概率第五章答案

概率第五章答案
概率第五章答案

习题5-1

1. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||2}P X E X -()≥. 解 由切比雪夫不等式, 对于任意的正数ε, 有

2(){()}D X P X E X εε

-≥≤, 所以 1{||2}2

P X E X -()≥≤. 2. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计{|2|P X Y +≥12}.

解 {2}2()()22(4)E X Y E X E Y +=+=?+-=,

{2}4()()22Cov(,)D X Y D X D Y X Y +=+-?

840.5124=-???=.

所以, {|2|P X Y +≥12}≤2411236

=. 3. 设随机变量X 的数学期望E (X ) = μ, 方差D (X ) = σ2, 由切比雪夫不等式估计P {|X -μ|≥3σ}.

解 令ε = 3σ, 则由切比雪夫不等式P {|X -μ|}≥ε}≤2()D X ε

, 有 P {|X -μ|≥3σ}≤221(3)9

σσ=. 4. 独立重复地做一项试验, 假设每次试验成功的概率为0.75. 用切比雪夫不等式求: 至少需要做多少次试验, 才能以不低于0.90的概率使试验成功的频率保持在0.74和0.76之间?

解 假设做n 次试验, 才能以0.90的概率使试验成功的频率保持在0.74和0.76之间. 用X 表示试验成功的次数, 从而~(,0.75)X B n , 由题设, 要使

{0.740.76}{0.750.01}0.90X X P P n

n <<=-<≥. 又由切比雪夫不等式得

22()0.750.25{0.740.76}{0.750.01}110.010.01X D X X

n P P n n n ?<<=-<-=-?≥. 要满足题意, 只需2

0.750.25

10.900.01n ?-?≥即可. 解之得 20.750.25187500.010.10n ?=?≥.

习题 5-2

1. 一本书有十万个印刷符号, 排版时每个符号被排错的概率为0.0001, 用中心极限定理求排版后错误不多于15个的概率.

解 设

1,i i i X ?=??第个字符排错第个字符没有排错,0, ,

则排错的总字符数5

101,i i X X ==

∑ 并且 5(10,0.0001)X B , 所以

5{15}P X P =≤

(1.581)0.9431.ΦΦ≈== 2. 某彩色电视机制造公司每月生产20万台背投彩电, 次品率为0.0005. 检验时每台次品未被查出的概率为0.01. 试用中心极限定理求检验后出厂的这批20万台背投彩电中次品数超过3台的概率.

解 设 1,i X i =??

?第台彩电为次品但未被查出其它,0,,

51,2,,210.i =? 所以 6()510i E X -=?, 66()510(1510)i D X --=?-?.

经检验后的次品数记为Y , 故

5

2101i i Y X

?==∑,()1E Y =,6

()1510D Y -=-?, 由中心极限定理, 近似地有

6~(1,1510)Y N --?.

所以有

{3}1{3}11(2)0.0228.P Y P Y ΦΦ>=-≈-≈-=≤

3. 某公司电话总机有200台分机, 每台分机有6%的时间用于外线通话, 假定每台分机用不用外线是相互独立的, 试问该总机至少应装多少条外线, 才能有95%的把握确保各分机需用外线时不必等候.

解 设该总机至少应装x 条外线, 才能有95%的把握确保各分机需用外线时不必等候. 设X i =1(i =1,2,...,200)表示第i 台分机使用外线, X i =0(i =1,2, (200)

表示第i 台分机不使用外线.

由条件可以把X 1,X ,2200,X 视为独立同分布随机变量, 而正使用外线的

分机总数

T =X 1+X 2+…+X 200

是独立同分布随机变量之和.

由条件知E (X i

)=0.06,

==0.2375, 从而

E (T

根据独立同分布中心极限定理, T 近似服从正态分布N (12,11.28).

由题设条件

P {T ≤x }=P

} ≈Φ

}>0.95=Φ(1.65). 根据分布函数的单调性, 有

>1.65. 从而x >17.54, 即最少装18条外线, 才能有95%的把握确保各分机需用外线时不必等候.

4. 某保险公司多年的统计资料表明, 在索赔户中因财产被盗而要求赔偿的占20%, 以X 表示在随机抽查的100个索赔户中因被盗而向保险公司索赔的户数 .

(1) 写出X 的概率分布;

(2) 求被盗索赔户不少于14户且不多于30户的概率的近似值.

解 (1) 设X i =1(i=1,2,…,100)表示第i 个索赔户是因被盗而索赔,

X i =0(i=1,2,…,100)表示第i 个索赔户不是因被盗而索赔. 所以

X =X 1+X 2+…+X 100,

故X 服从参数为100,0.2的二项分布.

(2) 由棣莫佛-拉普拉斯中心极限定理,

P {14≤X ≤30}= P {-1.5≤204

X -≤2.5}≈Φ(2.5)+ Φ(1.5)-1=0.927. 5. 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为0.5kg, 均方差为0.1kg. 问5000只零件的总重量超过2510kg 的概率是多少?

解设X i 表示第i 只零件的重量, 则E (X i )=0.5, D (X i )=0.01. 于是5000只零件

的总重量X =∑=50001i i X

, 所以由独立同分布中心极限定理知,

{2510}P X >

=P >

1Φ≈-=1-0.921=0.079. 6. 某车间有200台车床, 在生产期间由于需要检修、调换刀具、变换位置及调换工件等常需停车. 设开工率为0.6, 并设每台车床的工作是独立的, 且在开工时需电力1千瓦. 问最少应供应多少千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产?

解 设最少供应x 千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产.再设X i =1表示第i 台机床开工, X i =0表示第i 台机床不开工, 则200台机床所需电力X =∑=2001i i X

. 由题设E (X i )=120, D (X i )=48,又因为题设要求

{}0.999P X x ≤≥,

所以

{}0.999(3.1)P X x P ΦΦ==≈≤≥,

3.1, 即x >141.4, 所以最少供应142千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产.

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

概率论第五章习题解答(科学出版社)

概率论第五章习题解答(科学出版社) 1、据以往的经验,某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和1920h 的概率。 解 设这16只元件的寿命为i X ,1,2, ,16i =,则16 1 i i X X ==∑, 因为()100i E X μθ===,22()10000i D X σθ=== 于是随机变量 16 16 1600 1600 400 i i X n X X Z μ -?--= = = ∑∑近似的服从(0,1)N 160019201600{1920}{ }400400X P X P -->=>1600 {0.8}400X P -=> 1600 1{0.8}400 X P -=-<1(0.8)=-Φ=10.78810.2119=-=. 2\(1)一保险公司有10000个汽车保险投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额不超过2700000美元的概率; (2)一公司有50张签约保险单,每张保险单的索赔金额为i X ,1,2, ,50i =(以千美元 计)服从韦布尔分布,均值()5i E X =,方差()6i D X =求50张保险单索赔的合计总金额大于300的概率。 解 (1)设每个投保人索赔金额为i X ,1,2,,10000i =,则索赔总金额为10000 1 i i X X == ∑ 又 ()280i E X =,2()800i D X =,所以, 索赔总金额不超过2700000美元的概率 {2700000}1`{270000}P X P X >=-≤ 10000 1 28010000 27000002800000 1{ }800100 80000 i i X P =-?-=-≤ ?∑ 10000 1 2800000 101{ }80000 8 i i X P =-=-≤- ∑ 10000 1 2800000 1{ 1.25}80000 i i X P =-=-≤-∑近似的服从(0,1)N

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

概率统计练习册习题解答(定)

苏州科技学院 《概率论与数理统计》活页练习册习题解答 信息与计算科学系 概率论与数理统计教材编写组 2013年8月

习题1-1 样本空间与随机事件 1.选择题 (1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )AB AC BC (B )A B C (C )ABC ABC ABC (D )A B C (2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D ) A {}123T T T t ++> B {}123TT T t > C {}{}123min ,,T T T t > D {}{} 123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A : (1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。 解:{},18543 ,,,=Ω ;{} 18,,12,11 =A 。 (2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。 解:{ } ,,,=321Ω;{}54321A ,,,,=。 (3)车工生产精密轴干,其长度的规格限是15±0.3。现抽查一轴干测量其长度,事件A 表示测量 长度与规格的误差不超过0.1。 。 3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A , B , C 都发生:解: ABC ; (2) A , B ,C (3) A 发生, B 与 C (4) A , B , C 中至少有一个发生:解:C B A ?? (5) A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示 下列各事件: (1)只有一个是次品;

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率练习册答案

班级 学号 姓名 (十七)随机事件及概率 1、投掷一粒骰子的试验,我们将"出现偶数点"称为( D ) A 、样本空间 B 、必然事件 C 、不可能事件 D 、随机事件 2、事件B A ,互为对立事件等价于( D ) A 、 B A ,互不相容 B 、B A ,相互独立 C 、Ω=+B A D 、Φ=Ω=+AB B A 且 3、设B A ,为两个事件,则__ B A AB +=( C ) A 、不可能事件 B 、必然事件 C 、A D 、B A + 4、B A ,为两事件,若()4.0)(,2.0)(,8.0__ ===+B P A P B A P ,则( B ) A 、32.0____=??? ?? B A P B 、2.0____=?? ? ??B A P C 、4.0)(=AB P D 、48.0)(____ =AB P 因为:2.08.01)(1)(1)(=-=+-=-=B A P B A P B A P 5、当__A 与__B 互不相容时,=+)(______ B A P ( C ) A 、)(1A P - B 、)()(1B P A P -- C 、0 D 、)()(__ __ B P A P 因为:0)Φ()()(===+P B A P B A P 6、设有10个产品,其中3个次品,7个正品,现从中任取4个产品,则取到的4个产品都是正品的概率为( C ) A 、107 B 、44107 C 、41047C C D 、1074? 7、设C B A ,,为三个事件,试用这三个事件表示下列事件: (1)C B A ,,三个事件至少有一个发生;(2)A 不发生,B 与C 均发生; (3)C B A ,,三个事件至少有2个发生;(4)C B A ,,三个事件中恰有一个发生; (5)A 发生,B 与C 都不发生。 解:(1)A+B+C ;(2)BC A ;(3)AB+AC+BC ;(4)C B A C B A C B A ++;(5)C B A 。

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论第五章答案

习题5-1 1. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||2}P X E X -()≥. 解 由切比雪夫不等式, 对于任意的正数ε, 有 2 () {()}D X P X E X εε -≥≤ , 所以 1{||2} 2 P X E X -()≥≤. 2. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计 {|2|P X Y +≥12}. 解 {2}2()() 22(4) E X Y E X E Y +=+=?+-=, {2}4()()22Cov(,)D X Y D X D Y X Y +=+-? 840.5124=-???=. 所以, {|2|P X Y +≥12}≤ 2 4112 36 = . 3. 设随机变量X 的数学期望E (X ) = μ, 方差D (X ) = σ2 , 由切比雪夫不等式估计P {|X -μ|≥3σ}. 解 令ε = 3σ, 则由切比雪夫不等式P {|X -μ|}≥ε}≤ 2 () D X ε , 有 P {|X -μ|≥3σ}≤ 22 1(3) 9 σ σ= . 4. 独立重复地做一项试验, 假设每次试验成功的概率为0.7 5. 用切比雪夫不等式求: 至少需要做多少次 试验, 才能以不低于0.90的概率使试验成功的频率保持在0.74和0.76之间? 解 假设做n 次试验, 才能以0.90的概率使试验成功的频率保持在0.74和0.76之间. 用X 表示试验成功的次数, 从而~(,0.75)X B n , 由题设, 要使 {0.740.76}{ 0.750.01}0.90X X P P n n < <=-<≥. 又由切比雪夫不等式得 2 2 ( )0.750.25{0.740.76}{ 0.750.01}110.01 0.01 X D X X n P P n n n ?< <=-<- =- ?≥. 要满足题意, 只需2 0.750.2510.900.01 n ?- ?≥即可. 解之得 2 0.750.25 187500.010.10 n ? =?≥ . 习题 5-2 1. 一本书有十万个印刷符号, 排版时每个符号被排错的概率为0.0001, 用中心极限定理求排版后错误不多于15个的概率. 解 设

概率练习册第七章答案

概率练习册第七章答案

7-2 单正态总体的假设检验 1?已知某炼铁厂铁水含碳量服从正态分布 N(4.55,0.1082 ),现在测定了 9炉铁水,其平均含碳量 为4.484,如果估计方差没有变化,可否认为现 在生产的铁水平均含碳量为 4.55( 0.05)? 解提出检验假设 H 0 : 4.55, H 1 : 4.55 以H 0成立为前提,确定检验H 0的统计量及其分布 查标准正态分布表可得u u 0.025 1.96,而 2 说明小概率事件没有发生,因此接受 H 。.即认为 现在生产的铁水平 均含碳量为4.55. 对给定的显著性水平 =0.05,由上 P{U X 4.55 0.108/ . ? N(0,1) 分位点可知 X 4.55 0.108/、9 u ~ 0.05 X 4.55 0.108/J? 4.484 4.55 0.108/ 9 1.83 1.96

2.机器包装食盐,每袋净重量x (单位: g)服从正态分布,规定每袋净重量为500 (g), 标准差不能超过10 (g)o某天开工后,为检验 机器工作是否正常,从包装好的食盐中随机抽取 9袋,测得其净重量为: 497 507 510 475 484 488 524 491 515 以显著性水平-0.05检验这天包装机工作是否正常? 解.作假设//0:0-2>102,耳:/ < 102 选取统计量Z2=^S2=A5^Z2(W-D K 10~ 对给定的显著性水平a =0.05, 査*分布表得:加』7-1)=加列⑻= 2.733,于是拒绝域为龙$ 52.733 由已知计算得52 =22&44 而z2 =殳二2 = _A_52 =18.2752 > 2.733 0*0 & 因此接受弘,即可以认为这天包装机工作不正常。 3.根据长期的经验,某工厂生产的铜丝的折

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

《概率与数理统计》练习册及答案

第一章 概率论的基本概念 一、选择题 1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面} 2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生 3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B) B.P(A-B)=P(A)-P(B) C.)()(B A P B A P -= D.P(A+B)=P(A)+P(B) 4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0 C.P(A+B)=P(A)+P(B) D.P(A)+P(A )=1 5.若φ≠AB ,则下列各式中错误的是( ). A .0)(≥A B P B.1)(≤AB P C.P(A+B)=P(A)+P(B) D.P(A-B)≤P(A) 6.若φ≠AB ,则( ). A.A,B 为对立事件 B.B A = C.φ=B A D.P(A-B)≤P(A) 7.若,B A ?则下面答案错误的是( ).

A.()B P A P ≤)( B. ()0A -B P ≥ C.B 未发生A 可能发生 D.B 发生A 可能不发生 8.下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B..1)(,<Ω≠A P A 则若 C.1212(){}n n P A A A P A A A ≤+++ D.∑==≤n i i n i i A P A P 11)(}{ 9.(1,2,,)i A i n =为一列随机事件,且12 ()0n P A A A >,则下列叙述中错误的是( ). A.若诸i A 两两互斥,则∑∑===n i i n i i A P A P 11 )()( B.若诸i A 相互独立,则1 1()1(1())n n i i i i P A P A ===--∑∏ C.若诸i A 相互独立,则11( )()n n i i i i P A P A ===∏ D.)|()|()|()()(1231211 -=Λ=n n n i i A A P A A P A A P A P A P 10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是 ( ). A.21 B. b a +1 C. b a a + D. b a b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( ) A.先抽者有更大可能抽到第一排座票 B.后抽者更可能获得第一排座票 C.各人抽签结果与抽签顺序无关

概率论与数理统计第五章习题解答.dot资料

第五章 假设检验与一元线性回归分析 习题详解 5.01 解:这是检验正态总体数学期望μ是否为32.0 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 0-=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为 32.0kg/cm 2。 5.02 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:,240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

相关文档
最新文档