高效检漏的各种方法

高效检漏的各种方法
高效检漏的各种方法

高效检漏的各种方法

2015-3-9 10:25 来自: GMP行业新闻发布者: 仲夏秋夜云

钠焰法Sodium Flame

源于英国,中国通行,欧洲部分国家于20世纪70~90年代实行。

试验尘源为单分散相氯化钠盐雾。“量”为含盐雾时氢气火焰的亮度。主要仪器为光度计。

盐水在压缩空气的搅动下飞溅,经干燥形成微小盐雾并进入风道。在过滤器前后分别采样,含盐雾气样使氢气火焰的颜色变蓝、亮度增加。以火焰亮度来判断空气的盐雾浓度,并以此确定过滤器对盐雾的过滤效率。

国家标准规定的盐雾颗粒平均直径为0.4mm,但对国内现有装置的实测结果为0.5mm。欧洲对实际试验盐雾颗粒中径的测量结果为0.65mm。

随着扫描法的普及,欧洲已经不再使用钠焰法。国内有关部门正在修订原有的国家标准,是废止还是继续使用钠焰法,两种意见的都没有结论。

相关标准:英国BS3928-1969,欧洲Eurovent 4/4,中国GB6165-85。

DOP法

源于美国,国际通行,中国从未实行过。

试验尘源为0.3mm单分散相DOP(塑料工业常用增塑剂)液滴。“量”为含DOP 空气的浑浊程度。测量粉尘的仪器为光度计(photometer)。以气样的浊度差别来判定过滤器对DOP颗粒的过滤效率。

对DOP液体加热成蒸汽,蒸汽在特定条件下冷凝成微小液滴,去掉过大和过小的液滴后留下0.3mm左右的颗粒,雾状DOP进入风道。测量过滤器前后气样的浊度,并由此判断过滤器对0.3mm 粉尘的过滤效率。

DOP法已经有50多年的历史,这种方法曾经是国际上测量高效过滤器最常用的方法。早期,人们认为过滤器对0.3mm的粉尘最难过滤,因此规定使用0.3mm 粉尘测量高效过滤器。

DOP中含苯环,人们怀疑它致癌,因此许多实验室改用性能类似但不含苯环的替代物,如DOS,但试验方法仍称“DOP法”。

通过改变发尘参数,可以获得其它粒径的DOP液滴。于是就有20年前欧美国家测量超高效过滤器的0.1mm DOP法,有时测量仪器也改为凝结核激光粒子计数器。有些国外厂家曾标出对0.05mm或0.03mm DOP的过滤效率,那都是商业上无科学依据的标新立异。

测量高效过滤器的DOP法也称“热DOP法”。与此对应的“冷DOP”是指Laskin 喷管(用压缩空气在液体中鼓气泡,飞溅产生雾态人工尘)产生的多分散项DOP 粉尘,在对过滤器进行扫描测试时,人们经常使用冷DOP。

相关标准:美国军用标准MIL-STD-282。

计数扫描法

欧洲通用,美国类似,其他国家紧跟。目前国际上高效过滤器的主流试验方法。主要测量仪器为大流量激光粒子计数器或凝结核计数器(CNC)。用计数器对过

滤器的整个出风面进行扫描检验,计数器给出每一点粉尘的个数和粒径。这种方法不仅能测量过滤器的平均效率,还可以比较各点的局部效率。

欧洲人的经验表明,对于高效过滤器,最容易穿透的粉尘粒径在0.1~0.25mm之间的某一点,先确定测试条件最易穿透的粉尘粒径,然后连续扫描测量过滤器对该粒径粉尘的过滤效果,欧洲人将这种方法称为MPPS。美国标准干脆规定只测量0.1~0.2mm区间。

试验中使用的尘源为是Laskin喷管产生的多分散相液滴,或确定粒径的固体粉尘。有时,过滤器厂商要按照用户的特殊要求,使用大气粉尘或其它特定粉尘。若测试中使用的是凝结核计数器,就必须采用粒径已知的单分散相试验粉尘。用计数器扫描一台过滤器需要较长时间。为了节省时间,国外将4组大流量采样头和激光测量装置合为一体,这使检测速度大大提高,但一台扫描台的检测速度仍赶不上一条普通过滤器生产线的生产速度,所以主流过滤器厂经常需要配置数台扫描装置。

计数扫描法是测试高效过滤器最严格的方法,用这种方法替代其它各种传统方法是大趋势。

相关标准:欧洲EN 1882.1~1882.5-1998~2000,美国IES-RP-CC007.1-1992。

光度计扫描

尘源一般为多分散相液滴,如Laskin喷管产生的DOP烟雾。使用光度计对过滤器的全平面进行扫描检漏。这种扫描方法能快速、准确地找到过滤器的漏点。由于尘源为多分散相,而光度计不能确定粉尘粒径,所以这种扫描法给出“过滤效率”没有什么实际意义。

有些厂家和用户认为,只要对滤纸的品质和规格严加控制,过滤器的效率就已经确定了,因此,仅进行以检漏为目的的扫描就可以保证过滤器的质量。

光度计扫描检漏的方法没有相应标准可依,但这种方法对生产过程的质量控制很有效,所用的测试设备又相对简单,因此有些厂家目前使用这种方法。光度扫描测试台很容易改成计数扫描台,花些钱将买台激光粒子计数器就可以了。

油雾法Oil Mist

原西德,原苏联,中国。

尘源为油雾。“量”为含油雾空气的浊度。仪器为浊度计。以气样的浊度差别来判定过滤器对油雾颗粒的过滤效率。

德国规定用石蜡油,油雾粒径为0.3~0.5mm。中国标准规定的油雾平均重量直径为0.28~0.34mm,对油的种类未做具体规定。

油雾法在德国本土已经成为历史,德国于1993年率先搞出了计数扫描法的国家标准,欧洲标准EN1882就是以德国计数扫描法标准为蓝本制定的。

虽然中国标准规定可以用油雾法,但国内厂家更愿意使用同一标准规定的另一种钠焰法,只有部分生产滤材的厂家在测量过滤材料时仍使用油雾法。

相关标准:中国GB6165-85,德国DIN24184-1990。

荧光法Uranine

只有法国使用,目前仅限于对部分核工业过滤器的测试。

试验尘源为喷雾器产生的荧光素钠粉尘。试验中,首先在过滤器前后采样,然后用水溶解采样滤纸上的荧光素钠,再测量含荧光素钠水溶液在特定条件下的荧光亮度,这一亮度间接地反映出粉尘的重量。以过滤器前后样品的荧光亮度差别来判断过滤器效率。

根据法国标准,发尘装置产生的粉尘粒径的计数平均值为0.08mm,粒径的体积平均值为0.15mm。

荧光法比较麻烦,测量时要先采样,再清洗试样,然后再到另一处去测量荧光。实际上,法国过滤器厂过去最常使用的是DOP法,而不是自己规定的荧光法,现在法国人又将欧洲标准化协会的计数扫描法定为国家标准,荧光法成了摆设。只有当涉到核级高效过滤器时,为了满足20年前传统客户的要求,他们才使用荧光法。

相关标准:法国NF X44-011-1972。

其它方法

变风量检漏。使用标准试验风道,如果降低风量后过滤器的效率降低,则肯定有漏点。在过去的高效过滤器试验方法标准中,经常出现变风量检漏的方法。变风量检查只能判断过滤器是否有漏点,不能对漏点定位。

发烟检漏。在暗室中,在过滤器上游发烟,用一束强光照射过滤器出风面,当过滤器有漏点时,可以明显地看到漏点处的一缕青烟。这种方法可以准确地对漏点定位,以便进行可能的修补。发烟检漏方法不那么讲究,但十分有效。

无污染检验。有些客户担心试验用的粉尘污染过滤器,过滤器制造厂不得不在测试时使用客户认为不污染过滤器的粉尘。例如,半导体芯片厂讨厌钠盐、油雾、DOP,他们经常要求制造厂家使用他们认为安全的固体颗粒粉尘;有些制药厂要求直接使用室外大气中的粉尘测量过滤器。

XG1.S-1.2型安瓿灭菌器验证方案(新版)

XGI.SSB-1.2型安瓿检漏灭菌器确认方案 1.概述 小容量注射剂车间所用的XGI.SSB-1.2型安瓿检漏灭菌器是由山东新华医疗器械股份有限公司制造的,本设备由主体、密封门、消毒车、搬运车、管路系统和控制系统等组成。本灭菌器利用饱和蒸汽作为灭菌介质,可实现100℃-127℃温度区间的均匀灭菌,采用置换排气升温方式,保证灭菌室内冷空气排除彻底,升温迅速均匀,并有效消除了冷空气存在而造成的温度死角和小装载量效应,检漏过程通过真空加色水检漏,保证废品检出率100%。灭菌方法可采用灭菌时间控制和灭菌F 值控制两种,全部程序可 自动(或手动)监控,并实行自动记录。

该设备的上次验证时间为年月,验证结果符合GMP要求;由于验证时间到期,根据再验证周期,特进行本次再验证。 本次验证内容包括运行确认和性能确认,运行确认主要确认设备在运行期间是否平稳正常,密封门系统、灭菌柜密封状态、计时器、急停、安全阀等各项功能是否符合认可标准。性能确认主要包括确认空载热分布情况是否符合标准,确认微生物挑战试验是否符合标准,检漏试验是否符合标准。从而来证明安瓿检漏灭菌器是否仍能够满足生产需求,并具有可靠性和重现性。 2.验证目的 通过对安瓿灭菌器运行确认、性能确认,证明安瓿灭菌器具有可靠性和重现性。 3.适用范围 适用于XGI.SSB-1.2型安瓿灭菌器的周期性再验证。 4.依据 4.1《药品生产质量管理规范》(2010年修订) 4.2《药品生产质量管理规范实施指南》(2010版) 4.3《药品生产验证指南》(2003版) 4.4《中华人民共和国药典》(2010年版二部) 4.5设备说明书及其验证资料 5.前提条件 有关仪器、仪表校验合格,且在有效期内。 6. 验证小组成员及其工作职责

常用的几种氦质谱检漏方法(1)

书山有路勤为径,学海无涯苦作舟 常用的几种氦质谱检漏方法(1) 氦质谱检漏方法比较多,根据被检件的测量目的可以分为两种类型,一种是漏点型,另一种是漏率型;在实际检验过程中要根据检验的目的选用最合理的方法, 要以被检器件的具体情况而定,灵活运用各种检漏方法。 1、测定漏点型氦质谱检漏方法确定漏点型既是确定要检部件的具体漏点或漏孔的位置,在大部件或大型部件中较为常见,如卫星、导弹弹体、弹头、输气管道、气罐、油罐、锅炉等。 1.1、喷氦法氦质谱检漏方法这是最常用的一种方法,通常用于检测体积相对较小的部件,将被检器件和仪器连通,在抽好真空后,在被检器件可能存在漏孔的地方(如密封接头,焊缝等) 用喷枪喷氦,如图4 所示,假如被检器件某处有漏孔,当氦喷到漏孔上时,氦气立即会被吸入到真空系统,从而扩散到质谱室中,氦质谱检漏仪的输出就会立即有响应,使用这种方法应注意:氦气是较轻的惰性气体,在喷出后会自动上升,为了准确的在漏孔位置喷氦,喷氦时应自上而下,由近至远(相对检漏仪位置) ,这是因为在喷下方时氦气有可能被上方漏孔吸入,就很难确定漏孔的位置; 再者漏孔离质谱室的距离检漏仪反应时间也不同,因此喷氦应先从靠近检漏仪的一侧开始由近至远来进行。 图4 喷氦法检漏示意图 在检测较大部件时要借助机械泵进行真空预抽,就可以提高检漏效率和时间,如图5 所示,喷氦法在检查那些结构比较复杂的,密封口和焊缝又比较多而且挤在一起的小容器时,由于氦喷出后会很快扩散开来,往往不容易准确地确定漏隙所在的部位,要采取从不同角度喷氦,仔细观察反应时间上的差别和将已发现的漏孔用真空封泥暂时封起来等办法,就可以把漏孔逐个检出。

PET瓶封盖密封性检测方法

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/c115262092.html,) PET瓶封盖密封性检测方法 本文主要介绍PET饮料瓶盖密封性的检验指标和检验方法。 1.检验方法 1)往水罐注入水,确保当瓶放入水罐时水位浸过瓶盖; 2)对于PET瓶,将瓶盖连同瓶口在瓶颈位置切割下来,用专用夹具密封; 3)将气管与穿孔头连接,将样品浸入水罐,合上仪器盖,检查盖是否锁好; 4)将仪器底座前面的压力表的红色指针复位至零; 5)将选择开关向右打到“Test”位; 6)如发现瓶盖裙脚处有气泡,立即将选择开关向左打到“Hold”位(以便观察漏气情况)或打到“Vent”位使瓶压减压至零,记录压力表中红色指针所指示的压力; 7)如瓶盖裙脚处无气泡,压力读数会持续上升,直至达到压力设定值; 8)将选择开关向左打到“Vent”位使瓶压减压至零,松开仪器盖,从水罐中取出样品; 9)拆下穿孔头上的气管,逆时针旋出穿孔头,取出样品。

对包装物进行封盖密封性测试的频率受许多因素影响,其中包括:封盖机的工作状况、封盖速度、盖和瓶的供应商的数量、封盖机的防护保养周期等。 2.我们提出以下的测试频率及方法供参考: 1)每班开始时,从每个封盖头提取3个被测样品,目视检测所有的样品的封盖位置。先用KZJ-SST-2封盖密封性测定仪(以下简称KZJ-SST-2)鉴定每个封盖头下取来的其中一个样品的封盖密封性并记录结果,发现哪个封盖头下的样品检测结果不合格,工作人员必须对该封盖头的剩余2个样品进行测试,如果剩余的两支中任何一只的测试结果不合格,那么就有必要对这个封盖头进行校正工作。 2)每次封盖头调节后,应取样品进行测试。 3)当更换使用新的瓶或瓶盖时,或者使用从不同的供应商购

机动门安瓿水浴灭菌柜

ASMD机动门安瓿水浴灭菌器技术文件 1、概述: ASMD系列安瓿水浴灭菌器主要用于安瓿、口服液、小输液等药品制剂的灭菌和检漏处理。它利用循环高温水作为灭菌介质,可实现较低温度下(100℃以下)的均匀灭菌,消除了蒸汽灭菌时因冷空气存在而造成的温度死角,并可避免在灭菌后的冷却过程中由于冷却水不洁而造成的药品再污染现象。灭菌结束后通过先抽真空再加色水的检漏方式,保证了废品可靠检出。 2、型号组成及其代表含义: 灭菌器的容积数(M3) 灭菌器的容积代号 密封门型式,机动门 安瓿水浴灭菌器型号 3、结构简介: a、主体: 主体采用矩形结构,带有加强筋,可承受0.2MPa的工作压力。灭菌器内壳选用优质304耐酸不锈钢板制造,加强筋用优质压力容器碳钢板。主体焊接成型后,灭菌室内壁经过特殊的机械自动抛光处理,达到镜面光洁度,美观耐蚀。主体外表面用优质保温材料包裹,外敷轧花铝板保温罩,保证外表面温度不超过50℃。 b、密封门: 密封门分电动升降门(机动门) 电动升降门采用电动升降、嵌齿锁紧、气动密封式密封门 关门时,门电机带动密封门移动至关闭位,然后门密封换向阀处于密封位置,经过过滤的压缩空气经过换向阀进入密封槽,将密封胶条从密封槽推出至密封面实现密封。 开门时先将门密封换向阀换向至卸压位置,密封槽内的空气通过换向阀被真空泵抽空,靠密封槽内的负压将密封胶条抽回密封槽,然后门电机带动密封门移至开启位置 密封门有多种保护装置,确保人身和设备的安全:

1.符合国家质量技术监督局要求的压力安全联锁装置。当门没有关闭、密封时,不 会对灭菌室进行加热升温、升压;灭菌室压力没有完全释放时,密封门不能开启。 2.互锁保护装置。当壹端密封门关闭时,另一端的密封门才能打开,保证了灭菌前 室和后室的有效隔离。 3.自锁保护装置。在设备工作过程中出现断电时,换向阀能保持在密封的位置,保 证门的可靠密封。 4.手动开启装置。停电时,可先手动开启阀门将灭菌室的压力释放,待灭菌室内温 度冷却至安全温度后,将门密封换向阀手动换向至卸压位置,将密封槽内的压力释放,若为气动平移门,将气缸换向阀换向,推动密封门移至开启位置;若为电动升降门,用随机配置的棘轮扳手旋转驱动装置上的手动齿轮将门升起,然后打开门。 c、灭菌车及搬运方式: 该型灭菌器配有灭菌车,灭菌车在灭菌室内按单排方式排放。装载车由不锈钢制造,采用筐式结构,有利于装载。 灭菌室外有搬运车,将灭菌车推到搬运车上,然后将灭菌车输送到规定的区域。 d、管路系统: 灭菌器的管路系统按灭菌程序的要求进行设计,主要动作阀件有十一个阀门和一台循环泵,还有用于换热的板式换热器以及其它阀件。主要动作阀件均采用德国GEMU公司的金属头角座式气动阀,该阀动作可靠,寿命长,全金属阀体耐高温、耐冲击;循环泵选用德国STERLING为我公司特制的高温循环泵,耐温可达140℃,动作可靠,噪音低,机械密封不漏水;板式换热器由美国TRANTER公司为我特制,板片材质304不锈钢,多种流道结构,换热效率高、“派克”密封垫密封效果好,寿命长,耐温可高达150℃。 e、控制系统: 控制系统采用世界最先进的微机组态过程自动控制方式,采用SIEMENS的PLC作为下微机进行控制,采用联想商用微机作为上微机进行监控和数据处理。下微机运行可靠,并能脱离上微机独立运行;监控微机屏幕显示工作流程,工作过程中的程序动作情况在显示屏上一一提示,并可与网络连接,实行远程监控。

真空检漏常用方法和技巧

真空检漏1 一、概述1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。漏率,即单位时间内流过漏孔(包括间隙)的气体量。2.漏孔、漏率及其单位真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小。所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。用漏率表示漏孔大小时,如果不加特殊说明,则是指在漏孔入口压力为×105Pa,出口压力低于×103Pa,温度为296士3K的标准条件下,单位时间内流过漏孔的露点温度低于248K的空气的气体量。漏率的单位是帕斯卡×立方米/秒,记为Pam3/s。为了方便,有时用帕斯卡×升/秒,记为PaL/s。3.最大容许漏率真空系统漏气是绝对的,不漏气是相对的在真空检漏技术中所指的“漏”是和最大容许漏率的概念联系在一起的。对于动态真空系统,只要其平衡压力能够达到所要求的真空度,这时即使存在着漏孔,也可以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。动态真空系统的最大容许漏率qLmax应满足qLmax≤1/10PwS (1) 式中Pw----系统工作压力S----系统的有效抽速对于静态真空系统,要求在一定时间内,其压力维持在容许的压力以下,这时即使存在着漏孔,同样叮以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。如果要求在时间t内,容积为V的系统的压力由p 升至pt,则其最大容许漏率qLmax应满足qLmax≤(pt-p)V/t (2) 各种真空设备的

桩基检测的7种方法

桩基检测的7种方法 桩基检测,分为桩基施工前和施工后的检测:施工前,为设计提供依据的试验桩检测,主要确定单桩极限承载力;施工后,为验收提供提供依据的工程桩检测,主要进行单桩承载力和桩身完整性检测。 桩基检测的7种方法 1单桩竖向抗压静载试验 单桩竖向静载荷试验是指将竖向荷载均匀的传至建筑物基桩上,通过实测单桩在不同荷载作用下的桩顶沉降,得到静载试验的Q—s曲线及s—lgt等辅助曲线,然后根据曲线推求单桩竖向抗压承载力特征值等参数。 目的确定单桩竖向抗压极限承载力;判定竖向抗压承载力是否满足设计要求;通过桩身应变、位移测试,测定桩侧、桩端阻力,验证高应变法的单桩竖向抗压承载力检测结果。 2单桩竖向抗拔静载试验

在桩顶部逐级施加竖向抗拔力,观测桩顶部随时间产生抗拔位移,以确定相应的单桩竖向抗拔承载力的试验方法。 目的确定单桩竖向抗拔极限承载力;判断竖向抗拔承载力是否满足设计要求;通过桩身应变、位移测试,测定桩的抗拔侧阻力。 3单桩水平静载试验 采用接近水平受力桩的实际工作条件的方法确定单桩水平承载力和地基土水平抗力系数或对工程桩水平承载力进行检验和评价的试验方法。单桩水平载荷试验宜采用单向多循环加卸载试验法,当需要测量桩身应力或应变时宜采用慢速维持荷载法。 目的确定单桩水平临界和极限承载力,推定土抗力参数;判定水平承载力或水平位移是否满足设计要求;通过桩身应变、位移测试,测定桩身弯矩。 4钻芯法 钻孔取芯法主要是采用钻孔机(一般带10mm内径)对桩基进行抽芯取样,根据取出芯样,可对桩基的长度、混凝土强度、桩底沉渣厚度、持力层情况等作清楚的判断。

目的测检灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端持力层岩土性状,判定桩身完整性类别。 5低应变法 低应变检测法是使用小锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,频率信号,从而获得桩的完整性。 目的检测桩身缺陷及其位置,判定桩身完整性类别。 6高应变法 高应变检测法是一种检测桩基桩身完整性和单桩竖向承载力的方法,该方法是采用锤重达桩身重量10%以上或单桩竖向承载力1%以上的重锤以自由落体击往桩顶,从而获得相关的动力系数,应用规定的程序,进行分析和计算,得到桩身完整性参数和单桩竖向承载力,也称为Case法或Cap-wape法。 目的判定单桩竖向抗压承载力是否满足设计要求;检测桩身缺陷及其位置,判定桩身完整性类别;分析桩侧和桩端土阻力;进行打桩过程监控。 7声波透射法

密封性检测方法概述-软包装行业

密封性检测方法概述-软包装行业

包装的密封性能是关乎包装内容物质量的关键因素,这是因为包装的密封性决定了成品包装独立于外界环境的程度,若包装的密封性比较差,包装内部的气体含量或成分则易发生变化,如包装外部的气体渗透进包装内部或包装内部充填的气体散失,若包装内部含有液体成分还易出现漏液等问题,上述现象均可引起产品质量的降低。包装的密封性问题一般比较隐蔽,无法用肉眼辨识,故很难在出厂前发现并及时处理,往往是在出厂之后的长期流通、储存过程中因包装缓慢漏气、漏液,引发内容物出现发霉、结块、胀袋等质量问题,企业因此而承受较大的风险和经济损失。故包装的密封性问题一直是困扰企业的一大难题。 软包装行业密封性检测适用标准: 目前国内常用的包装袋密封性检测主要标准是《GB/T 15171 软包装袋密封性能试验方法》 ,该标准测试方法采用负压法测试原理,即抽真空法测试。试验原理是:通过对设备的真空室抽真空,使浸在真空室水中的试样产生内外压差,查看试样是否出现漏气的情况,以此判断试样的密封性能;或通过对真空室抽真空,使试样产生内外压差,通过观察试样膨胀及释放真空后试样形状恢复情况,判断试样的密封性能。

该测试方法适用的包装类型: 适用于玻璃瓶、管、罐、盒等的整体密封性试验。 适用于塑料袋、瓶、管、罐、盒等的整体密封性试验。 适用于金属瓶、管、罐、盒等的整体密封性试验。 适用于纸塑复合袋、盒类包装的密封性测试。 密封性检测试验仪器介绍: MFY-01密封试验仪(Labthink兰光)专业适用于食品、制药、医疗器械、日化、汽车、电子元器件、文具等行业的包装袋、瓶、管、罐、盒等的密封试验。亦可进行经跌落、耐压试验后的试件的密封性能测试。通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,为确定相关的技术要求提供科学的依据。 密封试验仪,又可称为密封仪、密封性测试仪、包装袋密封检测仪、塑料瓶密封测定仪、瓶盖密封性试验仪等。

液体制剂生产线清洁再验证方案

液体制剂生产线清洁再验证方案 一.概述 公司液体制剂生产线包括化糖、称量配料、浓配、稀配、过滤、洗瓶、灌装、灭菌和包装等工序。常年生产的品种仅有两个。本生产线可生产口服液、糖浆剂等。口服液和糖浆剂生产工艺不相同但生产工序和使用的设备基本相似;它们的生产工艺、使用的设备及操作没有发生变更;生产环境处于可控状态,没有发生显著漂移。自2004年06月进行清洁验证工作后,生产的液体制剂品种也仅有2个,比首次验证的品种少一个。液体制剂的生产线已停产三年之多,依据验证管理制度和上次验证结论的要求,复产时需对液体制剂生产线的设备等进行清洁再验证。 二.验证的目的 此次再验证的目的就是验证和监测液体制剂生产设备经过一段时间的运行后,设备的清洁方法及操作规程是否能保证有效地控制到规定的限度。通过连续监测三个生产批次的清洁过程,证明接触产品的设备表面对下一品种的生产不受污染。 本草案适用于现有液体制剂生产线上所有接触药品的设备、容器具的清洁和取样。 三.验证机构的组成及职责 验证领导小组针对液体制剂生产线设备清洁再验证项目成立专门验证工作小组。该小组负责验证草案的起草、实施、组织与协调,负责验证结果的记录与评定,负责完成验证报告。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书(附件1),报验证领导小组批准。 3.1液体制剂生产设备清洁验证工作小组成员: 3.2.1清洁验证工作小组 ⑴.负责验证方案的制定和实施;

⑵.负责验证工作的组织与协调; ⑶.负责验证数据的搜集和结果评定; ⑷.负责完成验证报告。 3.2.2生产技术部 ⑴.负责起草验证方案和报告; ⑵.负责有关设备清洁的SOP修订; ⑶.负责清洁验证的组织与协调工作。 3.2.3质量监督部 ⑴.负责残留物标准限度的制定; ⑵.负责对整个清洁验证活动的跟踪、检查工作; ⑶.协助起草验证中取样标准程序。 ⑷.负责验证方案和报告的评价、审核。 3.2.4设备设备工程部 ⑴.负责提供设备清单及设备结构分析、操作SOP; ⑵.负责仪器、仪表的校验; ⑶.协助修订设备清洁标准操作规程; ⑷.负责验证方案和报告的审核。 3.2.5综合制剂车间 ⑴.负责组织验证中按照有关SOP进行生产操作和清洁; ⑵.负责各项清洁操作记录; ⑶.协助修订设备清洁SOP; ⑷.负责验证方案和报告的审核。 3.2.6检验中心 ⑴.负责制定有关项目检验规程及取样程序; ⑵.负责有关项目的取样、检验,并出具检验报告; ⑶.负责验证方案和报告的审核。 四、进度计划 液体制剂生产线清洁再验证工作小组提出完整的验证计划,经验证领导小组批准后实施。本液体制剂生产线清洁再验证草案计划在本公司含有较难清洁活性物质的产品,连续3批次的生产过程中实施(每批生产完成后按照清洁SOP施行)。整个验证活动分三个阶段完成。 准备阶段: 实施阶段: 评价阶段:

安瓿灭菌柜维护保养和检修规程

ASMDF-4.0安瓿水浴灭菌器 维护保养规程 1?总述 i.i:目的 制订本标准的目的是建立 ASM型安瓿水浴灭菌器的维护保养规程,确保设备的正常运行。1.2 :依据 国家食品药品监督管理局《药品生产质量管理规范》(2010年修订)及ASM安瓿水浴灭菌器使用说明书。 1.3:适用范围 本标准适用于ASMDF-4.0/DN-3.0安瓿水浴灭菌器的维护和保养。 1.4:责任 工程部、设备操作人员和维修人员对本标准的实施负责。 2:大小检修和维护保养 2.1 :检修间隔期与检修类别 2.2:检修内容

2.3: 日常维护保养: 2.3.1 :维护 1:门垫密封圈为橡胶制品,遇老化或残损而漏气时,应及时更换。 2:对密封门垫应经常涂抹滑石粉末,防止车门粘接。 3:对压力表指针在无压力状态下不能复位至“零”点刻度的,应及时更换或送交校验。 4:自动温度记录仪的温度探头在灭菌柜底部排冷凝水处,如发现温度与蒸汽压力对应

值偏差较大,应及时清除探头部位的阻滞物,如对应值偏差仍较大,应对自动温度记录仪进 行校验。 5:气动阀:气动阀为强力开关阀,均为进口优质阀,可靠性高,使用时应注意管道中异物对阀件的影响。 6:真空泵是利用水密封循环进行抽真空的。水环起密封和能量转换作用。由于排气时排走的汽中夹杂有大量水份,因此工作过程中应不断补充用水,但水量不宜过大,过大将增 加泵的功率损耗,对泵的工作环境有不利影响,水量大小应根据实际情况调整泵进水管路的截至阀。水量及水温直接影响抽真空速率及泵的寿命。水温越低极限真空度越高,一般要求 最高不超过25C。长时间停机时,应打开泵底螺塞,将泵内存水放干净,然后堵死放水孔,灌满皂化液。否则,泵内易产生锈蚀或冻裂泵体,影响泵效率及寿命。 7:疏水阀(汽水分离器):内室与夹层各有一疏水阀,疏水阀工作正常与否直接影响灭菌效果。如果积水不能正常排出,应将疏水阀打开进行清理。工作时,有少量汽体排出是正常现象,但排出量不能过多。每季度清理一次。 8::安全阀:安装在主体上方的安全阀在出厂时已调整好,不要随意调整,但需要半年将其手把抬起几次,用蒸汽冲刷,以防其动作失灵。 9:过滤减压阀:压缩气管路上的过滤减压阀,需定期清理,以保证其使用效果。清理时, 将阀体下方螺塞旋出,待阀体桶杯内的杂质清理干净后,再拧紧螺塞。 10过滤器:进汽和进水管路上各有一过滤器,以防堵塞。清理时,将阀体下方螺塞旋出,待阀体桶杯内的杂质清理干净后。再拧紧螺塞。 11:止回阀(单向阀):止回阀应定期检查,以免有异物影响其单向密封性能。方法是清洗以后用嘴来试验,无泄漏之感觉。 12:电磁阀:为了使电磁阀工作正常,每季必须擦洗一次电磁阀阀芯、阀座。 13:对传动部件,应经常加注润滑油(脂)。 14:保持各电气部件的干燥,清洁。 15:各班生产结束,应及时对柜内表面清洗与揩抹内部污物和积水。并保证设备内外部 清洁。 232 :保养

常见包装袋密封性检测标准方法

常见包装袋密封性检测标准方法 包装袋广泛应用于食品包装以及药品包装的各个领域,以其包装成本经济、易于加工、易于控制、易于生产等优势而成为目前市场上极为普遍的一种包装形式,包装袋的密封性能、封口强度是包装袋质量的重要指标,其关乎着包装内容物的产品质量、保质期,同时也是产品流通环节的必要保障。 而在包装袋生产过程中由于众多因素的影响,可能会产生封合时的漏封、压穿或材料本身的裂缝、微孔,而形成内外连通的小孔。这些都会对包装内容物产生很不利的影响,特别是食品、医药包装、日化等行业,密封性将直接影响产品的质量。密封性不好是造成日后渗漏腐败的主要原因。其中风琴袋的包装特别是四层处最容易出现泄漏。广州标际对密封性测试的相关标准可见详表1:表1 密封性测试的有关标准 密封性测试具体方法各不相同,国内生产实践中常用GB/T 15171-1994标准。 1.着色液浸透法 这种方法通常用来检验空气含量极少的复合袋的密封性。方法如下:将试验液体(与滤纸有明显色差的着色水溶液)倒入擦净的试验样袋内,密封后将袋子平放在滤纸上,5min后观察滤纸上是否有试验液体渗漏出来,然后将袋子翻转,对其另一面进行测试。 2.水中减压法(真空法) 这种方法又包括真空泵法和真空发生器法,通常用来检验空气含量较多的复合袋。

(1)真空泵法 测试装置主要由透明耐压容器、样品架以及真空系统(真空泵、真空表等)组成。这种方法有如下缺点:形成真空的时间长,且不稳定;密封性能不好;压力为指针式显示,精度偏低。因此现在已逐步被淘汰。 (2)真空发生器法 这种方法目前在软包装行业内应用广泛,它利用射流原理,正压变负压形成稳定的空气源,高精度电子压力传感器实时显示测试容器内的真空度,微电脑自动控制,试验参数(真空度和保持时间)可随意设定,达到真空所需时间短,真空保持平稳,密封性能好。 3.测试步骤 根据GB/T 15171-1994软包装件的密封性能试验方法:在水的作用下,外层材料的性能在试验期间是否会发生变化,如外层采用塑料薄膜的包装外,可以通过对真空室抽真空,使浸在水中的试样产生内外压差,以观测试样内气体外逸或水向内渗入情况,以此判定试样的密封性能。 参照GB/T 15171-1994标准,在真空室内放入适量的蒸馏水,将包装袋浸入水中,袋子的顶端与水面的距离不得小于25mm.盖上真空室的密封盖,设置真空度,并保持30s。在此期间如有连续的气泡产生,则为漏气,孤立的气泡不视为泄漏。 需要说明的是,该设备的真空度数值0~-100Kpa可以设定,此外该设备还具有自动保压、补压功能,达到设定的压力后自动计时开始保压,保压时间到后如不漏气则为合格产品,若未达到设定的压力与时间即出现冒泡现象,则包装袋视为不合格,可手动泄压,打开密封盖,更换试样袋,重新设置真空度和保持时间。所设置的真空度值根据试样的特性(如所用包装材料、密封情况等)或按有关产品标准的规定确定,但不得因试样的内外压差过大使试样发生破裂或封口处开裂。 4. 泄漏常见原因及解决方法(见表2) 表2包装袋泄漏常见原因及解决方法

最终灭菌注射剂GMP检查要点

最终灭菌注射剂GMP检查要点 一、无菌药品综述 无菌药品是指法定药品标准中列有无菌检查项目的制剂,包括大容量注射剂、小容量注射剂和其它无菌药品。 注射剂系指药物与适宜的溶剂或分散介质制成的供注入体内的溶液、乳状液或悬浮液及供临用前配制或稀释成溶液或悬浮液的粉末或浓溶液的无菌制剂。注射剂可分为注射液、注射用无菌粉末与注射用浓溶液。注射剂的给药途径可分为静脉注射、脊椎腔注射、肌肉注射、皮下注射和皮内注射等。 为了提高注射剂的有效性、安全性与稳定性,注射剂中除主药外还通常添加其他物质,这些物质统称为“附加剂”。常用的附加剂增溶剂、湿润剂或乳化剂、缓冲剂、混悬剂、稳定剂、抗氧剂、抑菌剂、止痛剂等。 为了确保用药安全,注射剂的质量必须符合要求,检查项目包括无菌试验、细菌内毒素或热原试验、不溶性颗粒、可见异物、装量、装量差异、理化指标等。 注射剂按灭菌方式可分为最终灭菌注射剂和非最终灭菌注射剂,最终灭菌注射剂通常具有一定耐热性,能通过热处理的方式去除制品中可能存在的微生物。保证最终灭菌注射剂的无菌性的主要措施是在生产过程中有效控制生物负荷,并对内包装完毕的制品进行最终灭菌。通常采用湿热灭菌。 最终灭菌的注射剂包括大容量注射剂、小容量注射剂等,其生产工艺流程通常包括配制(浓配、稀配)、过滤、灌封、灭菌、目检、贴签和外包装等工序。 我国注射剂GMP认证检查的法律法规主要有: 《中华人民共和国药品管理法》,自2001年12月1日起施行。 《中华人民共和国药品管理法实施条例》,自2002年9月15日起施行。 《药品注册管理办法》,2007年10月1日起施行。 《药品生产质量管理规范》,自1999年8月1日起施行。

湿热灭菌柜SOP

标题YXQ、EAK-1.2湿热灭菌柜操作、维护保养规程 编号版本页数共2页 起草人签名审 核 人 签名批 准 人 签名日期日期日期 起草部门颁发部门生效日期年月日发送部门份数 1.目的:规范安瓿检漏灭菌柜的操作管理,确保操作者能正确操作。 2.范围:适用于制药行业安瓿瓶装液体进行湿热灭菌。 3.责任者:操作者、车间设备员。 4.操作规程: 4.1 准备: 4.1.1气源:启动空气压缩机,使压缩空气储罐内充盈额定工作压力。 4.1.2汽源:打开蒸汽阀门,并排放管路路冷凝水及确认汽源压力正常。 4.1.3水源:打开进水阀,并确认其压力正常。 4.1.4电源:相继打开进线电源开关、控制电源开关。 4.2 开门: 4.2.1启动面板上人机界面(触摸屏)至工作状态显示嘉瑞商标,进 入程序界面,按“门操作”界面,显示前门操作状态,按“门真空”健,门圈抽真空系统启动,抽排门圈内密封用压缩空气。 4.2.3 约15秒钟以后,按一下进柜端开门键“开前门”,门圈抽真 空系统复位,前门电机旋转,前门向右移开。

4.3 装载:将灭菌物品装入灭菌车,利用搬运车移至柜门,送入灭菌腔。 4.4 关门:装载完毕,同样在“门操作”界面下,按“关前门”键,前门向左关闭。 4.5 密封:如果此时前后门均为关闭位,准备进行灭菌操作,即可将门圈密封。 4.6 自控运行:在界面选择画面中按下“自动界面”将转入“自动控制”,此时按下“启动”操作键,设备将按预设程序自动运行,画面将同时动态显示实时工况。 4.6.1 抽真空:抽一次真空,把柜内空气排出柜外。 4.6.2 升温:打开进汽阀,向柜内进蒸汽柜内温度逐渐升高。 4.6.3 灭菌:当温度、压力稳定在设定值,至设定灭菌时间。 4.6.4 排汽:打开排汽阀,表压为零。 4.6.5 真空检漏:抽真空,计时到真空系统停止。 4.6.6 清洗:打开进水阀喷淋清洗。 4.6.7 排放:打开排水阀。 4.6.8 程序结束:当内室压力为零,整个程序自动终了。 4.7 手控运行: 当有特殊的灭菌需求,或自控程序出现无法满足灭菌需要时,任何时刻均可经“界面选择”画面进入“手动界面”操作,利用手控操作键继续完成灭菌操作。

加工中心定位精度检测的七种方式

加工中心定位精度检测的七种方式 数控加工中心定位精度,是指机床各坐标轴在数控装置控制下运动所能达到的位置精度。数控加工中心的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床各运动部件的运动是在数控装置的控制下完成的,各运动部件在程序指令控制下所能达到的精度直接反映加工零件所能达到的精度,所以,定位精度是一项很重要的检测内容。 1、直线运动定位精度检测 直线运动定位精度一般都在机床和工作台空载条件下进行。按国家标准和国际标准化组织的规定(ISO标准),对数控机床的检测,应以激光测量为准。在没有激光干涉仪的情况下,对于一般用户来说也可以用标准刻度尺,配以光学读数显微镜进行比较测量。但是,测量仪器精度必须比被测的精度高1~2个等级。 为了反映出多次定位中的全部误差,ISO标准规定每一个定位点按五次测量数据算平均值和散差-3散差带构成的定位点散差带。 2、直线运动重复定位精度检测 检测用的仪器与检测定位精度所用的相同。一般检测方法是在靠近各坐标行程中点及两端的任意三个位置进行测量,每个位置用快速移动定位,在相同条件下重复7次定位,测出停止位置数值并求出读数最大差值。以三个位置中最大一个差值的二分之一,附上正负符号,作为该坐标的重复定位精度,它是反映轴运动精度稳定性的最基本指标。 3、直线运动的原点返回精度检测 原点返回精度,实质上是该坐标轴上一个特殊点的重复定位精度,因此它的检测方法完全与重复定位精度相同。 4、直线运动的反向误差检测 直线运动的反向误差,也叫失动量,它包括该坐标轴进给传动链上驱动部位(如伺服电动机、伺趿液压马达和步进电动机等)的反向死区,各机械运动传动副的反向间隙和弹性变形等误差的综合反映。误差越大,则定位精度和重复定位精度也越低。 反向误差的检测方法是在所测坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为7次),求出各个位置上的平均值,以所得平均值中的最大值为反向误差值。 5、回转工作台的定位精度检测

臭氧灭菌柜的URS

URS文件 (用户需求) URS编号:URS-XXX-XXXX 设备名称:臭氧灭菌柜 XXXXXXXX生物技术有限公司

臭氧灭菌柜用户需求标准 URS编号:URS-XXX-XXXX 起草人:部门:日期: 起草人:部门:日期: 审核人:部门:日期: 审核人:部门:日期: 审核人:部门:日期: 批准人:部门:日期: 本文件起草后要经过审核人审核,审核人负责文件的审阅,审核人审核文件时应详细阅读文件内容,确认审阅内容的正确性,文件一经签字,审核人即对文件内容负责。文件经审核人审核签字后,经由批准人签字批准后即可生效。

1.1背景 本设备是为满足本公司内部标准、2010年版GMP、中国国家食品药品监督管理局的要求而进行设计,主要用于XXXXXXXX生物技术有限公司的衣物的消毒灭菌。 1.2目的 本文件旨在从项目和系统的角度阐述用户对臭氧灭菌柜的需求,主要包括相关法规符合度和用户的具体需求,这份文件是构建起项目和系统的文件体系的基础,同时也是该设备设计、安装和验证的可接受标准的依据,本文件中未列出的具体要求,以最新相关版本的法律或行业标准为依据。 1.3范围 1.3.1本用户需求(URS)及其附件是对臭氧灭菌柜设计、生产、安装、检查和测试、文件、交付的说明和最低要求。 1.3.2该设备的主要用途是:利用氧原子的最强氧化性,直接穿透细胞膜,达到物理溶菌的效果,能够杀死各类细菌、芽孢、热源,具有最彻底的灭菌、抑菌功能,且环保。 1.4责任 需方对本URS的编制质量负责。供方须严格按照本URS所明确的法规标准、技术要求、服务要求,提供相关系统设施和服务,供方须对需方所提供的URS 负保密责任。 1.5工艺和生产能力概述 1.5.1工艺描述 用于制药、生物制品、医院、化工的行业、对模具、包装材料、工作服、容器等作常温消毒灭菌,完全可以替代紫外线灯照和高温高压消毒,绝无二次污染。 工艺流程:打开柜门-将消毒物品摆放宽松-关闭柜门-关闭排湿口-按钮转向消毒档-烘干-取出消毒的物品。 1.5.2生产能力要求 额定电压:380V 2.设备标准: 设备必须含以下标准、规范:

油罐检漏检测

油罐检漏离线检测 油罐检漏离线检测 一. 油罐底板试漏方法 油罐底板在建成和维修以后必须进行检漏。常用的方法有:真空箱试漏法、漏磁扫描探伤、气体检漏和充水试压等方法。 1.真空试漏法 用薄板做成无底的长方形盒子(图),盒顶部严密地镶嵌一块厚玻璃,盒底四周边沿包有不透气的海绵橡胶,使盒子严密地扣在底板上。盒内用反光的白漆涂刷。盒子上装抽气短管和进气阀。试验焊缝时,先在焊缝上涂肥皂水,再将真空盒扣上,用真空泵将盒内抽成55kPa的真空度,观察盒内有无气泡出现,如有气泡,应作出标志加以焊补。 常被用来检查焊缝,特别是圆周焊接部分,不常用于整个罐底。 2. 气体检测方法 氦检漏仪也被用于埋地管线和罐底的检漏,它检测埋地管线时,不用清扫油品。罐底的检测步骤为,首先将氦气注入到罐底以下,然后在罐内侧检测是否存在氦气。这种办法被证明在泄漏点定位十分有效。但是它需要在罐底钻孔以注入气体。最重要的问题是气体必须能够扩散到罐底的所有区域,但是由于阻碍和渗透的不均匀性,这是不可能的。气体的扩散会遇到两个难题:①罐壁的重量会使气体往罐边缘部分的扩散很困难,②当一种粘性产品曾经在罐底渗漏,它会阻止气体的运动。气体扩散的难题会导致不能检测出所有的泄漏点。 3.氨气渗漏法 ①沿罐底板周围用粘土将底板与基础间的间隙堵死,但应对称地留出4~6个孔,以检查氨气的分布情况。②在底板中心及周围应均匀地开出3~5个直径18~20mm的孔,焊上直径20~25mm的钢管,用胶管接至氨气瓶的分气缸。③在底板焊缝上涂以酚酞—酒精溶液。其成分(质量比)为:酚酞4%,工业酒精40%,水56%。天气寒冷时,应适当提高酒精浓度。④向底板下通入氨气,用试纸在粘土圈上的孔洞处检查,验证氨气在底板下已分布均匀后即开始检查焊缝表面,此时在焊缝上刷酚酞—酒精溶液,如呈现红色,即表示有氨气漏出,用铅油标出漏处。⑤底板通氨气时,附近严禁动火。底板补焊前,须用压缩空气将氨气吹净,并经检查合格后方可进行补焊。 4. 水压试验中的泄漏检测 水压试验是一种结构试验,仅仅是在靠近罐壁的地方进行了大维修时才用。染料可以用来帮助人们定位泄漏点。但是即使在水里添加了染料,也不能当作检漏。大部分罐底的泄漏渗透不到罐壁以外,而是渗透到罐底土壤下面,在罐外根本看不出来。在水压试验中进行质量测量使其变成一种有效的检漏方法。用2~3天的时间,就可以确定油罐是否存在泄漏。水压试验中可仅用6~10英尺的水。 5. 漏磁扫描探伤 金属储罐底板的腐蚀状况,可用专用的检测仪器——磁涡流扫描仪,其原理是漏磁法,仪器上装有强磁铁,磁铁之间装有磁场强渡传感器,当底板有缺陷时,磁场分布就会发生变化,传感器就能检测到这种磁场变化。该仪器能够准确测定腐蚀的深度、面积以及裂纹的长度。

高效过滤器检漏方法及标准(最全版)

高效过滤器检漏方法及标准大全 阅读目录: 1.高效过滤器的检漏方法 1.1.钠焰法 1.1. 2.测试原理 1.2.计数扫描法 1.2.3 .实际存在的问题 1.2.5.DOP粒子扫描正压检漏法 1.3.油雾法 1.4 .粒子计数器法 2.高效过滤器PA0检漏方法的简介 2.1.目的和原理 2.2.发烟的方法 2.3.两种发烟方法的比较 24检测PA0气溶胶浓度仪器 2.5.PAO气溶胶 26安装完后的高效过滤器PA0检漏操作的解析 3.高效过滤器的使用寿命 4.公司简介 5.相关阅读 摘要 本文主要介绍了高效过滤器检漏的方法和原理,分为钠焰法、计数扫描法、油雾法、粒子计数器法以及重点介绍高效过滤器PAO检漏方法和检测PAO气溶胶浓度的仪器,并介绍高效过滤器的使用寿命与洁净室综合评定测试。 关键词 高效过滤器检漏检测方法PAO检漏DOP钠焰法计数扫描法油雾 法粒子计数器气溶胶 1.高效过滤器的检漏方法

1.1.钠焰法 1.1.1.原理: 钠焰法原理是将氯化钠水溶液喷雾、干燥形成质量中值直径约为0.4呻的氯化钠气溶胶作为试验尘。在被测高效滤料的前后进行含尘空气采样,并引到钠火焰光度计内,测出与含尘浓度相关的光电流值,从而算出滤料的透过率。 1.1. 2.测试原理 试验尘源为单分散相氯化钠盐雾,“量'’为含盐雾时氢气火焰的亮度,主要仪器为火焰光度计。盐水在压缩空气的搅动下飞溅,经干燥形成微小盐雾并进入风道。在过滤器前后分别采样,含盐雾气样使氢气火焰的颜色变蓝、亮度增加。以火焰亮度来判断空气的盐雾浓度,并以此确定过滤器对盐雾的过滤效率。国家标准规定的盐雾颗粒平均直径为0.4^m,但对国内现有实测结果为0.5呻。欧洲对实际试验盐雾颗粒中径的测量结果为0.65呻。随着其他检测方法的普及,欧洲已经不再使用钠焰法。国内有关部门正在修订原来的国家标准,是废止还是继续使用钠焰法,意见还没有等到落实。 1.2 .计数扫描法 1.2.1.《洁净室施工及验收规范》(JGJ71-90)中规定,被检高效过滤器必须已检测过风量,并设计风速80%-120%之间运行,对于被检高效过滤器上风侧的颗粒浓度对受控粒径对于20.5呻粒子的浓度,必须>3.5x104pc/L,对受控粒径>0.1 gm的粒子浓度,必须>3.5x106- 3.5x107pc/L。使用最小采样量>1L/min的粒子计数器扫描法,对高效过滤器安装接缝和主断面进行扫描检测,检测点应距被测表面20-30mm,测头以5-20mm/s的速度移动,对被检过滤器整个断面、封胶头和安装框架处进行扫描。 1.2.2.在《洁净室施工及验收规范》中规定,由高效过滤器下风侧泄漏浓度换算成的穿透率来衡量是否合格,其合格标准如下。对于高效过滤器: k,=1_n k=c2/c1 k'表示高效过滤器的额定透过率;n表示高效过滤器的额定效率;k表示高效过滤器的实际泄漏率;C1表示上风侧含尘浓度;c2表示高效过滤器下风侧含尘浓度。 规范规定,高效过滤器的实际泄漏率不得大于额定透过率的2倍,即k<2 k'… 1.2.3 .实际存在的问题

供水管道检漏的几种方法

供水管道检漏的几种方法作者:管道修补器,管道连接器发表时间:2010-2-26 18:26:25 地市级相当一部分在改变为主动检漏法,目前我国大城市已基本采用主动检漏法。但县市级大部分仍在采用主动检漏法。检漏方法之中绝大部分都使用音听检漏法,或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进行,许多水司会逐步引进更为先进的检漏仪器和采用更为有效和快速的检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。 音听检漏法 前者用于查找漏水的线索和范围,音听检漏法分为阀栓听音和地面听音两种。简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。 根据使用仪器的不同,漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法。操作的方法也不尽相同,目前止,实用的有效诉,本钱低的预定位技术主要有阀栓听音法,当然类同于GPL99GPL95包括PA RMA LOGA等方法,虽然也能用当其综合效果不好,而且本钱高。 1阀栓听音法 从而确定漏水管道,阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道表露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声。缩小漏水检测范围。金属管道漏水声频率一般在3002500Hz 之间,而非金属管道漏水声频率在100700Hz 之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。 2地面听音法 用电子放大听漏仪在地面听测地下管道的漏水点,当通过预定位方法确定漏水管段后。并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到漏水声越强,漏水点在上方达到最大。

净化空调金属风管密封性的保证措施及检测方法.doc

净化空调金属风管密封性的保证措施及检测方法 在净化空调金属风管的施工过程中,只有根据它的使用要求,采取严格的质量控制措施,才能保证其质量要求。一般来说,净化空调金属风管与一般空调金属风管相比,有四个不同的使用要求:1. 风管内应保持清洁;2.密封性要求高;3.平整度要求高;4.风管内静压值高。本文主要论述净化空调金属风管 密封性的 保证措施及检测方法。 1 净化空调金属风管密封性的保证措施 (1)风管的咬口形式采用单咬口、联合角咬口。 (2)金属风管的连接形式采用角钢法兰连接。 (3)在板材尺寸能够满足下料要求,损耗率不会太大的情况下,可考虑把弯头、三通等配件制作成与 直线段连成一体,减少法兰接口。 (4)风管直管制作尽量减少纵向拼接缝,不应有横向拼接缝。矩形风管边长小于或等于900mm时,其底面板不得有拼接缝,大于900mm时,不应有横向拼接缝。 (5)风管的咬口缝、铆钉缝、法兰翻边四角等缝隙处涂上密封胶(如中性玻璃胶)。涂密封胶前应清 除表面尘土和油污。 (6)法兰密封垫采用5mm橡胶板或8501阻燃密封胶带。 (7)风管与法兰连接时,风管翻边应平整并紧贴法兰,宽度不小于7mm。 (8)法兰螺孔和铆钉孔间距不应大于100mm。矩形法兰四角应设螺孔。弯头、三通等管件内设置导流片用平头铆钉固定,严禁采用抽芯铆钉。铆钉处涂密封胶。 (9)软接头采用角钢法兰连接。(如图1) 2 采用漏光法检测净化空调金属风管的密封性

漏光法检测在风管吊装后,保温前进行。漏光检测采用分段检测。可根据风管内绳索拉动的顺畅程度,风管的检测长度尽可能长些来分段,以减少检测的次数,提高工作效率。重点检查的部位为弯头、三通等管件板材转折处,法兰四角翻边、铆钉处。按照《通风与空调工程施工质量验收规范》(GB50243-2002)附录A的规定,中压系统每10m接缝,漏光点不大于1处,且100m接缝平均不大于8处为合格。但是,该规定尚不能满足漏风测试要求。因此,在采用漏风测试前,应保证没有漏光点。 3 漏风量测试 3.1 漏风量测试的仪器 下面介绍笔者使用的漏风试验装置(图2)。该装置的组装参考《洁净室施工及验收规范》(JGJ71-90) 附录正压风管式漏风量测试装置。 (1)测试离心风机9-19№4A(1704m3/h,3253Pa,3kW) (2)毕托管与倾斜式微压计(YYT-200B,0~200 mmH2O) (3)热球式电风速仪(QDF-3型,0.05~30m/s) 3.2 漏风量测试的方法 (1)先用镀锌钢板封堵检测风管的各个出口。然后将风管漏风测试装置的进风管与检测风管连接,利用测试离心风机向风管内鼓风,调节风机入口处的风量调节阀。使进风管内静压值P上升并保持在 700Pa。 (2)进风管内的静压用毕托管与倾斜式微压计测量。 (2)进风管的风速用热球式电风速仪测量。根据测得的风速与进风管的截面积计算进风量Q(m3/h)。 此时的进风量Q即为漏风量。 4 漏风量的计算过程 4.1 对空气流态的判断 ∵试验风机的风量为1704m3/h,进风管的管径为φ300。 ∴风速v=6.7m/s 又∵1个大气压下,30O C空气的运动粘滞系数=16.6*10-6 (m2/s) ∴Re===121084

相关文档
最新文档