呼吸器、携带煤气报警仪、对讲机到现场开展施救。 1.3 煤气管路爆炸着火处理 A若是煤气总管道爆炸,立即关闭煤气总管快切阀、总管电动蝶阀,关闭盲板阀可靠切断煤气。 B若是加热炉段管道爆炸,应停止使用加热炉煤气,关闭烧嘴前手动蝶阀;手动调动煤气总管切断蝶阀(或点击调动开启度),降低煤气总管压力,保持泄漏点燃烧状态,同时打开煤气总管氮气吹扫阀门,通入氮气进行灭火;灭火后关闭总管快速切断蝶阀、总管蝶阀和盲板阀,可靠切断煤气。

1.4 迅速安排近岗位人员紧急撤离现场至上风口安全处,并按上岗人员清点名单人数,如果有失踪人员,应安排三人一组,进行搜寻,如有人员伤亡采取自救。 1.5 煤气爆炸后处理原则 A加热炉区域禁止明火,加热炉进行停炉,关闭煤气总管快切阀、蝶阀,关闭盲板阀。 B可靠切断煤气避免事故蔓延。 1.6配合协助单位实施救助活动,直至时间被控制。 2、加热炉区域煤气泄漏事故处理 事故后果:当空气中煤气含量超过200PPm时,有大量煤气泄漏会造成炉区及周边工作人员不同程度的中毒反应,轻者头疼恶心,重者中毒死亡。 避免方法: A焊接管道时做好管道打压和焊缝试漏工作,避免煤气投送时出现煤气泄漏。 B正常生产时维护好炉区现场的煤气检测器,认真做好现场巡检,发现问题及时汇报。 C操作上控制好空煤比,使煤气能够完全燃烧。 2.1 当煤气管道或设施周围CO含量在30mg/m3以上时成为泄漏,泄漏的煤气因为高温或明火而发生燃烧成为明火。 2.2 煤气发生大量泄漏时应立即向调度、作业区领导汇报,迅速弄清现场情况,采取有效措施,避免事故进一步扩大。 2.3加热炉区域煤气泄漏事故处理措施 A小裂缝可以直接等着正压补焊;较大裂缝应立即用黄泥或湿布堵上并点燃泄漏的煤气;如果裂缝又大又长,必须关掉该段管道段前阀门,向管道内通入氮气吹扫20分钟在进行补焊,情况严重时应紧急停炉处理。 B发现煤气管道着火时,应逐渐减少该段煤气量火势减小后在按A方法处理。直径小于或等于100mm的煤气管道可以直接关闭阀门灭火,如果大于100mm的煤气管道着火必须使用上诉方法火势减小后在处理。 3、加热炉区域停电事故处理 事故后果:加热炉区域停电时,助燃风机、排烟风机、停止运转,热水循环泵、给水泵、软水泵停止运转、煤气管道上总管和分管快切阀关闭,区域照明关闭。 避免方法: A作于与机动能源部门联系,提前做好准备。 B 炉区设置不间断电源为应急处理提供电源和时间 C 采用双路电源供电避免临时性停电。 3.1.1加热炉区域停电事故现象 加热炉区域停电时照明熄灭,助燃风机、排烟风机停止运转,热水循环泵、给水泵、软水

加热炉改造方案及效果

加热炉改造方案及效果 摘要:本文阐述加热炉改进、提出相应的改进措施,并应用于现场,切实发挥其功效。 关键词:加热炉 华西扁钢厂加热炉改造原炉子为油气混烧加热炉,炉子砌砖长度37658mm,内宽6460mm.现改为高炉煤气,坯料尺寸为165~250×500~600×6000mm. 一、设计方案 1.设计条件 1.炉型:高炉煤气,推钢式连续加热炉 2.加热钢种:普碳钢、低合金钢、合金钢、冷墩钢、优质碳素结构刚 3.钢坯规格:165~250×500~600×6000mm. 4.钢坯入炉温度:常温 5. 钢坯出炉温度:~1200℃ 6.加热能力:80t/h(冷装料) 7.燃料:高炉煤气,发热值:700×4.18KJ/Nm3 8.高炉煤气煤气管网入口温度:≤50℃ 9.高炉煤气煤气管网入口压力:~7000Pa 10.高炉煤气含尘量≤25mg/m3 11.炉底水管冷却方式:气化冷却 2.加热炉设计采用的技术措施 本加热炉是采用高炉煤气为燃料的蓄热式推钢加热炉。 1.采用的技术措施 (1)为保证轧机生产对加热质量的要求,此设计方案采用新型蓄热式烧嘴以适应高炉煤气的要求,同时采用高性能的蓄热体材料和采用四通换向阀的集中换向系统,来达到炉压波动小、炉温均匀、能耗低的目的。 (2)根据轧机生产需要及对加热质量的要求,炉子分为3段,即温度控制段数为3段(加热一段、加热二段、均热段),以保证钢坯加热温度的均匀性,提高加热质量。 (3)由于燃料是高炉煤气,故采用双蓄热式燃烧技术,最大限度地利用烟气余热,大幅度降低燃耗。 (4)采用蓄热式技术后,炉内火焰流动与传统加热炉比有很大的区别,烟气成横向流动,烧嘴成对工作,其中一侧烧嘴工作时另一侧烧嘴排烟蓄热,烧嘴布置于炉子两侧,一侧烧嘴喷出的火焰被对侧烧嘴吸引,这相当于加长了火焰长度,对炉温的均匀性有利。 (5)为了保证炉子的安全生产,加热炉在炉子结构上,各种辅助设施的布局上,生产操作及设备的维护上充分考虑了人身、设备与生产的安全。如设置操作平台、栏杆及煤气泄漏报警装置。 (6)采用实用、可靠、先进的电控仪控的装备水平,保证炉子的安全生产。 2.采用的节能技术措施 (1)采用双蓄热式燃烧技术,最大限度地利用烟气余热,大幅度降低燃烧。 (2)采用性能良好的耐火浇注料进行整体浇注炉墙,采用复合绝热层结构完善炉体绝热,确保炉墙表面温度和炉顶上表面温度符合国家标准,减少炉体余热,改善操作环境。 (3)合理配置炉子两侧操作及检修炉门,结构设计做到开启灵活,关闭严密,减少炉气外溢和冷风吸入的热损失。 (4)配备实用的热工控制系统,使热损失减少到最少。 3.加热炉的主要尺寸 炉膛内宽6620mm 砌砖总宽度7660mm

相关文档
最新文档