_用直接开平方法解一元二次方程

_用直接开平方法解一元二次方程
_用直接开平方法解一元二次方程

《用直接开平方法解一元二次方程》设计与反思

教学目标:会用直接开平方法解形如或的方程x2=p或(mx+n)2=p(p>≥0)的

方程

过程与方法目标:经历列方程解决实际问题的过程,体会一元二次方程是刻

画现实世界的数学模型。

情感态度目标:能根据具体问题的实际意义检验结果的合理性,体验类比、转

化、降次的数学思想方法。

重点:解形如x2=p或(mx+n)2=p(p>≥0)的方程

难点:解形如(mx+n)2=p(p>≥0)的方程

学情分析:学生已经学习了一元一次方程及其解法,理解一元二次方程的定义,

掌握开平方及二次根式。

教学过程

一、温故知新;

1、平方根的意义

2、根据平方根意义写出下各数的平方根

9、81、0、24、32

3、求x的值

(1)X2=9 (2)2X2=4

设计意图:为学习本节课作准备

二、出示教学目标:

1、会用直接开平方法解形如或的方程x2=p或(mx+n)2=p(p>≥0)的方程

2、如何将一元二次方法利用平方根概念转化两个一元一次方程

设计意图:让学生明确本节课的学习任务,抓住重点,培养学生学习数学的方法

三、创设情境提出问题

出示问题:桶某种油漆可刷的面积为1500DM2李林用这桶油漆恰好刷完了10同样的正方体开状的盒子的全部外表面,能算出盒子的棱长吗?

设计意图:以学生身边的实际问题展开讨论,突出数学与现实的联系培养学生自学的能力。

四、探索分析,解决问题

(1)审题

(2)设未知数设正方体的棱长为X

(3)找等量关系:10×正方体的表面积=1500

(4)列方程解这个方程:10×6X2=1500

由此得X2=25

设问:怎样解这个方程?如何将方程转化为X2=a的形式?

设问:5和-5是方程的两个根,它们都符合问题的实际意义吗?(棱长不能为负数,所以正方体的棱长为5cm)

设计意图:指明解题思路,强化本节的中心问题分步到位,渗透建模的思想,初步渗透化归思想。学会根据具体问题的实际意义检验结果的合理性的

习惯。

五、拓广探索,比较分析

对照上面解方程的(1)的特点过程,你认为应怎样解以下方程?

(2x-1)2=5 ②x2+6x+9=2 ③

利用类比的方法解方程②

利用转化的思想解方程③

设计意图:逐步递进地对方程②、③进行分析,巩固了开平方法,为学习配方法作好铺垫,又使学生体验到类比、转化、降次的数学思想方法。

六、归纳概括,形成能力

以上方程①②③可归纳为怎能样的步骤?

以上方程①②③都可以用开平方法,将一元二次方程降次转化两个一元一次方程:即用框架图表示为:

设计意图:使学生养成提练解题思路、归纳解题步骤的能力,体验类比、转化、降次的数学思想方法。

七、课堂练习,反馈调控:

教科书P31第(1)(3)(5)题

设计意图:及时巩固,评价

八、课堂小结,知识梳理

提问:1、本节课是怎样解一元二次方程?有哪些步骤??

2、今天的讨论问题中涉及到哪些数学思想方法?

设计意图:以问题的形式出现,引导学生思考交流,梳理所学的知识,建立符合自身认识特点的的知识结构。

九、布置作业:

1、必做题:

P31练习第(2)(4)(6)

P42第1题

2、选做题P43第12题

3、备选题:

(1)填上适当的数,使下列等式成立:

①x2+6x+ =(x+3)2

②x2+8x+ =(x+ )2

③x2-12x+ =(x-)2

(2)解下列方程,并分析它们在形式与解法上的异同。

①x2=3

②(x+2)2=3

③x2-10x+25=3

④x2-4x=-4

设计意图:为满足不同学生的发展要求,在保证基本要求的同时,为更多有数学学习需求的学生提供机会和资料,分层次布置作业。

教学反思

本节课是在学生已经学习了一元一次方程及其解法,理解一元二次方程的定义,掌握开平方及二次根式,的情况下对二元一次方程的解法——直接开平方法,进行教学设计。教学过程以复习本节相关的开平方开场,为本节课的教学做好准备,符合学生的认知规律。然后出示教学目标,让学生明确本节课的学习任务,抓住重点,培养学生学习数学的方法。接着创设情境提出问题,以学生身边的实际问题展开讨论,突出数学与现实的联系培养学生自学的能力。进而引导学生探索分析,解决问题,强化本节的中心问题分步到位,渗透数学建模的思想、化归思想。学会根据具体问题的实际意义检验结果的合理性的习惯。紧接着进行拓广探索,逐步递进地对方程(2x-1)2=5 ;x2+6x+9=2 进行分析,巩固了开平方法,为学习配方法作好铺垫,又使学生体验到类比、转化、降次的数学思想方法。归纳概括,一元二次方程x2=p((p≥0)/(mx+n)2=p(p≥0)通过开平方降次变

为一元一次方程X=p

=

+,使学生形成解特殊一元二次方的能

mx±

n

±/p

力。在学生理解了直接开平方法进行解一元二次方程后,安排了课堂练习,及时巩固,并对学生的学习进行评价。课堂小结以问题的形式出现,引导学生思考交流,梳理所学的知识,建立符合自身认识特点的的知识结构。为满足不同学生的发展要求,在保证基本要求的同时,为更多有数学学习需求的学生提供机会和资料,分层次布置作业。

总之,这节课能以学生的原有知识结构为增长点和发展点,符合学生的认知规律,以学生为主体进行教学。课堂教学中能渗透数学思想,抓住学生的闪光点进行即时评价。教学效果良好。

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元二次方程的解法(直接开平方法)

用直接开平法解一元二次方程 学习目标: 1、使学生理解直接开平方法的定义和基本思想; 2、学会用直接开平方法解一元二次方程; 3、知道:形如(含有未知数)2=非负数,的方程都可以用直接开平方法解。 重点:用用直接开平方法解一元二次方程; 难点:如何识别一个一元二次方程可以用用直接开平方法解; 教学过程: 一、 检查预习 1、解方程:0362=-x 二、复习练习 1、把下列方程化为一般形式,并说出各项及系数。 (1)245x x -= (2)235x = (3)()()()2212 2-+=+-y y y y 2、要求学生复述平方根的意义。 (1)文字语言表示:如果一个数的平方等于a ,这个数叫a 的平方根。 (2)用式子表示:若a x =2,则x 叫做a 的平方根。 一个正数有两个平方根,这两个平方根互为相反数; 零的平方根是零; 负数没有平方根。 (3)4 的平方根是 ,81的平方根是 , 100的算术平方根是 。 三、 新课讲解 例1:解下列方程(1)x 2=4; (2)x 2-1=0; 处理:1、让学生尝试解,然后总结方法。 2、形如)0(2≥=a a x ,a x ±= 练习:解下列方程 (1)092=-x (2)022=-x 例2、解方程(1)025162=-x 练习:解下列方程: (1)12y 2-25=0; (2)01642=-x 例3、解方程(x +1)2=144 练习:解方程025)2(42=-+x 四、巩固练习

1、请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢? ⑴ x 2=3 ⑵ 3t 2-t=0 ⑶ 3y 2=27 ⑷ (y-1)2-4=0 ⑸ (2x+3)2=6 ⑹ x 2+x-9=0 ⑺ x 2=36x ⑻ x 2+2x+1=0 2、解下列方程 (1)0822=-x (2)3592=-x (3)09)6(=-+x (4)06)1(32=--x ] 五、小结。 直接开平方法解一元二次方程的关键是要化成什么形式?(学生畅所欲言) 六、小测 解下列方程 (1)1692=x (2)01222=-x (3)036)2(2=-+x (4)3)13(2=-x 七、作业 1、预习配方法:尝试解方程 0242=+-y y 2、完成学习辅导P17——P18。

2221直接开平方法解一元一次方程

22.2.1 直接开平方法解一元一次方程 学习目标 1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题. 2、提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程. 重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想. 难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n (n≥0)的方程. 活动1、阅读教材第35页至第37页的部分,完成以下问题 一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗? 我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? 计算:用直接开平方法解下列方程: (1)x2=8 (2)(2x-1)2=5 (3)x2+6x+9=2 (4)4m2-9=0 (5)x2+4x+4=1 (6)3(x-1)2-9=108 解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”.

归纳:如果方程能化成的形式,那么可得 活动2 知识运用课堂训练 例1用直接开平方法解下列方程: (1)(3x+1)2=7 (2)y2+2y+1=24 (3)9n2-24n+16=11 练习: (1)2x2-8=0 (2)9x2-5=3 (3)(x+6)2-9=0 (4)3(x-1)2-6=0 (5)x2-4x+4=5 (6)9x2+6x+1=4 (7)36x2-1=0 (8)4x2=81 (9)(x+5)2=25 (10)x2+2x+1=4 活动3 归纳内化 应用直接开平方法解形如,那么可得达到降次转化之目的.

用图象法求一元二次方程的根

用图象法求一元二次方程的根 学习了二次函数之后,可以利用图象求一元二次方程的根。下面介绍几种具体的方法: 方法一:直接画出函数y=ax2+bx+c 的图象,则图象与x 轴交点的横坐标就是方程ax2+bx+c=0的根.其步骤一般为:(1)作出二次函数y=ax2+bx+c 的图象;(2)观察图象与x 轴交点的个数;(3)若图象与x 轴有交点,估计出图象与x 轴交点的横坐标即可得到一元二次方程的近似根. 方法二:先将方程变形为ax2+bx=-c ,再在同一坐标系中画出抛物线y=ax2+bx 和直线y=-c 的图象,则图象交点的横坐标就是方程的根. 方法三:可将方程化为 a c x a b x ++ 2=0,移项后为 a c x a b x --=2.设y=x2和y=a c x a b --,在同一坐标系中画出抛物线y=x2和直线y=a c x a b - - 的图象,则图象交点的横坐标就是方程的根.这种方法显然要比方法一快捷得多,因为画抛物线远比画直线困难得多. 例:二次函数2 (0)y ax bx c a =++≠的图象如图1所示,根 据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2 ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 解:(1)观察图象,抛物线与x 轴交于两点(1,0)、(3,0)故方程 20ax bx c ++=的两个根 11 x =, 23 x = . (2)不等式2 0ax bx c ++>,反映在函数图象上,应为图象在x 轴上方的部分,因此不等式2 0ax bx c ++>的解集应为13x <<. (3)因为抛物线的对称轴为x=2且开口向下,所以在对成轴的右侧y 随x 的增大而减小故自变量x 的取值范围为2x > (4)若使方程2 ax bx c k ++=有两个不相等的实数根,也就是抛物线 2(0)y ax bx c a =++≠的图象与直线y=k 有2 个不同的交点,观察图象可知抛物线的顶点

因式分解法、直接开平方法(2)

第一章因式分解 1.2.1 因式分解法、直接开平方法(2) 主备人备课时间 集体修订时间课型新授课 授课人许大精授课时间 教学札记教学目标: 1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方 程。 2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。 3、引导学生体会“降次”化归的思路。 知识与能力: 通过两种方法解简单的一元二次方程,初步培养学生解方程的能力,培养学生 观察、类比、转化的思维能力. 情感态度价值观: 通过平方根的理论,因式分解的理论求一元二次方程的解,使学生建立旧知 与新知的联系,由已有的知识形成新的数学方法,激发学生的学习兴趣,让学生 形成勤奋学习的积极情感,为以后学习打下良好的基础.通过解方程的教学,了 解“未知”可以转化为“已知”的思想. 教学重点: 掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。 教学难点: 通过分解因式或直接开平方将一元二次方程降次为一元一次方程。 教学课时:1课时 教学方法:自主、合作、探究 教学媒体:多媒体 教学过程: (一)复习引入 1、判断下列说法是否正确 (1) 若p=1,q=1,则pq=l( ),若pq=l,则p=1,q=1( ); (2) 若p=0,g=0,则pq=0( ),若pq=0,则p=0或q=0( ); (3) 若x+3=0或x-6=0,则(x+3)(x-6)=0( ), 若(x+3)(x-6)=0,则x+3=0或x-6=0( ); (4) 若x+3= 或x-6=2,则(x+3)(x-6)=1( ),

若(x+3)(x-6)=1,则x+3= 或x-6=2( )。 答案:(1) √,×。(2) √,√。(3)√,√。(4)√,×。 2、填空:若x2=a;则x叫a的,x= ;若x2=4,则x= ; 若x2=2,则x= 。 答案:平方根,±,±2,±。 (二)创设情境 前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗? 引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。 给出1.1节问题一中的方程:(35-2x)2-900=0。 问:怎样将这个方程“降次”为一元一次方程? (三)探究新知 让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。 (四)讲解例题 展示课本P.7例1,例2。 按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。 引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。 因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。 直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b= 和ax+b=- ,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。 注意:(1) 因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

一元二次方程的解法大全

一元二次方程的解法大全【直接开平方法解一元二次方程】 把方程ax2+c=0(a≠0), 这解一元二次方程的方法叫做直接开平方法。 例:用直接开平方法解方程: 1.9x2-25=0; 2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3). 解:1.9x2-25=0 9x2=25 2.(3x+2)2-4=0 (3x+2)2=4 3x+2=±2 3x=-2±2

∴x1=x2=3. 4.(2x+3)2=3(4x+3) 4x2+12x+9=12x+9 4x2=0 ∴x1=x=0. 【配方法解一元二次方程】 将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如 x2+ 例:用配方法解下列方程: 1.x2-4x-3=0;2.6x2+x=35; 3.4x2+4x+1=7;4.2x2-3x-3=0. 解:1.x2-4x-3=0 x2-4x=3 x2-4x+4=3+4 (x-2)2=7 2.6x2+x=35

3.4x2+4x+1=7 4.2x2-3x-3=0 【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a

广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法 =0(a≠0)的求根公式。 例:用公式法解一元二次方程: 2.2x2+7x-4=0; 4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x). 2.2x2+7x-4=0 ∵a=2,b=7,c=-4. b2-4ac=72-4×2×(-4)=49+32=81

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

已知一元二次方程的一个根

已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的 值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程, 先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得当时,原方程均可化为: ,解得: ∴方程的另一个根为4,的值为3或—1。 解法二:设方程的另一个根为,根据题意,利用韦达定理得: , ∵,∴把代入,可得: ∴把代入,可得:, 即解得 ∴方程的另一个根为4,的值为3或—1。 说明:比较起来,解法二应用了韦达定理,解答起来较为简单。

例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。 分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。 解:∵方程有两个实数根,∴△ 解这个不等式,得≤0 设方程两根为 则, ∵ ∴ ∴ 整理得: 解得: 又∵,∴ 说明:当求出后,还需注意隐含条件,应舍去不合题意的。 四、运用判别式及根与系数的关系解题。 例5:已知、是关于的一元二次方程的两个非 零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,

解:因为关于的一元二次方程有两个非零实数根, ∴则有 ∴ 又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得: 假设、同号,则有两种可能: (1)(2) 若,则有:; 即有: 解这个不等式组,得 ∵时方程才有实树根,∴此种情况不成立。 若,则有:

即有: 解这个不等式组,得; 又∵,∴当时,两根能同号 说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出

21.2解一元二次方程——直接开平方法的教学设计

教学设计案例 21.2 解一元二次方程 第1课时直接开平方法 一、内容和内容解析 (1)内容:会用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程 (2)内容解析: 一元二次方程是初中数学中最重要的数学模型之一,而一元二次方程的解法更是本章的重点内容。 本节课中,首先通过知识回顾环节的3个小题为本节课的学习做一铺垫。然后再通过“探究新知”环节中“问题串”建立一个最简单的一元二次方程,并利用平方根的意义,通过直接开平方法得到方程的解;然后将它一般化为x2=p的形式,通过分类讨论得到其解的情况,从而完成解一元二次方程的奠基,并自然地引出“降次”的策略,归纳出形如(x+n)2=p(p ≥0)的一元二次方程的解的情况,不仅为后面用配方法解比较复杂的一元二次方程的学习做好铺垫,而且也为我们后续学习二次函数等知识打下坚实的基础。同时,这节课的内容还突出体现了化归、类比、分类讨论等数学思想方法。 基于以上分析,确定本节课的教学重点是:运用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程,领会降次——转化的数学思想。 二、目标和目标解析 1.目标: (1)理解一元二次方程降次的转化思想 (2)会利用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的一元二次方程. 2.目标解析 达成目标的标志是:如果方程能够转化符合为形如x2=p或(x+n)2=p(p≥0)的一元二次方程时,那么就能通过直接开平方法将一元二次方程转化为一次方程求解。 三、教学问题诊断分析 在以前的学习中,学生不仅了解了平方根的意义、掌握了完全平方式的结构特征,而且还具备了一些方程的转化能力。本节课首先复习平方根的相关知识,再从具体的实际问题中列出一元二次方程,并根据平方根的意义直接开平方求解方程,对于方程的解是否符合实际问题,进行探讨。

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0

初中数学解一元二次方程直接开平方法一

初中数学解一元二次方程直接开平方法讲义一 1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x+m)2=n的方程. 3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣. 一、情境导入

一个正方形花坛的面积为10,若设其边长为x,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢? 二、合作探究 探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程 运用开平方法解下列方程: (1)4x2=9;

(2)(x +3)2-2=0. 解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解. 解:(1)由4x 2=9,得 x 2= 94,两边直接开平方,得x =±32,∴原方程的解是x 1=32 ,x 2=-32 . (2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3= 2或x +3=- 2. ∴原方程的解是x 1= 2-3,x 2=- 2-3. 方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1= a ,x 2=-a . 初中 【类型二】直接开平方法的应用 (2014·山东济宁中考)若一元二次方程 ax 2=b (ab >0)的两个根分别是 m +1与2m -4,则b a =________.

解析:∵ax2=b,∴x=±b a,∴方程的两个根互为相反数,∴ m+1+2m-4=0,解 得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴b a=2,∴ b a=4, 故答案为4. 【类型三】直接开平方法与方程的解的综合应用 若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________. 解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2. 【类型四】直接开平方法的实际应用

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

直接开平方法 练习题

直接开平方法 要点:左边平方右边数的形式. 一、(例题讲解)请你用直接开平方法解下列方程: 023252)1(==x x )( 05022)4(042)3(=-=-x x 二、用直接开平方法解下列一元二次方程: (1)2435x -= (2)(2)(2)21x x -+= (3)22(2)(12)x -=+ (4) 2269(52)x x x -+=- 三、选择与填空 1.下列方程中,不能用直接开平方法的是( ) A. 230x -= B. 2(1)40x --= C. 220x x += D. 22(1)(21)x x -=+ 2. 若2(1)10x +-=,则x 得值等于( ) A. 1± B. 2± C. 0或2 D. 0或-2 3. 方程22)1(=-x 的根是( ) A.-1、3 B.1、-3 C.1-2、1+2 D.2-1、2+1 4. 用直接开平方法解方程k h x =+2)(,满足的条件是( ) A. k≥0 B .h≥0 C .hk >0 D .k <0 5.已知0a ≠,方程2229160a x b -=的解是( )

A. 169b x a = B.43b x a = C.43b x a =± D.2243b x a =± 6. 方程220(0)x m m +=<的根( ) A.2 m - B.2m - C.22m -± D.2m -± 7.下列解方程的过程中,正确的是( ) A. 22-=x ,解方程,得x =±2 B. 42)2(=-x ,解方程,得x -2=2,x =4 C .92)1(4=-x ,得4(x -1)=±3, x 1=47,x 2=41 D. 252)32(=+x ,得2x +3=±5, x 1=1,x 2=-4 8.若x 2-4x +p =(x +q)2,则有( ). A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2 D .p =-4,q =-2 9. 若222(3)25a b +-=,则22 a b +=_______. 以下两题,写出解答过程: 10. 一元二次方程22(21)(3)x x -=-的 解是___________ 11. 方程()412=-x 的解是_________.

直接开平方解一元二次方程

学科:九数上课题:22.2.1直接开平方法解一元二次方程主备课人:范荣华 成功目标: 1、会用直接开平方法解形如x2=n(n≥0)或(x+m)2=n(n≥0)的一元二次方程.理解一元二次方程无实根的解题过程. 2、理解解一元二次方程的降次转化思想,使用整体思想,把被开方数看成整体。 (x+1)2 =25,则x的值为,这种解一元二次方程的方法叫直接开平方法。 2、解一元二次方程-x2+3=0,先把+3从方程左边移到方程右边得 再方程两边同除以-1得,根据开平方法则得x= 即1= 2 x= ,你会求x2+1=0的解吗?若能,请写出求解过程,若不能,说明为什么。 3、归纳:直接开平方法适用的方程类型 ①形如x2=n(n≥0),得x= ②形如(x+m)2=n(n≥0),得x= 上述两种情况当n<0时,方程实数根(填“有”、“无”)。 二、成功量学: ★1、下列方程中,不能用直接开平方法的是() A、x2-3=0 B、(x-1)2-4=0 C、x2+2x=0 D、(x-1)2=(2x+1)2 ★2、用直接开平方法解下列一元二次方程,其中无解的方程为() A、x2-3=0 B、-2x2=0 C、x2+9=0 D、(x-2)2=0 ★3、方程x2=0的实数根有() A 1个 B 2个 C 无数个 D 0个 ★★4、如果关于x的方程mx2=3有两个实数根,那么m的取值范围是 5、解下列方程 (1)2(x+2)2-5=11 (2)x2-4x=-4 三、成功示学:学生展示 四、成功用学: 1、用直接开平方法解方程 (1)2x2+7=0 (2)(2y-5)2 =(3y-1)2 ★★★2、已知一元二次方x2-4x+1+m=5请你选择一个适当的m的值,使方程 能用直接开平方法求解,并解这个方程 (1)你选的m的值是 (2)解这个方程 五、成功思学:

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根 一、关于韦达定理的性质 1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有 x 1+x 2=-b a , x 1x 2=c a . 2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a 不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a 不难得出 x 1+x 2=-b a , x 1x 2=c a . (法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0 对比一元二次方程的一般式ax 2+bx +c =0,得 b =-a (x 1+x 2), c =ax 1x 2, ∴ x 1+x 2=-b a , x 1x 2=c a . 3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式 假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q . (二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0. 4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系. 二、利用韦达定理求一元二次方程的根 例如,求一元二次方程x 2―22x ―6=0的根. 很明显,根据我们所学习惯,首选方法是十字相乘法. (法一) 因式分解,得 (x -32)(x +2)=0, 解得, x 1=32, x 2=- 2. 当然,利用十字相乘法很难凑数时,我们就会选用求根公式法. (法二) a =1,b =-22,c =-6, ∴ b 2-4ac =8+24=32, ∴ x =-b ±b 2-4ac 2a =22±422 =2±22, 于是有 x 1=32, x 2=- 2.

直接开平方解一元二次方程练习

21.2.1配方法解一元二次方程(一)同步练习 ⒈16的平方根是( ) A .4 B .-4 C .±4 D .±8 2.方程x 2=9的解是( ) A .x 1=x 2=3 B .x 1=x 2=-3 C .x 1=3,x 2=-3 D .x =3 3.方程x 2=3的解是( ) A .12x x == B .12x x == C .1x 2x = D .x =3 4.方程()210x -=的解是( ) A .x 1=1,x 2=-1 B .x 1=x 2=1 C . x 1=x 2=-1 D . x 1=1,x 2=-2 5.方程()219x -=的解是( ) A .x 1=1,x 2=-3 B . x 1=4,x 2=-4 C . x 1=4,x 2=-2 D . x =3 6.若1是一元二次方程x 2+x -m 2=0的一个根,则m 为 . 7.直接写出方程的解:①()2190x -=+的解是 ;②()2 316x -=的解是 . 8.直接写出方程的解:①x 2+2x +1=9的解是 ;②x 2-2x -3=0的解是__________. 9.用直接开方法解方程. ⑴9x 2=25 ⑵2x 2-98=0 ⑶3(x -2)2=0 ⑷3(x -1)2=27 10.如果12 x =是关于x 的方程22320x ax a -=+的根,求关于y 的方程23y a -=的解. 11.一元二次方程2+2990x x -=变形正确的是( ) A .()2+1100x = B .()21100x =﹣ C .()2+2100x = D .()22100x -= 12.将方程2250x x --=变形为()2+x m n =的形式正确的是( ) A .()2+16x = B .()2+29x = C .()216x -= D .()229x -= 13.方程3x 2=2的根是___________. 14.一元二次方程22426x x -+=的根是___________. 15.解下列方程: ⑴()22510x +-= ⑵()()11 x x -+1= ⑶()23175y -= ⑷2215x x -+= ⑸()2531250x --= ⑹24415x x -+= 16.已知x 、y 、z 满足2246130x x y y -=++,求代数式()2 xy 的值.

一元二次方程及根的定义

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方 程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0;(2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, , ,

所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以, 所以. (3)将原方程展开并整理得,

这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得 即 所以或 故.

一元二次方程的求根公式及根的判别式

一元二次方程的求根公式及根的判别式 主讲:黄冈中学高级教师余国琴 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实 根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1);(2);(3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算, 解:(1)因为a=1,,c=10 所以

相关文档
最新文档