溶酶体与人类疾病

溶酶体与人类疾病
溶酶体与人类疾病

溶酶体与人类疾病

溶酶体是一种细胞器, 最初由德杜费( deDuve) 等于1955 年用分级分离技术从鼠肝细胞分离出来的,这是一种含有多种水解酶,对蛋白质、核酸和多糖等起溶解与消化作用的小体,故名溶酶体,溶酶体与人类疾病有着较密切的关系,如果溶酶体异常,会引发很多疾病,如痛风、矽肺等。

1 溶酶体的结构与发生

溶酶体外面包有单层膜,形状和大小有一定的可变性,且与其消化活动的不同阶段有关,一般呈圆形小泡,直径0. 25 —0. 5 微米。内含密度不等的酸性水解酶。现已知各类细胞的溶酶体中含酶约60 种,包括蛋白质、糖类、脂类等物质的水解酶类,如酸性磷酸酶,组织蛋白酶、核糖核酸酶以及芳香基硫酸酶脂A 和B 等。各类溶酶体所含水解酶也有所不同,如溶菌酶多见于具有防御功能的粒细胞和巨噬细胞的溶酶体溶解酶能催化细菌细胞壁的水解,在肝脏或其它组织细胞的溶酶体中没有发现溶菌酶。溶酶体膜的化学成分主要是脂蛋白,并含有较多的鞘磷脂。大多数溶酶体里的酶是糖蛋白,但也有例外,如鼠肝细胞和肾细胞溶酶体里的酶大部分是脂蛋白。一般认为,溶酶体里的酶在粗面内质网的核蛋白处合成,经滑面内质网运转到高尔基复合体,高尔基复合体由扁平囊群,大泡、小泡三部分组成,在那里经过加工、分拣与浓缩,被覆外膜,形成囊泡,然后离开高尔基复合体,形成初级溶酶体。

2溶酶体的功能

免机体患相应的疾病,脾脏中巨噬细胞的活动及时清除了衰老的红细胞,保证了血液中单位体积内新鲜健康的红细胞数目。内吞物质消化的另一个方面是吞饮作用,该作用是指细胞内吞小颗粒状物质和水溶性大分子如抗体、酶、激素和毒素等。与吞噬作用不同,动物和人体所有的细胞几乎都有吞饮功能,吞饮作用的生理意义比较突出的是为细胞提供营养物质和构建细胞结构的基本化学成分。

2. 1. 2 细胞内残余物质的消化正常或病变情况下,细胞内一部分细胞结构如线粒体、内质网、分泌颗粒甚至溶酶体本身由于衰老、病变或过多时需要初级溶酶体将它们消化处理,即所谓的自噬活动。自噬活动的结果是溶酶体酶将细胞需处理的部分结构消化成小分子物质如氨基酸、核苷酸、糖及脂肪等,当细胞合成新的大分子或形成新的细胞器时可重新利用。但是,真核细胞内自噬活动频率在生理情况下是很低的,只有很少种类的细胞在生理状态下能观察到细胞内自噬现象。

2. 1. 3 参与细胞外物质的消化不管初级或次级溶酶体,它们的活动范围只限于细胞内,其内部的水解酶通常也不会溢出细胞外,但在一些特殊情况下,溶酶体也可以通过出胞作用将溶酶体酶释放到细胞外,消化分解细胞外物质,如破骨细胞可将溶酶体酶释放到细胞外,降解骨的有机基质,参与骨组织的吸收和改建。精子的顶体其本质也

是一种溶酶体,在受精过程中,顶体中的酶被释放到细胞外,消化卵外周的卵泡细胞,便于精子进入卵细胞达到受精的目的。

2. 2 参与机体免疫过程

体内有一种具有强大吞噬能力的细胞叫巨噬细胞,当病原体或异物与巨噬细胞相遇时,会导致这类细胞进行趋化移动,互相接触并通过吞噬作用将病原体或异物捕捉入细胞内。实际上,这些被捕捉到细胞内的病原体或异物对机体通常具有抗原的特性,初级溶酶体将与它们融合形成异溶酶体,异溶酶体一般可降解90 %左右的抗原物质,剩下10 %左右的抗原物质则不被降解,而是有可能加工成一种远比病原菌或异物强的免疫原性复合物,此过程叫抗原加工。加工后的抗原复合物被转移到巨噬细胞膜上并被T 淋巴细胞识别,T 淋巴细胞受此抗原刺激后,会出现活跃的免疫应答现象。例如,再将抗原转交给其他T 细胞

3. 2. 2 Gaucher 病此病又称脑苷脂沉积病,是巨噬细胞和脑神经细胞的溶酶体缺乏β-

葡萄糖苷酶造成的。大量的葡萄糖脑苷脂沉积在这些细胞溶酶体内,巨噬细胞变成Gaucher 细胞,患者的肝、脾、淋巴结等肿大,中枢神经系统和脑干神经系统发生变性、萎缩。此病多发生于婴儿,病程进展很快,常在1 岁内死亡,如果幼年后才发病,则病程进展慢,最长者可活10 多年。

3. 2. 3 Tay - sachs 又称GM2 I 型神经节苷脂沉积病家族性黑日蒙性痴呆,大脑黄斑变性,本病以神经细胞受损较明显,因此,神经组织功能障碍很突出,患者的表现为渐进性失明、病呆和瘫痪。

3. 2. 4 粘多糖沉积病此病是一组粘多糖进行性代谢障碍的遗传病,溶酶体内缺乏粘多糖降解酶,因而不能分解粘多糖类,使这些物质积在次级

溶酶体有两种类型,一种是初级溶酶体,这种

溶酶体只含水解酶而不含被催化的底物,这是一

种处于潜伏状态的溶酶体。另一种为次级溶酶

体,不仅含有水解酶,而且还含有大量被催化的底

物,这是一种正在进行消化作用的溶酶体。

溶酶体参与细胞内吞物质的消化。细胞为了

维持生存,必须摄入外周物质和消灭入侵病菌。

溶酶体的主要功能是参与细胞内的各种消化活

动。此外,还与免疫活动及激素分泌的调节有一

定关系。

2. 1 溶酶体的消化作用

2. 1. 1 细胞内吞物质的消化溶酶体消化功能的一个重要表现是消化由细胞内吞摄入的细胞外物质。通常将内吞物质的消化分为吞噬作用和吞饮作用两个方面。

吞噬作用是指细胞吞噬大的颗粒状物质如细菌、异物、红细胞等。动物内具有明显吞噬功能的细胞不多,只有巨噬细胞、中性粒细胞等少数几种,吞噬作用的基本过程是:当外来物质以内吞的形式进入的细胞后,即形成有膜包裹的吞噬体。初级溶酶体很快与吞噬体融合,其基质中的酶将吞噬体内的物质消化分解。消化后,那些可溶性的小分子产物可透过溶酶体膜进入胞质,供细胞利用。未被消化的物质则残留下来形成残余体,残余体可长期留在细胞内,其内容物也可排出细胞外。吞噬作用虽然主要发生在少数几种细胞中,但对机体保护作用是很大的。例如:侵入机体或B 细胞,分别引起细胞免疫及体液免疫。

2. 3 溶酶体对激素分泌的调节作用

人们早就发现,大鼠脑下垂体催乳素细胞分泌催乳素受到抑制时,溶酶体与细胞内一部分分泌颗粒融合,将其消化降解以消除细胞内过多的激素,这种现象叫粒溶或分泌自噬。后来发现,几乎所有分泌蛋白质和肽类激素的细胞中都存在着粒溶现象,细胞通过这些方式,不仅在短时间内清除部分“产品”(激素颗粒) ,而且还减少了一部分“工厂”(滑面内质网) ,进而有效地调节激素的分泌量。

3 溶酶体与人类疾病

由于溶酶体功能上的特殊性,因此,它与人类某些疾病有较密切的关系

3. 1 溶酶体膜失常与疾病

溶酶体膜是一层单位膜,在正常情况下,它有明显的屏障作用,可防止水解酶进入胞质,以免细胞的结构被破坏而造成细胞的死亡。如果因某种原因使溶酶体膜受损,各种水解酶进入胞质可使细胞分解;如果进入细胞间质,可破坏细胞间质,导致组织自溶,如矽肺、痛风等病就与溶酶体膜遭受破坏有关。矽肺是肺部吸入矽尘后, 矽粉末(SiO2 ) 被组织中的吞噬细胞吞噬,但是溶酶体不能破坏矽粉末,而矽粉末却能使溶酶体膜破坏,释放出其中的水解酶,引起细胞死亡;释放出的矽粉末再被健康的吞噬细胞吞噬可得到同样的结果,肺部细胞死亡,导致肺原

纤维沉积,减底肺的弹性,损伤肺的功能。痛风是破坏物质沉积在骨膜腔和结缔组织中的尿酸结晶,该结晶被中性粒细胞吞噬,释放肺原酶,破坏软骨组织而产生炎症。

3. 2 先天性溶酶体病

先天性溶酶体病是指遗传所致溶酶体某种酶缺乏,造成次级溶酶体内相应底物不能被消化,底物积蓄,代谢障碍,故又称贮积性疾病。目前已知此类疾病有40 种以上,大致可分为糖原贮积病、脂质沉积病、粘多糖沉积病等几大类。

3. 2. 1 糖原贮积病又名Pompe 病,是由于肝和肌细胞中溶酶体内缺乏一种酸性α- 葡萄糖苷酶。正常时此酶分解糖原,当缺乏此酶时,溶酶体吞噬的过剩糖原无法降解,大量堆积在次级溶酶体内使其肿胀,最后,溶酶体破裂,其他酶漏出,严重破坏组织细胞,此病属常染色体缺陷性遗传病,患者多为小孩,常在两周岁以前死亡。溶酶体内,患者面容粗犷,骨骼异常,智力发育不全,内脏功能普遍受损,角膜混浊。

3. 3 溶酶体与癌症的关系

早在30 年前,Allison 就提出溶酶体与癌症的发生有关。近年来,溶酶体与癌症发生之间的关系日益引起人们的注意,有些致癌、促癌物质造成溶酶体膜伤害, 使其内部的酶游离出来, 造成DNA 分子的损伤,可以引起细胞癌变。除上述之外,溶酶体还与休克、细胞老化及心脏、肝脏的某些疾病有密切关系。

(完整word版)医学遗传学习题(附答案)第6章 线粒体遗传病

第六章线粒体遗传病 (一)选择题(A型选择题) 1.下面关于线粒体的正确描述是______。 A.含有遗传信息和转译系统 B.线粒体基因突变与人类疾病基本无关 C.是一种完全独立自主的细胞器 D.只有极少量DNA,作用很少 E.线粒体中所需蛋白质均来自细胞质 2. 关于线粒体遗传的叙述,不正确的是______。 A.线粒体遗传同样是由DNA控制的遗传 B.线粒体遗传的子代性状受母亲影响 C.线粒体遗传是细胞质遗传 D.线粒体遗传同样遵循基因的分离规律 E.线粒体遗传的表现度与突变型mtDNA的数量有关。 3.以下符合mtDNA结构特点的是______。 A.全长61569bp B.与组蛋白结合 C.呈闭环双链状 D.重链(H链)富含胞嘌呤 E.轻链(L链)富含鸟嘧啶 4.人类mtDNA的结构特点是______。 A. 全长16.6kb,不与组蛋白结合,为裸露闭环单链 B. 全长61.6kb,不与组蛋白结合,分为重链和轻链 C. 全长16.6kb,与组蛋白结合,为闭环双链 D. 全长61.6kb,不与组蛋白结合,为裸露闭环单链 E. 全长16.6kb,不与组蛋白结合,为裸露闭环双链 5.下面关于mtDNA的描述中,不正确的是______。 A.mtDNA的表达与核DNA无关 B.mtDNA是双链环状DNA C.mtDNA转录方式类似于原核细胞 D.mtDNA有重链和轻链之分 E.mtDNA的两条链都有编码功能

6.线粒体遗传属于______。 A.多基因遗传 B.显性遗传 C.隐性遗传 D.非孟德尔遗传 E.体细胞遗传 7. 线粒体中的tRNA兼用性较强,tRNA数量为______。 A.48个 B.32个 C.64个 D.61个 E.22个8.mtDNA编码线粒体中______。 A. 全部呼吸链-氧化磷酸化系统的蛋白质 B. 约10%的蛋白质 C. 大部分蛋白质 D. 线粒体基质中的全部蛋白质 E. 线粒体膜上的全部蛋白质 9. 目前已发现与mtDNA有关的人类疾病种类约为______。 A. 100余种 B. 10多种 C. 60多种 D. 几十种 E. 种类很多10.UGA在细胞核中为终止密码,而在线粒体编码的氨基酸是______。 A.色氨酸 B.赖氨酸 C.天冬酰胺 D.苏氨酸 E.异亮氨酸11.每个线粒体内含有mtDNA分子的拷贝数为______。 A.10~100个 B.10~20个 C.2~10个 D.15~30个 E.105 12.mtDNA中编码mRNA基因的数目为______。 A.37个 B.22个 C.17个 D.13个 E.2个 13.关于mtDNA的编码区,描述正确的是______。 A.包括终止密码子序列 B.不同种系间的核苷酸无同源性 C.包括13个基因 D.各基因之间部分区域重叠 E.包括启动子和内含子 14.关于mtDNA的D环区,描述正确的是______。 A.是线粒体基因组中进化速度最慢的DNA序列 B.具有高度同源性 C.包含线粒体基因组中全部的调控序列 D.突变率较编码区低 E.是子代H链在复制过程中与亲代H链发生置换的部位 15.mtDNA中含有的基因为______。 A. 22个rRNA基因,2个tRNA基因,13个mRNA基因

分子生物学基础和技术教学大纲(精)

分子生物学基础和技术教学大纲 (适用于医学检验和医学相关专业) 课程性质与目的 分子生物学是医学领域发展最快的学科之一,日新月异的技术使它逐渐成为医学发展的重要支柱。随着本世纪初人类基因组计划的完成,医学发展进入了一个全新的时代。疾病基因的不断发现和克隆,使人们对疾病的认识也不断深入,而这些重大的医学进步离不开技术上的更新和发展,生物芯片技术、基因测序技术、毛细管电泳技术等,每一次技术的进步都为分子生物学的发展提供了有力的保障。 分子生物学技术是一门重要的基础和应用课程,教学方式目前主要以理论课程为主,分基础理论和基础技术两个部分,重点讲述分子生物学检验技术的基础理论和基础知识,并引入近年发展的新理论、新技术,使学生了解和学习最新进展和相关内容。同时分子生物学技术最主要的作用是作为研究医学的一种媒介和工具,具有很强的实践性,其基本知识和理论来源于科学实验,因此现在现针对本科学生开展了分子生物学实验课程,实验教学是强化理论课的重要方式,是培养医学生实验科学概念和实验技能的重要途径,通过综合性的实验可以强化学生对理论的深入理解和实际运用,可以更全面直观的分析理论知识。更重要的是,实验教学是培养学生综合分析和解决问题的能力以及科学创新能力的重要方式。 本课程的目的是通过分子生物学重要技术的学习,使学生掌握一门可运用于医学研究的技术和工具,了解医学发展的最新进展和前沿技术,通过理论与实践的结合将分子生物学融入医学研究的各方面,分析疾病基因、从分子水平分析疾病发生的原因、跟踪疾病发展过程、检测感染人类的病原生物以及未来根据个体化治疗奠定理论和技术基础。 课程的设置与要求 本课程是在学生系统学习了前期课程的基础上由检验系临床化学教研室负责开设的, 与本课程相关的基础课程有生物化学和生化技术等。本课程分为理论课程和实验课程两部分。理论课主要包括基础理论和基本技术,基础理论主要讲授基因和基因组、原核生物和真核生物基因组、人类基因组计划、蛋白质组学、肿瘤分子生物学等;基本技术包括了核酸提取、DNA重组技术、核酸干扰技术、核酸分子杂交、聚合酶链反应、DNA芯片等。实

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

表观遗传学与疾病

表观遗传学与疾病及其研究进展概述 摘要:表观遗传学是在基因组DNA 序列不发生变化的条件下,基因表达发生的改变也是可以遗传的,导致可遗传的表现型变化。表观遗传学主要包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控、基因组印记、假基因、内含子、核糖开关等。和表观遗传学相关的疾病主要有肿瘤、心血管病、成瘾、自身免疫系统性病等。本文就表观遗传学与疾病进行综述。 关键词:表观遗传学疾病 一、表观遗传学的基本概念 经典遗传学认为遗传的分子基础是核酸,生命的遗传信息储存在核算的碱基序列上,碱基序列的改变会引起生物体表现型的改变,而这种改变可以从上一代传递到下一代。然而,随着遗传学的发展,人们发现,DNN、组蛋白、染色体水平的修饰也会造成基因表达模式的变化,并且这种改变是可以遗传的。这种通过有丝分裂或减数分裂来传递非DNA序列遗传信息的现象成为表观遗传,表观遗传学是研究不涉及DNA序列改变的基因表达和调控的可遗传修饰,即探索从基因演绎为表型的过程和机制的一门学科[1]。Epigenetics这一名词的中文译法有多种,常见的有“表观遗传学”、“表现遗传学”、“后生遗传学”、“外因遗传学”、“表遗传学”、“外区遗传学”等等。表观遗传学是Waddington于1942年在描述生物体的基因型与表型之间的因果关系时提出的,他指出基因型的遗传(heredity)或传承(inheritance)是遗传学研究的主旨,而基因型产生表型的过程则属于表观遗传学研究的范畴,他把表观遗传学描述为一个控制从基因型到表现型的机制。随着遗传学的快速发展,这个词的意思越来越窄[ 2]。1987年,Holliday指出可在两个层面上研究高等生物的基因属性:第一个层面是基因的世代间传递的规律,这是遗传学;第二个层面是生物从受精卵到成体的发育过程中基因活性变化的模式,这是表观遗传学。1994年,Holliday又指出基因表达活性的变化不仅发生在发育过程中,而且也发生在生物体已分化的细胞中;基因表达的某种变化可通过有丝分裂的细胞遗传下去,他进一步指出表观遗传学研究的是“上代向下代传递的信息,而不是DNA序列本身”,是一种“不以DNA序列的改变为基础的细胞核遗传”。1999年,Wollfe把表观遗传学定义为研究没有DNA序列变化的、可遗传的基因表达的改变。 表观遗传学 (epigenetics) 与遗传学是一个对应的关系,是研究表观遗传变异的遗传学分支的学科。它现在有很多新的定义,在非神经学中它的定义是不依赖于染色体上DNA序列的改变却能稳定遗传的表型变化。在Allis et al最近的一本书中可以找到两种定义,一个是:表观遗传是和DNA突变无关的可遗传的表型变化;另一个定义是:染色质调节的基因转录水平的变化,这种变化不涉及DNA序列的改变[ 3]。从1989到2008年期间和表观遗传相关的著作将近6000多本,不论人们怎样定义表观遗传学,它始终在研究中占有重要地位,The National Institutes of Health 把表观遗传学描述为:在控制基因的活性和表达方面和遗传的变化相关,是一个细胞转录水平长期、稳定的改变因素,但并不一定是必须的遗传因素。本文就针对表观遗传学的内容以及与其相关的疾病进行综述。

医学微生物学复习要点、重点难点总结

医学微生物学复习要点 第1章绪论细菌的形态与结构 名词解释 微生物:是一类肉眼不能直接看见,必须借助光学或电子显微镜放大几百或几万倍才能观察到的微小生物的总称。 医学微生物学:是研究与人类疾病有关的病原微生物的基本生物学特性、致病性、免疫性、微生物学检查及特异性防治原则的一门学科。 中介体:是细菌细胞膜向内凹陷,折叠、卷曲成的囊状结构,扩大膜功能,又称拟线粒体。多见于革兰阳性菌。 质粒:是染色体外的遗传物质,为双股环状闭合DNA,控制着细菌的某些特定的遗传性状。 异染颗粒:用美兰染色此颗粒着色较深呈紫色,故名。用于鉴别细菌。 荚膜:某些细菌在其细胞壁外包绕的一层粘液性物质。 鞭毛:细菌菌体上附有细长呈波浪弯曲的丝状物。鞭毛染色后光镜可见。菌毛:菌体表面较鞭毛更短、更细、而直硬的丝状物。电镜可见。 芽胞:某些细菌在一定的环境条件下,胞质脱水浓缩,在菌体内形成一个圆形或椭圆形的小体。 简答题 1.简述微生物的种类。 细胞类型特点种类 非细胞型微生物无典型细胞结构、在 活细胞内增殖 病毒 原细胞型微生物仅有原始细胞的核、 缺乏完整细胞器 细菌、放线菌、衣原 体、支原体、立克次 体 真核细胞型微生物有完整上的核、有完 整的细胞器 真菌 2.简述细菌的大小与形态。 大小:测量单位为微米(μm) 1μm = 1/1000mm 球菌:直径1μm 杆菌:长2~3μm 宽0.3~0.5μm 螺形菌:2~3μm 或3~6μm 形态:球形、杆形、螺形,分为球菌、杆菌、螺形菌。3.分析G+菌、G-菌细胞壁结构与组成特点及其医学意义。细菌细胞壁构造比较 G+菌G-菌 粘肽组成 聚糖骨架 四肽侧链 五肽交联桥 同左 同左 无 特点三维立体框架结构,强 度高 二维单层平面网络,强度 差 含量多,50层少,1~2层 其他成分磷壁酸外膜:脂蛋白、脂质双层、 脂多糖 医学意义: 1、染色性:G染色紫色(G+)红色(G-) 2、抗原性:G+:磷壁酸G-:特异性多糖(O抗原/菌体抗原) 3、致病性:G+:外毒素、磷壁酸G-:内毒素(脂多糖) 4、治疗:G+:青霉素、溶菌酶有效G-:青霉素、溶菌酶无效 4.简述L型菌的特性。 1、法国Lister研究院首先发现命名。 2、高度多形性,不易着色,革兰阴性。 3、高渗低琼脂血清培养基2-7天荷包蛋样、颗粒、丝状菌落。 4、具致病性,常在应用某些抗生素(青霉素、头孢)治疗中发生,且易复发。 5、临床症状明显但常规细菌培养(-),予以考虑L型菌感染 5.分析溶菌酶、青霉素、链霉素、红霉素的杀菌机制。 溶菌酶:裂解 -1,4糖苷键,破坏聚糖骨架。 青霉素:竞争转肽酶,抑制四肽侧链和五肽交联桥的连接。 以上两者主要是抑制G+菌。 链霉素:与细菌核糖体的30S亚基结合,干扰蛋白质合成。 红霉素:与细菌核糖体的50S亚基结合,干扰蛋白质合成。 6.为什么G-菌的L型菌比G+菌的L型菌更能抵抗低渗环境? G+菌细胞壁缺陷形成的原生质体,由于菌体内渗透压很高,可达20—25个大气压,故在普通培养基中很容易胀裂死亡,必须保存在高渗环境中。G-菌细胞壁中肽聚糖含量较少,菌体内的渗透压(5—6个大气压)亦比G+菌低,细胞壁缺陷形成的原生质球在低渗环境中仍有一定的抵抗力。 7.叙述细菌的特殊结构及其医学意义。 荚膜:a、抗吞噬作用——为重要毒力因子 b、黏附作用——形成生物膜 c、抗有害物质的损伤作用 鞭毛:a、细菌的运动器官 b、鉴别细菌(有无鞭毛、数目、位置) c、抗原性——H抗原,细菌分型 d、与致病性有关(粘附、运动趋向性) 菌毛:普通菌毛:粘附结构,可与宿主细胞表面受体特异性结合,与细菌的致病性密切相关。 性菌毛:a、传递遗传物质,为遗传物质的传递通道。 b、作为噬菌体的受体 芽胞:a、鉴别细菌(有无芽胞、位置、大小、形状) b、灭菌指标(指导灭菌,以杀灭芽胞为标准) 8.分析细菌芽胞抵抗力强的原因。 1、含水量少(约40%)—繁殖体则占80% 2、含大量的DPA(吡啶二羧酸) 3、多层致密膜结构 第2章细菌的生理 名词解释 热原质:热原质(致热源),是细菌合成的一种注入人体或动物体内能引起发热反应的物质。产生热致源的细菌大都为格兰阴性菌,热原质即其细胞壁的脂多糖。 菌落:单个细菌分裂繁殖成肉眼可见的细菌集团。分为三型: 1.光滑型菌落 2.粗糙型菌落

溶酶体的结构、功能与疾病

真核生物细胞器 溶酶体的研究综述 摘要:溶酶体(lysosomes)是具有一组水解酶、并起消化作用的细胞器。溶酶体为细胞内的一种细胞器,外被单位膜,内含多种更至些壁堕,能分解各种内生性或外源性物质,被视为细胞内的消化装置。所有动物细胞(除成熟的红细胞外)和许多植物细胞均有溶酶体。它是细胞普遍存在的一种细胞器。内部基质含有多种高浓度的酸性水解酶。许多研究表明,溶酶体态细胞的正常生理活动、病理过程和药理作用等方面都多有非常重要的作用。本文将从溶酶体的发现、化学组成、结构、发生、功能极其与人类的关系等多个方面对之展开深入探讨。 关键词:溶酶体发现化学组成结构发生功能 前言:溶酶体(lysosome)为细胞浆内由单层脂蛋白膜包绕的内含一系列酸性水解酶的小体。是细胞内具有单层膜囊状结构的细胞器,溶酶体内含有许多种水解酶类,能够分解很多种物质,溶酶体被比喻为细胞内的“酶仓库”“消化系统”。Christian de Duve(1955)在大鼠肝脏中,从比线粒体分区稍轻的地方得到含有水解酶的颗粒分区,并以可进行水解(lyso)的小体(some)这个意义而命名为溶解体(lysosome)。溶酶体中含有40种以上的酸性水解酶,是在酸性区域具有最适pH的水解酶组。据电子显微镜观察,溶酶体是由6~8毫微米厚的单层膜所围着的直径为0.4微米至数微米的颗粒或小泡。由于其形态极其多样化,所以把对酸性磷酸酶活性为阳性的物质鉴定为溶酶体。溶酶体可分为三大类,初级溶酶体(primary lysoso-me)、次级溶酶体(secondary lysosome)和残余小体。溶酶体是由高尔基体断裂产生,单层膜包裹的小泡,数目可多可少,大小也不等,溶酶体的pH为5左右,是其中酶促反应的最适pH。 1 溶酶体的发现 1955年de Duve与Novikoff首次发现溶酶体(lysosome)。德迪夫(DE Duve,Christian Rene)比利时细胞学家。在二十世纪的五十年代初期,Christian de Duve 和他的同事在研究亚细胞组分时发现了溶酶体,不过,溶酶体的发现带有很大的偶然性。 de Duve 对胰岛素在碳水化合物代谢中的作用很感兴趣, 他打算通过对葡糖-6-磷酸酶在细胞内的定位来研究胰岛素对碳水化合物代谢的影响, 该酶在细胞内的作用是向血液中释放葡萄糖。 在试验中,他们选用酸性磷酸酶作为对照,因为酸性磷酸酶并不参与碳水化合物的代谢。他们先用0.25M的蔗糖对肝组织进行匀浆,然后用差速离心分离细胞组分。实验中发现葡糖-6-磷酸酶总是与微粒体在一起被分离。这一发现非常重要,因为当时人们普遍认为微粒体就是破碎的线粒体囊泡,由于葡糖-6-磷酸酶只与微粒体相关, 并不与线粒体一起被分离, 这就有理由推测, 微粒体是不同于线粒体的细胞结构。

病原微生物第5章 细菌的遗传与变异习题与答案

第5章细菌的遗传与变异 一、选择题 A型题 1.下列微生物中,不受噬菌体侵袭的是: A.真菌B.细菌C.支原体D.螺旋体E.立克次体 2.关于噬菌体的叙述,下列哪项是正确的? A.具有严格的宿主特异性B.可用细菌滤器除去C.含DNA和正RNA D.对理化因素的抵抗力比一般细菌弱E.能在无生命的人工培养基上生长 3.用来测量噬菌体大小的单位是: A.cm B.mm C.μm D.nm E.dm 4.噬菌体的生物学特性与下列哪种微生物相似? A.细菌 B.病毒 C.支原体 D.衣原体 E.立克次体 5.噬菌体所含的核酸是: A.DNA B.RNA C.DNA和RNA D.DNA或RNA E.DNA或RNA 6.溶原性细菌是指: A.带有前噬菌体基因组的细菌 B.带有毒性噬菌体的细菌 C.带有温和噬菌体的细菌 D.带有R质粒的细菌 E.带有F质粒的细菌 7.能与宿主菌染色体整合的噬菌体基因组称: A.毒性噬菌体 B.溶原性噬菌体 C.温和噬菌体 D.前噬菌体 E.以上都不是 8.既有溶原期又有裂解期的噬菌体是: A.毒性噬菌体 B.前噬菌体 C.温和噬菌体 D.β噬菌体 E.λ噬菌体 9.噬菌体感染的特异性取决于: A.噬菌体蛋白与宿主菌表面受体分子结构的互补性 B.其核酸组成与宿主菌是否相符C.噬菌体的形态D.细菌的种类E.噬菌体的核酸类型 10.毒性噬菌体感染细菌后导致细菌: A.快速繁殖B.停止繁殖C.产生毒素D.基因突变E.裂解 11.细菌的 H-O变异属于: A. 形态变异 B.毒力变异 C.鞭毛变异 D.菌落变异 E.耐药性变异 12.BCG 是有毒牛型结核杆菌经下列哪种变异形成的? A. 形态变异 B.毒力变异 C.抗原变异 D.耐药性变异 E.菌落变异 13.S-R 变异是指细菌的: A. 形态变异 B.结构变异 C.耐药性变异 D.抗原变异 E.菌落变异 14.细菌的遗传物质包括: A. 染色体、核糖体、前噬菌体 B.染色体、质粒、异染颗粒 C.核质、核糖体、质粒 D 核质、质粒、转位因子 E.染色体、质粒、中介体 15.编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B. R 质粒 C.Vi 质粒 D. Col 质粒 E. K质粒 16.关于质粒的叙述,下列哪项是错误的? A. 是细菌染色体以外的遗传物质 B.具有自我复制的能力 C. 可自行丢失或经理化因素处理后消除 D. 是细菌必备的结构 E. 带有遗传信息,赋予细菌某些形状特征 17.关于细菌的耐药性突变,下列叙述错误的是: A. 可以自然发生 B. 可经理化因素诱导发生 C. 细菌接触药物之前就已发生 D .细菌在药物环境中逐渐适应而变为耐药株 E. 药物仅起筛选耐药株的作用

线粒体功能障碍和人体疾病的研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚 学号:201207730 指导教师:谢放 完成日期:2014-7-16

线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为: (1)外膜与内质网或细胞骨架连接形成网络;(2)内外膜间随机分布横跨两端,宽20nm 的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子通道蛋白;内膜中有电子传递链(呼吸链)复合物I~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-ducing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP转换蛋白(ANT)和线粒体膜转运孔(mitochondrialper-meabletransition pore,MPTP)存在于接触点;三羧酸循环(TCA cycle)酶系、存储钙离子的致密颗粒及线粒体基因组则包含于基质中。【1】与核基因组(nDNA)不同,mtDNA 结构简单,仅含16 569 个碱基,编码2 种rRNA、22 种tRNA和13种参与呼吸链形成的多肽。通常裸露且不含内含子,既缺乏组蛋白保护和完善的自我修复系统,又靠近内膜呼吸链,极易受环境影响,突变频率比nDNA 高10~20 倍。 1.2线粒体功能作为糖、脂肪、氨基酸最终氧化释能的场所,线粒体的主要功能是进行氧化磷酸化、合成ATP,为生命活动提供直接能量。除此以外,它还扮演着多种角色,其中之一是充当“钙库”,参与细胞内钙离子的信号传导。

溶酶体病综述

溶酶体酶的异常释放引起的两种疾病综述 【摘要】 随着科学技术的发展,人们更多的从细胞生物水平上解释有关疾病,溶酶体酶异常释放会引起某些疾病,本文就溶酶体酶的异常释放引起的两种疾病——矽肺、痛风,从细胞水平,对这两种疾病的发病机制进行综述。 【关键词】 溶酶体溶酶体酶矽肺痛风发病机制 【正文】 1.矽肺 1.1概述 硅沉着病又称为矽肺,是尘肺中最为常见的一种类型,是最早被认识的职业性肺病,见于有多年硅尘吸入史的患者。患者因长期吸入大量含有游离二氧化硅(石英)粉尘导致永久性肺组织瘢痕形成。严重时影响呼吸功能,丧失劳动力。可分为速发型和晚发型。 矽肺多在从事接触二氧化硅粉尘的矿工、工人、工种兵和农民(参加铁路建设、乡镇工业接触粉尘的工种)中发生。接触石英粉尘是否会发病取决于多种因素,长期处于高二氧化硅的环境易感矽肺,此外,还可因在短期内吸入大量游离二氧化硅粉尘,即使脱离接触后,也可能若干年后出现晚发性矽肺。接触粉尘快者不到1年,慢者可在10多年后发生矽肺。 矽肺(silicosis)是以肺组织纤维化为主的疾病[1]。矽结节形成是肺部纤维化最简单的形式,但其发病机制仍不清楚,国内外学者在探索其发病机理方面做了大量的研究,现综述如下。1.2矽肺发病机制 石英是如何引起肺纤维化的,学者们曾提出过多种假说,如机械刺激学说,化学中毒学说和硅酸聚合学说;近年又提出可表面活性学说和免疫学说,但都难以圆满的解释发病过程,现概括如下: (1)石英颗粒表面的羟基活性基团与肺泡巨噬细胞、多核白细胞等构成氢键,产生氢的交换和电子传递,使细胞膜流动性降低,通透性增高、进而破裂。 (2)石英在粉碎过程中,硅氧键断裂产生硅载自由基,于空气中的O2, CO2、水或液体中水反应生成自由基和过氧化氢。参与生物膜过氧化反应,引起膜损伤。 (3)石英损害巨噬细胞膜,导致细胞膜上的Na+-k+ATP酶和Ca+-ATP酶失活,线粒体和内织网Ca+-ATP酶失活,钙离子由细胞器释放入胞浆,细胞外的钙离子大量进入细胞内,形成“钙超载”,导致细胞死亡、破裂。 (4)巨噬细胞受损后,释放出多种细胞因子,包括白细胞介素Ⅰ、肿瘤坏死因子、纤维粘联蛋白、 转化生长因子等。这些因子参与刺激成纤维细胞增生或网织纤维及胶原纤维的合成。 (5)肺泡Ⅰ型上皮细胞在石英的作用下,变性肿胀,崩解脱落,当肺泡Ⅱ型上皮细胞不能及时修补时,基底膜受损松解,暴露间质,激活成纤维细胞增生。 (6)巨噬细胞功能改变及受损后,启动免疫系统,形成抗原抗体复合物,沉淀在网状纤维上,形成矽结节透明样物质。 2 矽肺纤维化发生中的细胞机制 肺泡巨噬细胞是矽尘作用的主要靶细胞。矽尘进入肺泡后,肺泡巨噬细胞吞噬矽尘颗粒,细胞活化并产生大量炎性因子和致纤维化因子,如活性氧(ROS)、活性氮(RNS)、脂多糖(LPS)、细

人类线粒体基因组与疾病

人类线粒体基因组与疾病 1、线粒体基因及基因组介绍 人类线粒体DNA(mtDNA),共包含37个基因,这37个基因中有22个编码转移核糖核酸(tRNA)、2个编码核糖体核糖核酸(12S和16S rRNA),13个编码多肽。 2、线粒体基因及基因组分析的现状和临床意义 对于可疑线粒体病的患者来说,理想的遗传学诊断方法是发现导致线粒体结构和功能缺陷的相关基因突变。这些基因突变可能在mtDNA上,也可能发生在核基因上,线粒体的遗传方式可能为常染色体隐形遗传、X-连锁遗传、母系遗传,有些还是新突变。由于线粒体病涉及基因众多,目前临床只能选择少数常见的线粒体基因位点进行突变和缺失筛查,阳性率很低,大多数患者难以获得准确的病因诊断。 3、线粒体基因及基因组分析测定 (1)13个编码多肽的基因 编码产物基因分 析 基因变异对应的常见线粒体病种 类 NADH dehydrogenase (complex I)MT-ND1Leber遗传性视神经病 MT-ND2心肌线粒体病,Leber遗传性视神经病 MT-ND3进肌阵挛,癫痫,视神经萎缩MT-ND4 Leber遗传性视神经病,线粒体肌 病,Leber遗传性视神经病,张力 障碍 MT-

ND4L Leber遗传性视神经病 MT-ND5Leigh综合征,线粒体脑肌病伴乳酸中毒及中风样发作综合症 MT-ND6Leber遗传性视神经病,线粒体脑肌病伴乳酸中毒及中风样发作综合症,糖尿病,肌张力障碍 coenzyme Q-cytochrome c reductase/Cytochrome b(complex III)MT-Cytb 慢性游走性红斑,Leber遗传性视 神经病,线粒体肌病,心肌线粒 体病,线粒体脑肌病伴乳酸中毒 及中风样发作综合症,帕金森病 cytochrome c oxidase(complex IV)MT- COX1 肌红蛋白尿运动神经元疾病,铁 粒幼细胞贫血 MT- COX2 线粒体肌病,线粒体多系统疾 病,线粒体脑肌病 MT- COX3 Leigh综合征,慢性游走性红斑, 骨骼肌溶解症 ATP synthase MT- ATP6 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 MT- ATP8 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 (2)22个编码tRNA的基因 Alanine MT-TA进行性眼外肌麻痹Arginine MT-TR

病原生物学检验习题集

病原生物学检验习题集 一、名词解释 1.L型细菌:是指在某情况下,(如受溶菌酶或青霉素作用),细菌细胞壁中肽聚糖结构可 遭破坏,或其合成受到抑制,当菌细胞壁受损后细菌并不一定死亡而成为细胞壁缺陷的细菌,称L型细菌。 2.转化:是指受体菌直接摄取供体菌的游离DNA片段,并正整合到自己的基因组中,从 而获得新的遗传性状叫转化。 3.SPA:葡萄球菌A蛋白(SPA)是绝大多数金黄色葡萄球菌细胞壁的一种表面蛋白。SPA 可与除IgG3外的IgG分子的Fc段发生非特异性结合,二者结合后,IgG的Fab段仍然可以与特异性抗原结合,实验室常利用SPA这种特性进行协同凝集试验,广泛应用于多种微生物抗原的检测。 4.抗原性漂移:通常认为流感病毒基因发生了点突变,变异幅度小或连续变异,部分人群 对新毒株没有免疫力,引起小规模流行。一般认为是属于量变,即亚型内变异。 5.AIDS:人类获得性免疫缺陷综合征。病原体为HIV。传播途径主要为性传播、血液传 播和垂直传播。临床表现经过原发感染急性期、无症状潜伏期、AIDS相关综合征及典型AIDS四阶段,最后常死于感染和相关肿瘤。 6.KIA: 克氏双糖实验,可检测出细菌是否能够分解乳糖、葡萄糖, 7.串珠试验:将待检菌接种于含青霉素0.05-0.5U/ml培养基上,经37℃培养6小时后, 炭疽杆菌可发生形态变化,显微镜下可见大而均匀的圆球状菌体,成串珠样排列,为串珠试验阳性。 8.卫星现象:流感嗜血杆菌章节 9.汹涌发酵:将产气荚膜梭菌接种于牛乳培养基中,该菌能分解乳糖产酸,使酪蛋白凝固, 同时产生大量气体,将凝固的酪蛋白冲成蜂窝状,并将液面上的凡士林向上推挤,甚至冲开管口棉塞,气势凶猛,称为汹涌发酵。 10.转导:是以温和噬菌体为媒介,将供体菌DNA片段转移到受体菌内,使受体菌获得新 的遗传性状,称转导。 11.溶原性转换:是指细菌因染色体上整合有前噬菌体,从而获得新的遗传性状。如产气白 喉杆菌的形成。 12.接合:是指两个细菌直接接触,供体菌通过性菌毛将DNA转入受体菌内,使受体菌获 得新的遗传性状,称接合。 13.肥达试验:是用已知伤寒沙门菌菌体(O)抗原和鞭毛(H)抗原,以及引起副伤寒的 甲型副伤寒沙门菌、肖氏沙门菌和希氏沙门菌H抗原的诊断菌液与受检血清作试管或微孔板凝集试验,测定受检血清中有无相应抗体及其效价的试验,用于肠热症的辅助诊

溶酶体研究进展

溶酶体的研究进展 摘要:溶酶体是动物细胞中重要的细胞器, 其存在的完整性与动物生理病理均密切相关。溶酶体是真核细胞中为单层膜所包围的细胞质结构,内部pH 4~5,含丰富的水解酶,具有细胞内的消化功能。新形成的初级溶酶体经过与多种其他结构反复融合,形成具有多种形态的有膜小泡,并对包裹在其中的分子进行消化。因此,溶酶体具有溶解或消化的功能,为细胞内的消化器官。 关键词:溶酶体; 细胞器; 生命活动 一、前言 溶酶体( Lysosome) 于20 世纪50 年代被发现,经过半个世纪的研究, 发现其在动物大多数门中存在。植物的液泡也可被认为是一种溶酶体。单细胞的原生动物也具有与高等动物十分相似的溶酶体,其功能是作为细胞内的消化管道。只有原核生物没有溶酶体。典型的细胞中含有约数百个溶酶体, 直径介于几百纳米至几个微米之间, 在不同的细胞类型中, 其数量和形态有很大差异, 即使在同一种细胞中, 其大小、形态也不尽相同( 异质性细胞器) 。利用密度梯度离心可分离出较高纯度的溶酶体, 通过对酸性磷酸酶的组织化学染色, 可进行光镜和电镜观察, 目前还可以利用免疫亲和抗体或荧光染料进行原位观察。 二、溶酶体的结构与功能 溶酶体最外层为单层脂膜,7 ~10 nm 厚,其磷脂成分与质膜接近,而与其他细胞器膜组成不同,这可能是由于质膜与溶酶体膜融合的结果。一般认为,溶酶体膜主要是从高尔基体出芽生成,再与细胞内的吞噬泡融合。鞘磷脂可通过胆固醇与膜紧密结合稳定溶酶体,可能是其与胆固醇结合影响了膜的流动性,形成了有利于膜稳定的结构。溶酶体膜与细胞其他膜结构上的不同之处在于溶酶体膜上有V型H+-ATPase,通过水解ATP将质子转运到溶酶体内,以维持其酸性环境;膜上含有多种转运蛋白,可将有待降解的生物大分子转运进溶酶体,并将水解的产物转运出去;膜内表面含有大量糖链,可以防止其被水解酶水解,膜外表面带负电荷,主要为唾液酸,可能与膜融合的识别有关。 溶酶体内部pH比胞液的pH低大约2个单位,该酸性环境不仅有利于维持其水解酶活性, 还有利于催化酶的水解过程。碱性物质可以升高溶酶体内的pH,抑制其对蛋白质的降解。低pH也是多种生物大分子跨溶酶体膜转运的调控因素之一,溶酶体的大多数转运体系都对跨膜pH 梯度敏感。溶酶体的质子漏出(质子梯度改变)会影响其他离子的通透平衡, 进而影响溶酶体的渗透稳定性。此外,V型H+-ATPase抑制剂( Bafilomycin A 或Concanamycin A1) 可引起凋亡,而F型H+-ATPase抑制剂寡霉素( Oligomycin)则无此作用。 溶酶体内Ca2+含量约为400μmol,比胞液的浓度高很多,升高溶酶体内pH可以使其Ca2+浓度下降,因此溶酶体也被认为是细胞内的钙库。GPN通过选择性渗透膨胀,使溶酶体通透,细胞内Ca2+浓度上升了近10倍。该现象是否会对细胞的钙离子信号途径产生影响尚有待进一步研究。此外,溶酶体膜可保证其内部金属离子的富集,这些金属离子如Fe3+产生的自由基可加速溶酶体内物质的降解。溶酶体内含有约60 种水解酶,大多是糖蛋白。可溶性的酶多以阴离子复合形式存在, 结合性酶多以水溶性多聚阳离子复合形式结合于带负电的膜上(在溶酶体内低于pH 5 的环境下),并不水解所结合的膜脂分

基因诊断试题

(一)选择题 A型题 1.判定基因结构异常最直接的方法是 A.PCR法 B.核酸分子杂交 C.DNA序列测定 D.RFLP分析 E.SSCP分析 2.不符合基因诊断特点的是 A.特异性强 B.灵敏度高 C.易于做出早期诊断 D.样品获取便利 E.检测对象仅为自体基因 3.遗传病基因诊断的最重要的前提是 A.了解患者的家族史 B.疾病表型与基因型关系已被阐明 C.了解相关基因的染色体定位 D.了解相关的基因克隆和功能分析等知识 E.进行个体的基因分型 4.若要采用Southern或Northern印迹方法分析某特定基因及其表达产物,需要 A.制备固定在支持物上的组织或细胞

B.收集组织或细胞样品,然后从中提取总DNA或RNA C.利用PCR技术直接从标本中扩增出待分析的片段 D.收集组织或细胞样品,然后从中提取蛋白质 E.收集培养细胞的上清液 5.目前基因诊断常用的分子杂交技术不包括哪一项A.Southern印迹 B.Western印迹 C.Northern印迹 D.DNA芯片技术 E.等位基因特异性寡核苷酸分子杂交 6.SNP的实质是 A.碱基缺失 B.碱基插入 C.碱基替换 D.移码突变 E.转录异常 7.DNA指纹的遗传学基础是 A.连锁不平衡 B.DNA的多态性 C.串联重复序列 D.MHC的限制性 E.MHC的多样性

8.在对临床病例进行基因诊断时,若遇到不能检测出已知类型突变的情况,如果表型明确指向某种疾病,适用下列哪一类筛查技术 A.PCR法 B.ASO分子杂交 C.反向点杂交 D.变性高效液相色谱(DHPLC) E.STR拷贝异常的诊断 9.生殖细胞若发生基因结构突变可引起哪种疾病 A.肿瘤 B.高血压 C.糖尿病 D.遗传病 E.传染病 10.PCR技术容易出现 A.假阴性结果 B.假阳性结果 C.灵敏度不高 D.适用不广 E.操作繁冗 11.目前检测血清中乙肝病毒最敏感的方法是 A.斑点杂交试验 B.等位基因特异性寡核苷酸分子杂交 C.Southern印迹

表观遗传学与癌症肿瘤

表观遗传学与癌症肿瘤 卢向成20121220 摘要:表观遗传学是指研究基因表达或蛋白表达的改变不涉及DNA序列变化,但又可以通过细胞分裂和增殖而稳定遗传现象的遗传学分支领域。其研究对象是表观遗传修饰,目前认识到的表观遗传修饰主要包括DNA甲基化、组蛋白修饰和染色质重塑等。近年来,随着人们对表观遗传学认识的深入,尤其是DNA甲基转移酶抑制物、组蛋白乙酰化抑制剂等在治疗肿瘤患者的成功临床应用,表观遗传学逐渐成为肿瘤研究的热点。主要对DNA甲基化和组蛋白修饰两种表观遗传修饰的分子调控机制、与肿瘤发生的关系及其在肿瘤的表观遗传治疗中的研究进展作一综述。 关键词:表观遗传学、癌症、肿瘤 1表观遗传学表 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。 2癌症肿瘤中存在表观遗传修饰的异常 2.1 DNA甲基化修饰与癌症肿瘤 DNA甲基化是指在DNA甲基转移酶(DNMTs)的催化下,将甲基基团转移到胞嘧啶碱基上的一种修饰方式。它主要发生在富含双核苷酸CpG岛的区域,在人类基因组中有近5万个CpG岛[5]。正常情况下CpG岛是以非甲基化形式(活跃形式)存在的,DNA甲基化可导致基因表达沉默。DNMTs的活性异常与疾病有密切的关系,例如位于染色体上的DNMT3B基因突变可导致ICF综合征。有报道[6]表明,重度女性侵袭性牙周炎的发生与2条X染色体上TMP1基因去甲基化比例增高有关。DNMT基因的过量表达与精神分裂症和情绪障碍等精神疾病的发生也密切相关。风湿性疾病等自身免疫性疾病特别是系统性红斑狼疮(SLE)与DNA甲基化之间关系已经确定[7],在SLE病人的T细胞发现DNMTs活性降低导致的异常低甲基化。启动子区的CpG岛过度甲基化使抑癌基因沉默,基因组总体甲基化水平降低导致一些在正常情况下受到抑制的基因如癌基因被激活[8],都会导致细胞癌变,进而导致癌症的产生。 2.2 组蛋白修饰与癌症肿瘤 组蛋白的修饰包括乙酰化、甲基化、磷酸化、泛素化、糖基化、ADP核糖基化、羰基化等,组成各种组蛋白密码。其中,研究最多的是乙酰化、甲基化。一般来说,组蛋白乙酰化标志着其处于转录活性状态;反之,组蛋白低乙酰化或去乙酰化表明处于非转录活性的常染色质区域或异染色质区域。乙酰化修饰需要乙酰化转移酶(HATs)和去乙酰化酶(HDACs)参与。组蛋白修饰酶异常可导致包括癌症在内的各

人类线粒体突变与线粒体疾病

人类线粒体突变与线粒体疾病 食科1083 袁惠雄 30 线粒体是细胞内唯一存在于细胞核外又带有遗传物质的细胞器,由于这一特殊性,有关其进化和来源的问题曾有过很多争论。但因为与临床的关系过去不很明确,对它的生物学意义并未引起足够的重视。80年代后随着线粒体的序列和基因组组成的测定,以及发现了线粒体DNA(mtDNA)突变可能与人类疾病相关以来,线粒体与人类健康的问题开始受到关注。 1 mtDNA分子生物学 人mtDNA分子是一个长16 569bp的双链闭环超螺旋DNA。Anderson等[1]测定的人类mtDNA结构表明,它有13个多肽编码基因,22个tRNA基因和2个rRNA基因。这些基因呈紧密排列,基因内没有内含子,但有一个长1~2kntp的非编码区,称为控制区,也叫取代环(D-1oop),含有转录及复制的调控信号。 mtDNA的双链中一条称为重链(H链),另一条是轻链(L链)。重链上有28个基因,轻链则有9个。每条链各有自己的启动子。转录产生了连续的多顺反子,经加工后成为成熟的rRNAs,tRNAs及mRNA。 2 mtDNA突变 由于特殊的生物学环境和遗传学地位,mtDNA更容易发生突变。目前解释其突变率高的原因有:mtDNA呈裸露状态,没有组蛋白的保护,容易受到侵害;线粒体内缺乏较有效的修复系统;复制时有不对称状态,出现的单链DNA有自发的脱氨基效应;复制频率和次数较nDNA高。对这些假设还无一致认识,但已发现突变仍有一定的特征,即基因编码序列比较保守,不同种属间可以看到基因序列有较高保守性D-环区则常有多态现象,不同人种甚至不同家族间即可有差异。这一性质现已被用作亲缘关系鉴定,在法医学、犯罪学和骸骨分析等领域中应用。 在可能导致mtDNA突变的环境有害因子中,研究较多的是活性氧自由基。线粒体在呼吸链代谢中产生的超氧粒子和电子转运过程中生成的羟自由基,都可能对mtDNA造成损伤。受此影响,DNA链上的脱氧鸟苷(dG)转化成羟基加成物8-羟基脱氧鸟苷(8-OH-dG),随后在DNA 复制中可诱发点突变[2]。点突变的产生,提高了DNA双链的分离(separation)机会,促使mtDNA发生进一步突变,如缺失和重排。重排是发生在缺失之后的事件。缺失的mtDNA片段,既可能形成细胞内的小环(minicircle)[3],也可能在mtDNA或nDNA上造成重排,而发生在nDNA上的重排,通常较mtDNA上的重排后果更严重更迅速。例如,激活原癌基因或使抑癌基因失活,从而诱发肿瘤。许多资料显示,mtDNA突变有“热点”及与之相应的序列和结构,这也许对预防和治疗因mtDNA突变引起的疾病有所启示。

线粒体病研究进展

基因突变引起的线粒体疾病:最新研究进展和所面临的挑战 线粒体病是所有遗传性疾病中最常见也是最复杂的疾病。尽管在过去的几年关于线粒体的研究进展有显著的进展,由线粒体基因和细胞核基因共同参与的线粒体病仍面临独特的挑战。对线粒体病的深入了解,在提高了诊断率的同时也发现了一些新的阻止严重的线粒体疾病的遗传方法。这些进步还有其他的进步对患者的治疗产生了很大的影响,但是仍然还有相当大的挑战,尤其在一些治疗性领域,哪些显现临床症状的患者合并有线粒体功能障碍和不同组织器官受损在很多线粒体病患者中都有发现。本综述挑选了线粒体病的一些最新进展,并且对其中重要的进展领域着重讨论。 线粒体疾病是人类遗传病中的一个重要组成部分,在这我们定义哪些遗传缺损引起线粒体氧化磷酸化反应主要缺陷的病变,氧化磷酸化反应是细胞ATP的主要来源。线粒体的电子传递链是人类生命必须的,由四个亚基组成的复合体(CI到CIV)和两个电子传递载体(辅酶Q和细胞色素C)组成。这个系统产生一个跨膜质子梯度被蛋白复合物成为复合物V(FoF1ATP合酶)利用合成ATP.ATP是细胞能量的重要来源。自由移动的呼吸复合体和流动的载体共同存在于线粒体内膜上形成一个大的结构称为呼吸链。 氧化磷酸化酶蛋白在线粒体基因和核基因组遗传物质的双重控制下。环形的线粒体基因组(mtDNA)有16569个碱基对组成,在所有的细胞中呈现多重拷贝。MTDNA仅仅编码37个基因产物,其中有13个多肽链式氧化磷酸化亚基的结构,还有22个转运RNAs(tRNA)和两个核糖体RNAs(rRNA)参与他们的合成反应。剩下的线粒体蛋白质包括大多数的氧化磷酸化亚基,装配元件,氧化磷酸化复合体的辅助因子,它们参与mtDNA的损伤修复和表达,细胞器内的蛋白体,和细胞核编码的线粒体动力学,在细胞质中合成,然后运输到线粒体中。 线粒体病的临床特点和患病率 线粒体疾病的巨大挑战之一是病人的临床症状有显著性差异,涉及不同的器官和系统。线粒体疾病可能出现在生命的各个时期。病人在童年发病往往有严重和累积性疾病由于隐性遗传核基因突变(3)。临床症状包括Leigh综合症和Alpers综合症,伴有明显的中枢神经系统受损。然而,有些病人可能会出现心脏、骨骼肌或其他器官的受累表现力遗传异质性。在成人发病患者中,以mtDNA突变为主,孟德尔疾常染色体显性遗传病是由于重要的基因产物突变引起的,如mtDNA复制结构原件(如DNA聚合酶γ(POLG)和解旋酶(PEO1)],通常也引起严重的常染色体隐性疾病在儿童时期,也可能在以后的生活中显现。和儿时临床症状一样的,有普遍认可临床表型在成人线粒体疾病中,包括进行性眼外肌麻痹,亚急性失明与leber遗传性视神经病变(LHON),MELAS(线粒体脑病、乳酸酸中毒和卒中样发作),MERRF(肌阵挛癫痫伴蓬毛样红纤维)。然而,许多患者不是很符合确定的临床综合症,这也许是因为特殊的原因有那些常见的m.3243 A >G的突变(4),在近三分之一的成年线粒体疾病患者中出,经常拖延病人诊断。 关于线粒体疾病的另一个关键目标是了解组织特异性与特定的线粒体基因型的关系。一个好的这方面的例子就是常见的仅仅涉及视神经方面初选LHON突变的患者(5)。据推测,视网膜神经节细胞对这些复杂突变特别敏感,但是有趣的是,同样的突变引起的LHON在其他一些患者中也会引起严重肌张力障碍无明显的眼部受累(6)。这也是例证,观察到表型差异在mt-氨酰基tRNA突变的患者中,尤其是普遍存在的酶突变的患者(见下文)。然而这种选择性的脆弱性,但并不是线粒体疾病唯一的,也见于许多神经系统疾病。这方面的进步缓慢,因为人类线粒体疾病建模困难。目前,修改线粒体基因组在一个特殊的方法是困难的(见下文),和许多不同的动物模型核遗传缺陷不能呈现人类的表型(7、8)。显然,mtDNA 的异质性无法解释显著的组织差异在这些疾病中,但有趣的地方是, 线粒体转录物也隐藏实质的异质性在正常个体(9);目前知之甚少关于可能导致这样的RNA异质性, 但是另一种方面氧化磷酸化构成成分可以变化在不同个体、组织或细胞的内部。

相关文档
最新文档