函数的可导性与连续性的关系

函数的可导性与连续性的关系
函数的可导性与连续性的关系

(整理)函数的一致连续性63604

§2.9 函数的一致连续性 定义 2.21 设f 是X 上的单变量函数.若0,0εδ?>?>,使得当 12,x x X ∈,12x x δ-<时总成立12()()f x x ε-<,则称f 是X 上的一 致连续函数.显然,若f 是X 上的一致连续函数,则f 一定是X 上的连续函数(反之通常不正确). 命题1 (不一致连续的充要条件) X 上的单变量函数f 不一致连续 0ε??>和{},{}n n x y X ?,使得lim()0n n n x y →∞ -=,并且()()n n f x f y - ,n ε* ≥?∈ . 证: “?”.假定f 不是X 上的一致连续函数,则0ε?>,n * ?∈ , n x ?,n y X ∈满足1 n n x y n -< 和()(),n n f x f y n ε* -≥?∈.这说明右 边成立. “?”.假定0ε?>和{}n x ,{}n y X ?,使得l i m ()0 n n n x y →∞ -=,并且()(),n n f x f y n ε* -≥?∈ .这时,0δ?>,,,N N N N x y X x y δ ?∈-<使得()()N N f x f y ε-≥.这说明f 不是X 上的一致连续函数.□ 命题 2 若f 是区间..I 上的一致连续函数,00δ>是常数,则必存在 0M >使得当,x y I ∈,0x y δ-≤时总成立()()f x y M -≤. 证:对于固定的0,0εδ>>取,使得当12,x x I ∈,12x x δ-<时总成立 12()()f x x ε-<.再取n * ∈ 使得 ,M n n δδε<=令.当,,x y I ∈x y - 0δ≤时,()()f x f y -1 1(())(())n k k k f x y x f x y x n n =-≤+ --+-∑n ε< M =.□ 命题 3 有限开区间(,)a b 上的连续函数f 一致连续?存在有限单侧

函数一致连续性的判定及应用论文

数学建模论文(设计)题目函数一致连续性的判定及应用 学院 专业 年级 学号 姓名xx 指导教师xx 成绩 2007 年4 月19 日

函数一致连续性的判定及应用 摘要:本文从函数连续与一致连续的概念和关系出发,主要对一元函数在不同类型区间上函数一致连续的判定方法进行了讨论,总结和应用,并且将部分判定一元函数一致连续的方法推广到了多元函数,使大家对函数一致连续的内涵有更全面的理解和认识。 关键词:函数;连续;一致连续函数 Decisions of uniformly continuous function and application TANG Yong The School of Mathmatics and Statistics, Southwest University, Chongqing 400715, China Abstract: From the concept and the relation of continuity and uniformly continuity of the function, we research the methods of decisions of uniformly continuous function in different kinds of intervals. Moreover, we extend some of the results to function with many variables in different region. Key words: function; continuity; uniformly continuity 1. 引言 我们知道,函数的一致连续性是数学分析课程中的一个重要内容。函数() f x在某区间内连续,是指函数() f x在该区间上一点 f x在该区间内每一点都连续,它反映函数() 附近的局部性质,但函数的一致连续性则反映的是函数() f x在给定区间上的整体性质,它有助于研究函数() f x的变化趋势及性质。因此,本文对函数一致连续性的概念、判定条件进行了深入的分析和总结,目的是帮助大家掌握运用不同的方法证明函数一致连续,使大家对函数一致连续性的内涵有更全面的理解和认识。 现有的数学分析教材中,一般只给出函数一致连续的概念和判定函数在闭区间上一致连续的G.康托定理,内容篇幅少,为了对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充,本文做了以下几点讨论: 2. 函数连续与一致连续的关系 2.1 函数连续与一致连续的区别 2.1.1 函数连续的局部性

浅谈函数的一致连续性的性质

浅谈函数的一致连续性的性质 张亚男,数学计算机科学学院 摘要: 本文探讨了具有一致连续性函数的基本性质,对函数一致连续性的性 质进行深入分析,旨在读者能更好的掌握函数的一直连续性.首先介绍了一致连续的概念,并给出了非一致连续的定义。其次给出了一致连续函数的有界性质。再次给出了两个一致连续函数和商积差,具有一致连续性的条件。最后探讨了同一函数在两个区间上一致连续性的叠加。在每个性质后面都附有例题,使读者可也更好的理解所给出的性质。 关键词:函数;一致连续;非一致连续;有限区间; 有界; Discusses the properties of the uniform continuity function Name:zhang ya nan Number:0707216 College:College of Mathematics and Computer Science Abstract: In this paper, we discuss the properties of function of uniform continuity. We analyze the properties of uniform continuity of functions deeply, aiming to readers can better control uniform continuity of function. Firstly, we introduce the function uniform continuity concept and give the definition of non- uniform continuity of function. Then, we give the bound of uniform continuity of functions. Once again, we give the condictions, to be uniform continuity of function,of function four fundamental operations. Finally discusses the same function in the two identical continuity on the interval of superposition. In each propertyes we give examples, behind that readers can better understanding of the nature of given. Key Word: function; uniform continuity; non- uniform continuity; limited interval; bounded;

浅析数学分析一致连续性

一引入“一致性”的意义 数学分析教材中有不少概念,如函数的连续性与一直连续性、函数列的收敛性与一致收敛性,初学者很容易混淆,因而成为“数学分析”中学习的一个难点所在。数学分析中的三个“一致性”(即一致有界, 一致连续, 一致收敛) 的概念对数学基础知识的学习很重要。 弄清函数的一致连续性的概念和掌握判断函数一致连续的方法无疑是学好函数一致连续性理论的关键。数学分析教材只给出一致连续的概念和判断函数在闭区间上一致连续的G·康托定理,内容篇幅少,为了使初学者对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充显然,一致连续要比连续条件强。但在数学分析教科书中,仅给出一致连续的定义以及利用定义证明函数f(x)在某区间上一致连续的数学方法,呈现了函数一致连续完美的逻辑结果,但学生对定义特别是其中δ的很难理解。 一致连续是一个很重要的概念,在微积分学以及其他学科中常常用到,而且函数列的一致连续性和一致收敛又有着密切关系。在研究函数列的收敛问题中,常常要用到函数列与函数之间的收敛、一致连续性、一致收敛的关系。 数学分析中的函数一致连续性、函数列一致有界性、函数列一致收敛性、函数项级数一致收敛性、含参变量无穷积分一致收敛性等“一致性”概念是学习上的难点,因此,牢固掌握这些概念及与之有关的理论,对打好分析基础,培养良好的数学素养和创新能力都有着重要的意义。 对函数列的极限函数、函数项级数的和函数以及含参变量积分性质的讨论,常常需要讨论其一致收敛性,而函数项级数的一致收敛性可归结成部分和函数列的一致收敛性的研究,含参变量无穷积分的一致收敛性,又可归结成函数项级数的一致收敛性的研究,故本文着重讨论函数一致连续性和函数列一致收敛性重要概念。 函数一致连续的概念是学生学习高等数学的一个难点,证明某一个函数是否具有一致连续性让许多同学更是无从下手。为了解决这一难点,化抽象为简单,给出一致连续性的几种等价形式,能帮助同学易于接受。 函数一致连续的几何意义数学分析是一门非常抽象的学科,有极强的逻辑性和严密性,体现在:能用简明的数学语言准确的表述用冗长的文学语言也不一定

§6+函数的一致连续性概念与应用练习参考解答

§6 函数的一致连续性概念与应用部分练习参考解答 1. 若对任何0,f ε>在[,]a b εε+-上连续,是否可推出f 在(),a b 上连续。 2. 试用一致连续的定义证明:若函数f 在[],a c 和[],c d 上都一致连续,则f 在 [],a b 上也一致连续。 3. 证明:若f 在[],a b 上连续,且不存在任何[],x a b ∈使得()0f x =,则f 在[],a b 上恒正或恒负。 4. 证明:(1) 函数x x f =)(在),0[+∞上一致连续。 (2) 函数2 )(x x f =在],[b a 上一致连续,但在),(+∞-∞上不一致连续。 5. 证明 ()f x ax b =+(0)a ≠在(,)-∞+∞上一致连续。 6. 求证下列函数在指定区间上一致连续: (1) ()1 f x x =, ()0a x <≤<+∞; 2) ()3f x x =, ()0x ≥。 证 (1) 0ε?>,取2a δε=, 则当212x x a ε-<时, 有 12122121211 x x x x x x x x a ε---=≤<, ()12,x x a ?≥。 即得()1 f x x =在[),a +∞上一致连续。 (2) 设210x x >≥, 则有 ()3 333 221 1211x x x x x x x = -+≤-+。 即有 3 3 3 2121x x x x -≤-。 于是, 对0ε?>, 30δε?=>, 对12,0x x ?≥, 当21x x δ-<时, 有 3 33 2121x x x x ε-≤ -< 即得()f x 在0x ≥上一致连续。 7. 求证下列函数在指定区间上不一致连续。 (1) ()()1 sin 01f x x x =<<; (2) ()()ln 0f x x x =>。

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

函数的一致连续性

哈尔滨师范大学 学年论文 题目关于函数一致连续的探究学生万鑫 指导教师曾伟梁副教授 年级 2008级 专业信息与计算科学 系别信息系 学院数学学院 哈尔滨师范大学 2011年 6 月

关于一致连续函数的判据 万鑫 摘 要:连续与一致连续是数学分析中非常重要也非常基础的概念。这两个概念来自于实际问题,现实问题。我们经常观察的自然现象,如生物的连续生长,反映的是事物连续不断的变化的过程,如果用函数来刻画即是函数的连续性。数学分析研究种种不同性质的函数,其中有一类重要的函数就是一致连续函数。我们通过给出一致连续函数与非一致连续函数的定义,从而对函数的一致连续性进行探讨。 关键词:一致连续 非一致连续 判别依据 比较判别法 比值判别法。 一 函数)(x f 一致连续的概念 定义1:设函数()x f 在()a u 上有定义,若函数()x f 在点a 上存在极限,且极限是()a f , 即()()a f x f a x =→lim ,则称函数()x f 在点a 上连续,也称a 是函数()x f 的连续点. 用“δε—”语言叙述:函数()x f 在a 上连续?0>?ε,0>?δ, x ?:,δ<-a x 时,有()()ε?ε,0>?δ,I x x ∈?21,, δ<-X X 2 1 时,有()()ε?ε,0>?δ ,I x x ∈?21, , δ<-X X 2 1 时有()()ε≥-x x f f 21,则称函数()x f 在I 上非一致连续。 对于函数()x f 在区间I 上非一致连续,也就是说存在某个正数ε ,不论任何的 正数δ,在区间I 内至少存在两点与 x 1 x 2 ,虽然 δ<-X X 2 1 ,但 ()()ε≥-x x f f 21。

函数一致连续性研究

学号: 0901114208 函数一致连续性的研究 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 2009级(1)班 姓名:贾珊 指导教师:杨长森 2013年4月

函数一致连续性的研究 摘要函数在区间上的一致连续性是数学分析课程中的重要理论之一,一致连续性刻画了函数在区间上的整体性质.准确理解函数一致连续概念以及掌握证明函数一致连续的方法是数学分析的一个重要内容.本文从以下几个方面对函数的一致连续性进行研究:由函数的连续性引入一致连续性概念,总结了一致连续的3个否定说法;讨论并证明了函数连续与一致连续的关系;用四种方法证明了有界闭区间上一致连续性定理,即Canto定理;概括总结了3种证明函数一致连续的方法;用连续数模描述函数一致连续性并得出函数一致连续的观察法;最后讨论了一致连续的延拓问题. 关键词一致连续;否定说法; Canto定理;连续数模;延拓问题

前言 函数在区间上的一致连续性问题是数学分析中的典型问题之一,是函数在区间上逐点连续的加强,一致连续性刻画的是函数在区间上的一种整体形态;一致连续性的研究不仅可以加深我们对函数在区间上连续性的认识,而且可以培养我们从微观和宏观相结合的角度观察问题,发现问题,从而提高探究问题的能力[1];同时,函数的一致连续性是闭区间上连续函数黎曼可积的基础,而且与随后的参数积分,函数项积分等有着密切的关系. 因此准确理解函数一致连续概念以及掌握证明函数一致连续的方法是数学分析的一个重要内容. 一、一致连续性概念引入 为了清楚的引出函数的一致连续概念,我们首先指出,函数f 在区间I 的连续概念可直接用-εδ“”语言叙述如下:设函数f 在区间I 上有定义,对 ()()0,0,(,),I x I f x f αααεδαδαε?∈?>?>∈-< ,当时,有则称f 在区间I 上连续[]2 . 在这个定义中,对于给定的0,ε>αδ是与点α有关的,点α不同所对应的α δ也可能不同.于是自然来考虑:对于I 中的所有点,是否存在一个公共适用的δ?事实上,对于不同的函数(包括函数的定义域不同)都可能有不同的情况的回答. 例1.1 (1)在区间(0,1)上研究函数() 2.f x x =; (2)在区间(0,1)上研究函数()1g x x = ; (3)对任意一个固定的0a >,在(),a +∞上研究函数()1g x x =. 解:(1)对于()001εα>?∈及,, 由于 ()()()222, f x f x x x x ααααα-=-=+-<-

函数的连续性与间断点

第七节 函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作 x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量 x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数 ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值 )(x f 都满足不等式:ε <-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y =)(x f 在点0x 有定义) ,(2) )(lim 0 x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且 )()(lim 000 x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且 )()(lim 000 x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

函数一致连续性及其应用

1 函数一致连续性[1] 设()x f 在定义在区间I 上的函数,若对任给0>ε,存在()0>=εδδ,使得对任意 的1x 、I x ∈2,只要δ<-21x x ,就有()()ε<-21x f x f ,则称函数()x f 在区间I 上一致连续. 1.1 函数一致连续的相关定理与证明 定理1.1[2] 若()x f 在区间I 上有定义,则()x f 在I 上一致连续的充要条件是 ()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ. 证明 ①必要性 因为()x f 在区间I 上一致连续,所以由定义知 0,00>?>?δε,对任意的1x ,I x ∈2,只要 021δ<-x x ,就有()()2 21ε < -x f x f ,故可得出()()2 21,0 2121ε δ≤ -<-∈x f x f SUP x x I x x . 因为当00δδ<<时,有 ()()()()εε δδ <≤ -≤-<-<-∈∈2 21,21,0 21212121x f x f SUP x f x f SUP x x x x I x x I x x . 故可得()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ. ②充分性 由于()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ,所以0,00>?>?δε,对任意的1x ,I x ∈2只要 021δ<-x x ,就有 ()()εδ<-<-∈21,0 2121x f x f SUP x x I x x . 故取00δδ≤<,当1x ,I x ∈2,021δ<-x x 时,可以得到 ()()()()()()εδδ <-≤-≤-<-<-∈∈21,21,210 21212121x f x f S U P x f x f S U P x f x f x x x x I x x I x x , 所以()x f 在区间I 上一致连续. 定理1.2[2] 函数()x f 在区间I 上一致连续的充要条件是在I 上任意两个数列n x ',n x '',只要使0lim =''-'∞ →n n n x x ,就有()()0lim =''-'∞ →n n n x f x f 证明 ①必要性 因为()x f 在区间I 上一致连续,所以由定义知 0,0>?>?δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有 ()()ε<''-'x f x f .

函数的连续性与间断点(重点内容全)

函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值)(x f 都满足不等式:ε<-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y = )(x f 在点0x 有定义),(2) )(lim 0x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且)()(lim 000x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且)()(lim 000x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

高等数学函数的极限与连续习题精选及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

函数的连续性与间断点

第 6 次课 2 学时

§1.9 函数的连续性与间断点 一、函数的连续性 连续性是函数的重要性态之一,在实际问题中普遍存在连续性问题,如气温的变化,物体速度的变化,动植物的生长等。这些现象在函数上的反映,就是函数的连续性问题。 1.函数的增量 一个变量u 由初值1u 变到终值2u ,终值与初值之差称为u 的增量( 或改变量),记作 1,u u ??-2即 u=u 对于函数()y f x =,设它在0x 及0x 的某个邻域内有定义,在0x 处给自变量 x 一个增量x ?,则函数有相应的增量00((y y f x f x ??=?, +x)- ) (几何解释) 21()2 1.f x x =-??例设分别求: (1) x 由1变到1.2时, (2) x 由1变到0.8时, 的增量x 和y . 解:(略) 2.函数的连续性 如果自变量 x 的增量 x ?很小时,函数y 的增量y ? 也很小,则说明函数是随着自变量的渐变而渐变的,这时称函数是连续的。 定义 1:设)(x f y =在0x 的某邻域内有定义,如果当自变量x 在0x 的增量0x ?→时,相应函数的增量00()()0y f x x f x ?=+?-→,就称函数)(x f y =在0x 点处连续。 注 :)(x f 在0x 点连续0lim 0x y ?→??=。 例2 :证明函数2 ()21f x x =-在x=1 处连续。 证明:函数的定义域为(),-∞+∞,在x=1 的邻域内有定义。 ()()()()2222002:1112*1142lim lim 420()211x x x x x x y x x f x x x ?→?→→+?→??????---=?+??? ???=?+?=? ?=-= , f(x): f(1)f(1+x) y=f(1+x)-f(1)=21+x 故 在 处连续 . (类似可证该函数在其定义域内的任意一点处都连续。)

函数f(x)一致连续的条件及应用解读

函数f (x)一致连续的条件及应用 (数学与应用数学2003级 张志华 指导教师 刘敏思) 内容摘要:本文比较全面的总结了判断函数的一致连续性的条件,并结合具体例子对这些方法加以应用,而且对基本初等函数的一致连续性作了较为完整的讨论,还将一元函数的一致连续性推广到二元函数上去. 关 键 词:一致连续 拟可导函数 基本初等函数 二元函数 Abstract :This paper is more completely to summarize the methods of judging uniform continuity of functions, and apply them to analyze some examples, moreover, we discuss uniform continuity of fundamental primary functions in detail, and extend these methods to the case of functions of two variables. Key words: uniform continuity perederivatable functions fundamental primary functions functions of two variables 1.引言 函数的一致连续性是数学分析课程的重要理论,弄清函数的一致连续性的概念和熟练掌握判断函数一致连续的方法是学好这一理论的关键.一般的数学分析教材中只给出一致连续的概念和判断函数在闭区间上一致连续的.G 康托定理,内容篇幅较少,不够全面和深入;虽然有些论文对函数一致连续性的判断作了一些拓展和补充,但是显得不够系统和应用得不够广泛.因此,对一般数学分析教材中这一部分内容并结合一部分论文资料,作一个比较系统和全面的总结,并作适当的拓展,如将一元函数的一致连续性推广到二元函数上去,无疑这一工作是十分必要和具有现实意义的. 2.预备知识 2.1一致连续和非一致连续的定义 一致连续:设()f x 为定义在区间I 上的函数.若对任给的0ε>,存在()0δδε=>,使得对任何,x x I '''∈,只要x x δ'''-<,就有()()f x f x ε'''-<,则称 函数()f x 在区间I 上一致连续.

函数的连续性与间断点共5页

一、函数的连续性 变量的增量: 设变量u 从它的一个初值u 1变到终值u 2, 终值与初值的差 u 2u 1就叫做变量u 的增量, 记作u , 即u u 2u 1. 设函数y f (x )在点x 0的某一个邻域内是有定义的. 当自变量 x 在这邻域内从x 0变到x 0x 时, 函数y 相应地从f (x 0)变到 f (x 0 x ), 因此函数y 的对应增量为 y f (x 0 x ) f (x 0). 函数连续的定义 设函数y f (x )在点x 0 的某一个邻域内有定义, 如果当自变量的增量 x x x 0 趋于零时, 对应的函数的增量 y f (x 0x ) f (x 0 )也趋于零, 即 lim 0 =?→?y x 或)()(lim 00 x f x f x x =→, 那么就称函数y f (x )在点x 0 处连续. 注 ①0)]()([lim lim 000 =-?+=?→?→?x f x x f y x x ②设x x 0+x , 则当 x 0时, x x 0, 因此 lim 0 =?→?y x 0 )]()([lim 00 =-→x f x f x x )()(lim 00 x f x f x x =→. 函数连续的等价定义2:设函数y f (x )在点x 0的某一个邻域内有定义, 如果对于任意给定义 的正数 , 总存在着正数 , 使得对于适合不等式

|x x 0|< 的一切x , 对应的函数值f (x )都满足不等式 |f (x )f (x 0)|< , 那么就称函数y f (x )在点x 0处连续. 左右连续性: 如果)()(lim 00x f x f x x =- →, 则称y f (x )在点0x 处左连续. 如果)()(lim 00x f x f x x =+ →, 则称y f (x )在点0x 处右连续. 左右连续与连续的关系: 函数y f (x )在点x 0处连续?函数y f (x )在点x 0处左连续且 右连续. 函数在区间上的连续性: 在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续. 连续函数举例: 1. 如果f (x )是多项式函数, 则函数f (x )在区间(¥, ¥) 内是连续的. 这是因为, f (x )在( ¥, ¥)内任意一点x 0处有定义, 且 ) ()(lim 00 x P x P x x =→ 2. 函数 x x f =)(在区间[0, ¥)内是连续的. 3. 函数y sin x 在区间( ¥, ¥)内是连续的. 证明 设x 为区间( ¥, ¥)内任意一点. 则有

函数的极限及函数的连续性典型例题

函数的极限及函数的连续 性典型例题 Last revision on 21 December 2020

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ②要掌握常见的几种函数式变形求极限。 ③函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。 ④计算函数极限的方法,若在x=x0处连续,则。 ⑤若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。 二、典型例题 例1.求下列极限 ①② ③④ 解析:①。 ②。 ③。 ④。例2.已知,求m,n。 解:由可知x2+mx+2含有x+2这个因式, ∴ x=-2是方程x2+mx+2=0的根, ∴ m=3代入求得n=-1。

例3.讨论函数的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的, 又, ∴,∴ f(x)在x=1处连续。 由, 从而f(x)在点x=-1处不连续。 ∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。 例4.已知函数, (a,b为常数)。 试讨论a,b为何值时,f(x)在x=0处连续。 解析:∵且, ∴,∴ a=1, b=0。 例5.求下列函数极限 ①② 解析:①。②。

例6.设,问常数k为何值时,有存在 解析:∵,。 要使存在,只需, ∴ 2k=1,故时,存在。 例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限 解析:由,,∵,∴ f(x)在x=-1处极限不存在。 三、训练题: 1.已知,则 2.的值是_______。 3. 已知,则=______。 4.已知,2a+b=0,求a与b的值。 5.已知,求a的值。 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0

函数一致连续的若干方法

函数一致连续的若干方法 学生姓名:钱建英 学号:20115031297 数学与信息科学学院 数学与应用数学专业 指导教师:段光爽 职称:讲师 摘 要 函数在区间上的一致连续性是学习数学分析课程中的重要理论之一,本 文主要讲述了函数在有限区间与无线区间上一直连续的若干方法并举例说明 关键词 函数;一致连续;极限; Several methods of uniformly continuous function Abstract The function uniform in interval is one of the most of important theories in the mathematics analysis course .this paper describes several methods function on a finite interval with a wireless range has been continuous and illustrated. Key words : function consistent-continuity limit. 0 前言 一致连续是在数学分析中频繁用到的概念,是数学分析中经常涉及的问题,并且一致连续性问题是数学分析中的主要理论,函数一致连续与处处连续有着本质的区别:处处连续是局部概念而一致连续是函数和区间共同决定的,是整体的概念.目前数学分析课本上的判别法大多是利用函数一致连续的定义,没有提出一些直观的判别法.对于初等函数一致连续的问题并没有系统的总结,函数非一致连续也是利用定义,没有直观判别. 函数一致连续性的判定是学习数学分析的重点和难点,因此寻找函数一致连续性的较为直观的判定方法非常重要,对于今后的学习以及数学分析教学有帮助,学习函数一致连续性时有更加直观的感觉,建立感性认识,将一致连续与其他知识联系起来,开阔分析问题的思路,为其他问题的解决奠定基础,本文给出了一些判定方法. 1有限区间上函数一致连续 1.1 一致连续性定义 设f 为定义在区间I 上的函数.若对任给的0>ε,存在()0>=εδδ,使的对任何的I x x ∈''',,只要δ<''-'x x ,就有 ()()ε<''-'x f x f . 则称函数f 在区间I 上一致连续. f 在I 上一致连续意味着:任意的两点x x ''',,不论这两点在I 中处于什么位置,只要它们的距离小于δ,就可得到()()ε<''-'x f x f .

函数极限与连续

第三节函数极限与连续 一、函数极限内容网络图 二、内容与要求 1. 理解函数极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 2. 掌握函数极限的性质及四则运算法则

3. 掌握函数极限存在的夹逼准则,并会利用它求极限,掌握利用两个重要极限求极限的方法. 4. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 5. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 6. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 重点函数极限的性质及四则运算法则、初等函数的连续性、闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理) 难点函数极限的概念、函数极限的性质、无穷大的概念,掌握无穷小的比较方法、用等价无穷小求极限. 三、概念、定理的理解与典型错误分析 1.函数极限的概念 定义1.10 。 定义1.11 把1中“”换成“”。 定义1.12 把1中“”换成“”。 定理1.4 且 定义1.13 设在的某空心邻域内有定义,若存在一个常数A, ,都有。 定义1.14 设在的某左半邻域内有定义,若存在一个常数A,时,都有。

此时也可用记号或表示左极限值A,因此可写成 定义1.15设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理 1.5 且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 定义1.16时,都有。此时称时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 定义1.17 。当时,都有。 读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 定义1.18 。称当是无穷小量。这里的可以是常数,也可以 是。 定理1.6 。 其中。 定义1.19 若时,都有,称时是有界量。

相关文档
最新文档