结构力学公式大全

结构力学公式大全
结构力学公式大全

结构力学公式大全1、常用截面几何与力学特征表

注:1.I称为截面对主轴(形心轴)得截面惯性矩(mm4)。基本计算公式如下:

2.W称为截面抵抗矩(mm3),它表示截面抵抗弯曲变形能力得大小,基本计算公式如下:

3.i称截面回转半径(mm),其基本计算公式如下:

4.上列各式中,A为截面面积(mm2),y为截面边缘到主轴(形心轴)得距离(mm),I 为对主轴(形心轴)得惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面得承载力与刚度。

2、单跨梁得内力及变形表

2、1 简支梁得反力、剪力、弯矩、挠度

2、2 悬臂梁得反力、剪力、弯矩与挠度

2、3 一端简支另一端固定梁得反力、剪力、弯矩与挠度

2、4 两端固定梁得反力、剪力、弯矩与挠度

2、5 外伸梁得反力、剪力、弯矩与挠度

3.等截面连续梁得内力及变形表3、1 二跨等跨梁得内力与挠度系数

注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。

2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。

[例1] 已知二跨等跨梁l=5m,均布荷载q=11、76kN/m,每跨各有一集中荷载F=29、4kN,求中间支座得最大弯矩与剪力。

[解] MB支=(-0、125×11、76×52)+(-0、188×29、4×5)

=(-36、75)+(-27、64)=-64、39kN·m

VB左=(-0、625×11、76×5)+(-0、688×29、4)

=(-36、75)+(-20、23)=-56、98kN

[例2] 已知三跨等跨梁l=6m,均布荷载q=11、76kN/m,求边跨最大跨中弯矩。

[解] M1=0、080×11、76×62=33、87kN·m。

3、2 三跨等跨梁得内力与挠度系数

注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。

2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。

3、3 四跨等跨连续梁内力与挠度系数

注:同三跨等跨连续梁。

3、4 五跨等跨连续梁内力与挠度系数

注:同三跨等跨连续梁。

3、5 二不等跨梁得内力系数

结构力学复习公式

平面体系的计算自由度W 的求法 (1)刚片法:体系看作由刚片组成,铰结、刚结、链杆为约束。 刚片数 m ; 约束数:单铰数 h ,简单刚结数 g ,单链杆数 b 。 W = 3m - 2h - 3g -b (2)节点法:体系由结点组成,链杆为约束。 结点数 j ; 约束数:链杆(含支杆)数 b 。 W = 2j – b (3)组合算法 约束对象:刚片数 m ,结点数 j 约束条件:单铰数 h ,简单刚结数 g ,单链杆(含支杆)数 b W = (3m + 2j)-(3+2h+ b) 比较可得:三铰拱与简支梁的竖向支反力完全相同。注意到水平支反力式中的分子就是简支 梁上截面C的弯矩,则水平支反力可写作: 综上所述,三铰拱在竖向荷载作用下,任一截面上的弯矩、剪力荷轴力的计算公式如下: 4.4.1 各种结构位移计算公式 :虚设单位荷载P=1作用下的结构的内力; :实际荷载作用下的结构的内力

图乘法 位移公式: 4.5.2 常见图形的面积和形心 常见图形的形心和面积(图4.10)。 图4.10 以上图形的抛物线均为标准抛物线:抛物线的顶点处的切线都是与基线平行4.5.3 应用图乘法时的几个具体问题 (2) 如果有一个图形为折线,则应分段考虑(图4.12)

图4.12 (3) 如果图形比较复杂,应根据弯矩图的叠加原理将图形分解为几个简单图形,分项计算后再进行叠加图4.13 图4.13 (图4.13b中A1与y1的乘积为负值;图4.13c中抛物线为非标准曲线)。例5:试求出图4.16刚架结点B 的水平位移和转角,EI 为常数

图4.16 解: (1)虚设单位荷载,作实际状态和虚设单位荷载的弯矩图(图4.17a、b、c) 图4.17 (2)代入公式,图乘。 B 点竖向位移: B 点转角位移: 力法的基本概念

结构力学重点公式

刚度法 频率方程D=|k11-w 2m 1 k12 | |k21 k22-w 2m 2| =(k11-w 2m1)(k22-w 2m2)-k12k21=0 (w 2)2-(2 22111m k m k +)w 2+2121122211m m k k k k -=0 第一振型21 11y y = - 1 *1*11112m w w k k - 第二振型22 12y y = - 1 *2*21112 m w w k k - 柔度法 频率方程D=|б11m 1-w w *1 б 12 m 2 | |б 21 m 1 22m 2- w w *1| =(б11m 1- w w *1)(22m 2-w w *1)-б12m 2б21m 1=0 主振型2111Y Y =-w *w 1 -б11m1б12m2 22 11Y Y =- w *w 1 -б11m1б12m2 W = бc w g =l l l w EIg ***3 Y 2max =y 02 +(w v 0 )2 V 0=w* 0*0max max*y y Y Y - 柔度系数 б=L 3/48EI 自振频率 w = бG g 荷载频率 θ=2πn /60 阻尼比ζ=(1/20π)*ln 10+Yk Yk 动力系数β=1/ w w w ***4)*w *1(θθζζ平方θθ+- 最大弯矩 Mmax =(G*βFp)*l*0.25 最大正应力 σmax =(G+βFp)*l /4Wz 最大竖向位移 Ymax =(G+βFp)δ 刚度法 频率方程D=|k11-w 2m 1 k12 | |k21 k22-w 2m 2| =(k11-w 2m1)(k22-w 2m2)-k12k21=0 (w 2)2-(2 22111m k m k +)w 2+2 121122211m m k k k k -=0 第一振型21 11y y = - 1 *1*11112m w w k k - 第二振型22 12y y = - 1 *2*21112 m w w k k - 柔度法 频率方程D=|б11m 1-w w *1 б 12 m 2 | |б 21 m 1 22m 2- w w *1| =(б11m 1- w w *1) (22m 2-w w *1)-б12m 2б21m 1=0 主振型21 11Y Y =- w *w 1 -б11m1б12m2 22 11Y Y =- w *w 1 -б11m1б12m2 W = бc w g =l l l w EIg ***3 Y 2max =y 02 +(w v 0)2 V 0=w* 0*0max max*y y Y Y - 柔度系数 б=L 3/48EI 自振频率 w = б G g 荷载频率 θ=2πn /60 阻尼比ζ=(1/20π)*ln 10 +Yk Yk 动力系数β=1/ w w w ***4)*w *1(θθζζ平方θθ+- 最大弯矩 Mmax =(G*βFp)*l*0.25 最大正应力 σmax =(G+βFp)*l /4Wz 最大竖向位移 Ymax =(G+βFp)δ

结构力学的知识点

双筋计算方法: 一As与As' 1、截面计算 1)假设a s=65mm,a s'=35mm,求得h0=h-a s 2)验算是否需要双筋。Mu= f cd bh02§b(1-0.5§b) 3)取§=§b,求As'=【M- f cd bh02§(1-0.5§)】/【f sd'(h0- a s')】 4)求As=【f cd bx+f sd'As'】/ f sd 其中x=§b h0 下面选钢筋,钢筋层净距,钢筋间净距(大于30mm和直径d),保护层厚度,再计算a s和a s' 二、已知As',求As 5)假设a s,求得h0=h-a s 6)求受压区高度x= h0-√h02-2【M- f sd'As'(h0- a s')】/f cd b 7)当x﹤§b h0且x﹤2 a s'时,As=M/【f sd(h0- a s')】 当x≤§b h0且x≥2 a s'时,As=【f cd bx+f sd'As'】/ f sd 8)选择受拉钢筋直径的数量,布置截面钢筋(同上) 2、截面复核 1)检查钢筋布置是否符合规要求 2)将As=?As'=?h0=?f cd f sd' f sd 若带入x=【f sd As- f sd'As'】/f cd b ≤§b h0 ﹤2 a s' 用Mu= f sd As(h0- a s')计算正截面承载力 若2 a s'≤x≤§b h0,矩形截面抗弯承载力 Mu= f cd bx(h0-x/2)+ f sd'As'(h0- a s')

一、As与As'均未知 1、截面设计 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之, ξ1=0.27+2.7 e0/ h0 ξ2=1.15-0.01l0/h η=1+1/【1400(e0/ h0)】(l0/h)2ξ1ξ2 2)令§=§b,求As'=【Ne s- f cd bh02§b(1-0.5§b)】/ f sd'(h0- a s') ≥ρmin bh (ρmin=0.2%)取σs= f sd 求As=【f cd bh0§b+ f sd'As'-N】/ f sd≥ρmin bh 二、已知As',求As 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之,2)计算受压区高度x= h0-√h02-2【Ne s - f sd'As'(h0- a s')】/f cd b 当2 a s'﹤x≤§b h0时,取σs= f sd 求As=【f cd bx+ f sd'As'-N】/ f sd 当x≤§b h0 x≤2 a s'时,As=Ne s'/ f sd(h0- a s') 3)选钢筋,看配筋率是否符合ρ+ρ'≥0.5%,纵筋最小净距(一般为30mm),重取a s= a s'=?,计算保护层厚度是否满足要求,最小截面宽度b min 2、截面复核 1)垂直于弯矩作用平面

《结构力学》课程教学大纲(精)

《结构力学》课程教学大纲 课程编号:L263009 课程类别:专业基础课学分数: 5 学时数:80 适用专业:土木工程应修基础课程:《材料力学》、《理论力学》 一、本课程的地位和作用 本课程是土木工程专业技术平台课程中的一门基础课程。通过本课程的教学使学生掌握结构力学的基本原理、基本理论和基本方法,具备将工程实践中的实际问题抽象为相应的力学模型并运用相应的力学计算公式进行求解的基本能力,具备解决工程实践中相应的结构力学实际问题的基本能力,具备运用常用工程力学计算机软件进行工程力学分析、计算的基本能力。 二、本课程的教学目标 在学习理论力学和材料力学等课程的基础上进一步掌握平面杆系结构分析计算的基本概念,基本原理和基本方法,了解各类结构的受力性能,为学习有关专业课程以及进行结构设计和科学研究打好力学基础,培养结构分析与计算等方面的能力。 三、课程内容和基本要求 第一章绪论 1、教学基本要求 (1)了解结构力学的任务,与其它课程的关系及常见杆件结构的分类; (2)熟练掌握结构计算简图的概念和确定结构计算简图的原则; (3)熟练掌握杆件结构的支座分类和结点分类; (4)理解荷载的分类。 2、教学内容 (1)结构力学研究对象和任务 (2)Δ结构计算简图 (3)Δ结构分类 (4)荷载分类 第二章体系几何组成分析 1、教学基本要求 (1)理解几何不变体系、几何可变体系、瞬变体系和刚片、约束、自由度等概念; (2)熟练掌握无多余约束的几何不变体系的几何组成规则; (3)应用规则分析常见体系的几何组成; (4)理解结构的几何特性与静力特性的关系。

2、教学内容 (1)几何组成分析目的 (2)*运动自由度概念 (3)Δ几何不变体系简单组成规则 (4)Δ几何组成分析示例 (5)静定结构和超静定结构 第三章静定结构内力分析 1、教学基本要求 (1)熟练掌握截面内力计算和内力图的形状特征; (2)熟练掌握绘制弯矩图的叠加法; (3)应用截面法求解静定结构,绘制其内力图; (4)理解桁架的受力特点及按几何组成分类。应用结点法和截面法及其联合应用,会计算简单桁架、联合桁架即复杂桁架。 (5)熟练掌握三铰拱的反力和内力计算。了解三铰拱的内力图绘制的步骤。理解三铰拱合理拱轴的形状及其特征; (6)理解静定结构受力分析方法,静定结构的一般性质,各种结构形式的受力特点。 2、教学内容 (1)Δ静定梁 (2)Δ*静定钢架 (3)*三铰拱 (4)Δ静定桁架和静定组合结构 (5)静定结构基本性质和受力特点 第四章虚功原理和结构位移计算 1、教学基本要求 (1)了解温度改变、支座移动引起的位移计算; (2)理解变形体虚功原理和互等定理; (3)理解实功、虚功、广义力、广义位移的概念; (4)熟练掌握荷载产生的位移计算; (4)应用图乘法求位移。 2、教学内容

结构力学知识点总结

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0,体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。

9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。 () ()Q dM x dF x dx =2 2 ()()()Q dF x d M x q y dx dx ==-,,B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=- =+ ? ? ?

分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。 12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。 13.对称结构受正对称荷载作用, 内力和反力均为对称(K行结点不受荷载情况)。对称结构受反对称荷载作用, 内力和反力均为反对称。 14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dF Q F Q M M+d M d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

最新结构力学复习公式

1 平面体系的计算自由度 W 的求法 2 (1)刚片法:体系看作由刚片组成,铰结、刚结、链杆为约束。 3 刚片数 m ; 4 约束数:单铰数 h ,简单刚结数 g ,单链杆数 b 。5 W = 6 3m - 2h - 3g -b 7 (2)节点法:体系由结点组成,链杆为约束。 8 结点数 j ; 9 约束数:链杆(含支杆)数 b 。 10 W = 2j 11 – b 12 (3)组合算法 13 约束对象:刚片数 m ,结点数 j 14 约束条件:单铰数 h ,简单刚结数 g ,单链杆(含支杆)数 b 15 W = (3m + 2j)16 -(3+2h+ b) 17 比较可得:三铰拱与简支梁的竖向支反力完全相同。注意到水平支反力式中18 的分子就是简支梁上截面C的弯矩,则水平支反力可写作:

19 20 综上所述,三铰拱在竖向荷载作用下,任一截面上的弯矩、剪力荷轴力的计21 算公式如下: 22 23 4.4.1 各种结构位移计算公式 24 25 :虚设单位荷载P=1作用下的结构的内力; 26 :实际荷载作用下的结构的内力 27 28 29 30 图乘法 31 位移公式: 32 4.5.2 常见图形的面积和形心 33 常见图形的形心和面积(图4.10)。 34

35 36 图4.10 37 以上图形的抛物线均为标准抛物线:抛物线的顶点处的切线都是与基线平行38 4.5.3 应用图乘法时的几个具体问题 39 (2) 如果有一个图形为折线,则应分段考虑(图4.12) 40 41 图4.12 42 43 (3) 如果图形比较复杂,应根据弯矩图的叠加原理将图形分解为几个简单图44 形,分项计算后再进行叠加图4.13

结构力学知识点汇总

结构力学知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dFQ F Q M M+ dM d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

结构力学(建筑力学第三分册)复习

结构力学(建筑力学第三分册)复习 李家宝:《结构力学》(第三版)第一章绪论 4.支座与结点——约束(位移)——约束力 第二章平面体系地几何组成分析 11.几何不变体系与几何可变体系 12.联系(约束):链杆.铰(单铰); 13.基本组成规则:对象—联系—条件—结论(二元体) 13.虚铰 14.瞬变体系 15.多余约束-必要约束 21.静定——超静定:几何特征.静力特征 习题:2-2.4.7.例2-3.5 第三章静定静定结构内力分析 21.单跨梁:截面法(直接计算方法).符号规定 22.微分关系 22.区段叠加法作弯矩图.滚小球作剪力图 25.静定多跨梁(基本部分与附属部分——几何组成.受力特点——求解顺序)27.静定平面刚架(基本类型:图3-9.13-14.17;支座反力——截面法:内力)35.拱:特点 37.三铰拱反力.水平反力——拱高;弯矩 42.三铰拱地合理轴线(给定荷载.弯矩(剪力)为零;例3-4结论) 43.桁架:计算简图——几何组成方式 44.结点法(求解顺序与步骤.三角分解.零杆判断) 47.截面法(力矩.投影方程;力沿作用线移动到适当位置分解. *平面汇交力系对任一点之矩=0.对称性利用) 48.特点:基本特征(几何.静力.非荷载因素影响等);截面法;受力特点 习题:3-1.4.7.9.18c.20b 第四章结构位移计算 57.位移(线位移:水平.竖向;转角-角位移) 62.一般公式(4-3):单位荷载法.广义位移—广义力 65.荷载作用下地位移计算(线弹性结构):公式——梁和刚架.桁架 70.图乘法(应用条件.公式.常用简单图形面积与形心位置.应用) 76.支座移动:性质—不引起内力;刚性位移 76.温度作用:性质—不引起内力;变形——弯曲方向

结构力学上期末复习重点

第一章: 机动分析就是判断一个杆系是否是几何不变体系,同时还要研究几何不变体系的组成规律。又称: 几何组成分析、几何构造分析 机动分析的目的: 1、判别某一体系是否为几何不变,从而决定它能否作为结构。 2、区别静定结构、超静定结构,从而选定相应计算方法。 3、搞清结构各部分间的相互关系,以决定合理的计算顺序。 计算自由度: W=3m-2h-r m---刚片数h---单铰数r---单链杆数(支座链杆) W=2j-b-r 【平面链杆系的自由度(桁架):链杆(link)——仅在杆件两端用铰连接的杆件】 非链杆体系的只能用第一个公式计算 J---铰结点数b---链杆数r---单链杆数(支座链杆) = 限制自由度为1 限制自由度为2 限制自由度为3 W>0时,体系几何可变 体系几何不变的必要条件:W≤0 A.三刚片规则 三个刚片用不在同一直线上的三个单铰两两相连,所组成的平面体系几何不变。 B.二元体规则 在刚片上增加一个二元体,是几何不变体系。 C.两刚片规则: 两个刚片用一个铰和一个不通过该铰的链杆连接,组成几何不变体系。

O 瞬变体系:原为几何可变,经微小位移后即转化为几何不变的体系。 铰结三角形规则——条件:三铰不共线 机动分析步骤总结: 计算自由度 判别二元体,如有,先撤去 观察是否是瞬变体系 已知为几何不变的部分宜作为大刚片 两根链杆相当于其交点处的虚铰 运用三刚片规则时,如何选择三个刚片是关键,刚片选择的原则是使得三者之间彼此的连接方式是铰结 各杆件要么作为链杆,要么作为刚片,必须全部使用,且不可重复使用 4.多余约束”从哪个角度来看才是多余的?( A ) A.从对体系的自由度是否有影响的角度看 B.从对体系的计算自由度是否有影响的角度看 C.从对体系的受力和变形状态是否有影响的角度看 D.从区分静定与超静定两类问题的角度看 下列个简图分别有几个多余约束: 0 个约多余束 3 个多余约束

结构力学复习公式复习进程

结构力学复习公式

平面体系的计算自由度 W 的求法 (1)刚片法:体系看作由刚片组成,铰结、刚结、链杆为约束。 刚片数 m ; 约束数:单铰数 h ,简单刚结数 g ,单链杆数 b 。 W = 3m - 2h - 3g -b (2)节点法:体系由结点组成,链杆为约束。 结点数 j ; 约束数:链杆(含支杆)数 b 。 W = 2j – b (3)组合算法 约束对象:刚片数 m ,结点数 j 约束条件:单铰数 h ,简单刚结数 g ,单链杆(含支杆)数 b W = (3m + 2j)-(3+2h+ b) 比较可得:三铰拱与简支梁的竖向支反力完全相同。注意到水平支反力式中的分子就是简支梁上截面C的弯矩,则水平支反力可写作: 综上所述,三铰拱在竖向荷载作用下,任一截面上的弯矩、剪力荷轴力的计算公式如下:

4.4.1 各种结构位移计算公式 :虚设单位荷载P=1作用下的结构的内力; :实际荷载作用下的结构的内力 图乘法 位移公式: 4.5.2 常见图形的面积和形心 常见图形的形心和面积(图4.10)。

图4.10 以上图形的抛物线均为标准抛物线:抛物线的顶点处的切线都是与基线平行4.5.3 应用图乘法时的几个具体问题 (2) 如果有一个图形为折线,则应分段考虑(图4.12) 图4.12

(3) 如果图形比较复杂,应根据弯矩图的叠加原理将图形分解为几个简单图形,分项计算后再进行叠加图4.13 图4.13 (图4.13b中A1与y1的乘积为负值;图4.13c中抛物线为非标准曲线)。 例5:试求出图4.16刚架结点B 的水平位移和转角,EI 为常数 图4.16 解: (1)虚设单位荷载,作实际状态和虚设单位荷载的弯矩图(图4.17a、b、c)

最新结构力学经典考研复习笔记-强力推荐-吐血推荐

第一章绪论 一、教学内容 结构力学的基本概念和基本学习方法。 二、学习目标 ?了解结构力学的基本研究对象、方法和学科内容。 ?明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。 ?理解荷载和结构的分类形式。 在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。 三、本章目录 §1-1 结构力学的学科内容和教学要求 §1-2 结构的计算简图及简化要点 §1-3 杆件结构的分类 §1-4 荷载的分类 §1-5 方法论(1)——学习方法(1) §1-6 方法论(1)——学习方法(2) §1-7 方法论(1)——学习方法(3) §1-1 结构力学的学科内容和教学要求 1. 结构 建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。 从几何的角度,结构分为如表1.1.1所示的三类: 表1.1.1

2. 结构力学的研究内容和方法 结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。 理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。 其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。学习好理论力学和材料力学是学习结构力学的基础和前提。 结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。包括以下三方面内容: (1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择; (2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算; (3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。 结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。结构力学的计算方法很多,但都要考虑以下三方面的条件: (1) 力系的平衡条件或运动条件。

结构力学

1、混凝土的优缺点?(选择)p3 (书)钢筋混凝土优缺点: 优点:钢筋混凝土结构具有刚度大,整体性能强,耐久性和耐火性较好等显著优点。新拌制的混凝土是可塑的,因而可以根据需要浇筑成各种形状的构件和结构,适用性广,取材也比较方便。 缺点:自重大,抗裂性能差,隔声和隔热效果差,施工复杂,工序多,需要大量的模板、支撑,户外施工受气候条件限制,补强修复比较困难。有效地改进办法有采用轻骨料以减轻自重,采用预应力混凝土以提高结构的抗裂性能等。 (课件)混凝土结构的优点: ⑴可模性好:混凝土可根据需要浇筑成各种形状和尺寸,适用于各种形状复杂的结构,如曲线形梁、拱、空间薄壳、箱形结构等。 ⑵能充分合理利用材料的性能,强度价格比合理:钢筋和混凝土的材料强度可以得到充分发挥,结构承载力与刚度比例合适,基本无局部稳定问题,单位应力价格低,对于一般工程结构,经济指标优于钢结构。 ⑶耐久性和耐火性较好,维护费用低:钢筋有混凝土的保护层,不易产生锈蚀,而混凝土的强度随时间而增长;混凝土是不良热导体,30mm厚混凝土保护层可耐火2小时,使钢筋不致因升温过快而丧失强度。 ⑷适应灾害环境能力强。现浇混凝土结构的整体性好,且通过合适的配筋,可获得较好的延性,适用于抗震、抗爆结构;同时防振性和防辐射性能较好,适用于防护结构。 ⑸于就地取材,节约钢材。混凝土所用的大量砂、石,易于就地取材。近年来,已有利用工业废料来制造人工骨料,或作为水泥的外加成分,改善混凝土的性能。 混凝土结构的缺点: ⑴自重大:不利于抗震,不利于大跨、高层结构。 可采用T形、工形、箱形等更合理的构件截面形式; ⑵抗裂性差:普通RC结构,在正常使用阶段往往带裂缝工作,环境较差(露天、沿海、化学侵蚀)时会影响耐久性;也限制了普通RC用于大跨结构,高强钢筋无法应用。 ⑶施工复杂,工序多(支模、绑钢筋、浇筑、养护),工期长,且施工受季节、天气的影响较大。 2、作用是建筑结构设计的基本依据之一,分为直接作用和间接作用;(填空)p29 凡施加在结构上的集中力或分布力,属于直接作用,称为荷载(也称为载荷或负荷的),例如恒载(永久荷载),活荷载(可变荷载),风荷载等. 凡引起结构外加变形(包括裂缝)或约束变形的原因,属于间接作用,例如基础沉降,地震作用,温度变化,材料收缩,焊接等。 3、荷载代表值和标准值(选择)p30 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值 荷载标准值是荷载的基本代表值,指结构在使用期间可能出现的最大荷载值。

(完整版)结构力学最全知识点梳理及学习方法

第一章绪论 §1-1 结构力学的研究对象和任务 一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。 注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。最简单的结构可以是单个的构件,如单跨梁、独立柱等。 二、结构的分类:由构件的几何特征可分为以下三类 1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。 三、课程研究的对象 ?材料力学——以研究单个杆件为主 ?弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构 ?结构力学——研究平面杆件结构 四、课程的任务 1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。 2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。 3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。 §1-2 结构计算简图 一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。 选择计算简图时,要它能反映工程结构物的如下特征: 1.受力特性(荷载的大小、方向、作用位置) 2.几何特性(构件的轴线、形状、长度) 3.支承特性(支座的约束反力性质、杆件连接形式) 二、结构计算简图的简化原则 1.计算简图要尽可能反映实际结构的主要受力和变形特点 ..............,使计算结果安全可靠; 2.略去次要因素,便于 ..。 ..分析和 ...计算 三、结构计算简图的几个简化要点 1.实际工程结构的简化:由空间向平面简化 2.杆件的简化:以杆件的轴线代替杆件 3.结点的简化:杆件之间的连接由理想结点来代替 (1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递

结构力学的一道试题(新)

1. 平面机构的自由度计算公式为 F= 。 2. 机构具有确定运动的条件是:。 3. 机构运动简图与示意图的不同点是:。 4. 由M个构件铰接于一点的复合铰链应包含个转动副。 5. 属于平面高副的有,如副,属于平面低副的如副。 6. 所谓机构自由度是指。 7. 构件与零件的含义是不同的。构件是,零件是。 8. 按构件的接触情况,运动副分为高副与低副。高副是指,低副是指。 9. 机构具有确定运动的条件是。 10. 所谓运动副是指。 11. 图所示油泵机构中,1为曲柄,2为活塞杆,3为转块,4为泵体。试绘制该机构的机构运动简图,并计算其自由度。 12. 图所示冲床刀架机构中,当偏心轮1绕固定中心A转动时,构件2绕活动中心C摆动,同时带动刀架3上下移动。B点为偏心轮的几何中心,构件4为机架。试绘制该机构的机构运动简图,并计算其自由度。 13. 计算题a)图与b)图所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出)。 题12图题13图 a) b)

14. 计算a)图b)图所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出)。 . a ) 图 b ) 图 15. 计算a)图与b)图所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出)。 a)图 16. 图示翻台机构。 ①绘制机构示意图。 ②计算机构自由度。 17. 计算图示机构自由度,若有复合铰链、局部自由度及虚约束需说明。

18. 计算图示机械自由度。若有复合铰链、局部自由度及虚约速需指出。 19. 计算图示机构自由度(A,B两个凸轮固连于同一轴上)。若有复合铰链,局部自由度及虚约束需指出。

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点 (即该方向各平行线的交点 )。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束 与非多余约束 是相对的, 多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。 W=0, 具备成为几何不变体系所要求的最少约束数目。 W<0 , 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n , W=0, 但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但 W ≤ 0 仅是体系几何不变的必要条件。 S=0,体系几何不变。 8..轴力 FN -- 拉力为正; M M+d M 剪力 FQ-- 绕隔离体顺时针方向转动者为正; d 弯矩 M-- 使梁的下侧纤维受拉者为正。 F FN+d d 弯矩图 --习惯绘在杆件受拉的一侧,不需标正负号; N F x FN x FQ+dF Q 轴力和剪力图 --可绘在杆件的任一侧,但需标明正负号。 Q 9.剪力图上某点处的切线斜率等于该点处荷载集度 q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 d 2 M ( x) dF Q ( x) q( y) dM (x) dF Q (x) dx 2 dx dx 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; F 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 F M NB QB B F F M x B NA x q x dx , A x B QA x q y dx , A x B A x F Q dx A

结构力学主要定理

§11-1概述 1.变形功与变形能 弹性杆受拉力P作用(图11-1),当P从零开始到终 值缓慢加载时,力P在其作用方向上的相应位移也 由零增至而做功,称为变形功。 (11-1) 与此同时弹性杆被拉长而具有做功的能力,表明 杆件内储存了变形能。单位体积储存的应变能称为应 变比能(11-2) 整个杆件的变形能为(11-3) 如果略去拉伸过程中的动能及其它能量的变化与损失,由能量守恒原理,杆件的变形能U在数值上应等于外力做的功W,即有U=W (11-4)这是一个对变形体都适用的普遍原理称为功能原理,弹性固体变形是可逆的,即当外力解除后,弹性体将恢复其原来形状,释放出变形能而做功。但当超出了弹性范围,具有塑性变形的固体,变形能不能全部转变为功,因为变形体产生塑性变形时要消耗一部分能量,留下残 余变形。 2.应变余功与余能 变形体受外力作用时的余功定义 为 其中P1是外力从零增加到的终值, 仿照功与变形能相等的关系,将余功 相应的能称为余能,用U c表示。余 功与余能相等, 即 可仿照前面,定义单位体积余应变能(或应变余能),称为余应变比能 由此整个结构余应变能可写成 应指出:余功、余应变能、余应变比能具有功的量纲,是变形体的另一能量参数,但都没有具体的物理概念,只是常力所做的功减去变力所做功余下的那部分功。 3.能量原理 固体力学中运用功与能有关的基本原理统称为能量原理,由此发展出来的方法称为能量法。能量原理是在总体上从功与能的角度考察变形体系统的受力、应力与变形的原理与方法,是进一步学习固体力学的基础,也是当今应用甚广的有限元法求解力学问题的重要基础。4.本章内容 本章只涉及能量原理在材料力学中常用的部分内容,如:变形能、互等定理、卡氏定理、虚功原理、单位载荷法及图乘法,更为深入的,如最小势能原理,最小余能原理等变分原理,

考研结构力学的知识点梳理

第一章结构的几何构造分析 1.瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。瞬变体系至少有一个多余约束。 2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬铰。 3.关于无穷远处的瞬铰: (1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。 (2)各个方向的无穷远点都在同一条直线上(广义)。 (3)有限点都不在无穷线上。 4.结构及和分析中的灵活处理: (1)去支座去二元体。体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。 (2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。 5.关于计算自由度:(基本不会考) (1),则体系中缺乏必要约束,是几何常变的。 (2)若,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。 (3),则体系具有多与约束。 是保证体系为几何不变的必要条件,而非充分条件。 若分析的体系没有与基础相连,应将计算出的W减去3. 第二章静定结构的受力分析 1.静定结构的一般性质: (1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。 (2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。(3)静定结构的内力与杆件的刚度无关。 (4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。 (5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。 (6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。 2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。 3.分段叠加法作弯矩图: (1)选定外力的不连续点为控制截面,求出控制截面的弯矩值。 (2)分段画弯矩图。 适用条件:既适用于静定结构,也适用于超静定结构,还适用于变截面的情况;但该法是以叠加原理为基础,因此只能适用于小变形和材料是线弹性的情况。4.内力图的特点: (1)计算内力时,所截取的截面应垂直于杆轴,内力假设为正方向。

考研结构力学知识点梳理

1.瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。瞬变体系至少有一个多余约束。 2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬铰。 3.关于无穷远处的瞬铰: (1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。 (2)各个方向的无穷远点都在同一条直线上(广义)。 (3)有限点都不在无穷线上。 4.结构及和分析中的灵活处理: (1)去支座去二元体。体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。 (2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。 5.关于计算自由度:(基本不会考) (1),则体系中缺乏必要约束,是几何常变的。 (2)若,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。 (3),则体系具有多与约束。 是保证体系为几何不变的必要条件,而非充分条件。 若分析的体系没有与基础相连,应将计算出的W减去3.

1.静定结构的一般性质: (1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。 (2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。 (3)静定结构的内力与杆件的刚度无关。 (4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。 (5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。 (6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。 2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。 3.分段叠加法作弯矩图: (1)选定外力的不连续点为控制截面,求出控制截面的弯矩值。 (2)分段画弯矩图。 适用条件:既适用于静定结构,也适用于超静定结构,还适用于变截面的情况;但该法是以叠加原理为基础,因此只能适用于小变形和材料是线弹性的情况。 4.内力图的特点:

相关文档
最新文档