信号的复频域分析——拉普拉斯变换和拉普拉斯逆变换

信号的复频域分析——拉普拉斯变换和拉普拉斯逆变换
信号的复频域分析——拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录

1.Matlab介绍.............. 错误!未定义书签。

2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5)

2.1.拉普拉斯变换曲面图的绘制 (5)

2.2.拉普拉斯变化编程设计及实现 (7)

2.3.拉普拉斯逆变化编程设计及实现 (8)

3.总结 (14)

4.参考文献 (15)

1.Matlab介绍

MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。

经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面:

1)数学计算;

2)新算法研究开发;

3)建模、仿真及样机开发;

4)数据分析、探索及可视化;

5)科技与工程的图形功能;

6)友好图形界面的应用程序开发。

1.1Matlab入门

Matlab7.0介绍

Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。

在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。

MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MA TLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MA TLAB具有友好的用户

界面与易学易用的帮助系统。用户在命令窗里通过help 命令可以查询某个函数的功能及用法,命令的格式极为简单。其次,MATLAB 程序设计语言把编辑、编译、连接、执行、调试等多个步骤融为一体,操作极为简单。除此之外,MATLAB7.0还具有强大的图形功能,可以用来绘制多姿多彩的图形,直观而形象。

综上,在进行信号的分析与仿真时,MATLAB7.0无疑是一个强大而实用的工具。尤其对于信号的分析起到了直观而形象的作用,非常适合与相关课题的研究与分析

2 利用Matlab 实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计

2.1 拉普拉斯变换曲面图的绘制

连续时间信号)(t f 的拉普拉斯变换定义为:

?+∞

-=0)()(dt e t f s F st

(6-1)

其中ωσj s +=,若以σ为横坐标(实轴),ωj 为纵坐标(虚轴),复变量s 就构成了一个复平面,称为s 平面。

显然,)(s F 是复变量s 的复函数,为了便于理解和分析)(s F 随s 的变化规律,可以将)(s F 写成:

)

()()(s j e

s F s F ?= (6-2)

其中,)(s F 称为复信号)(s F 的模,而)(s ?则为)(s F 的幅角。

从三维几何空间的角度来看,)(s F 和)(s ?对应着复平面上的两个平面,如果能绘出它们的三维曲面图,就可以直观地分析连续信号的拉普拉斯变换)(s F 随复变量s 的变化规律。

上述过程可以利用MATLAB 的三维绘图功能实现。现在考虑如何利用MATLAB 来绘制s 平面的有限区域上连续信号)(t f 的拉普拉斯变换)(s F 的曲面图,现以简单的阶跃信号)(t u 为例说明实现过程。

我们知道,对于阶跃信号)()(t u t f =,其拉普拉斯变换为s

s F 1

)(=

。首先,

利用两个向量来确定绘制曲面图的s 平面的横、纵坐标的范围。例如可定义绘制曲面图的横坐标范围向量x1和纵坐标范围向量y1分别为:

x1=-0.2:0.03:0.2; y1=-0.2:0.03:0.2;

然后再调用meshgrid()函数产生矩阵s ,并用该矩阵来表示绘制曲面图的复平面区域,对应的MATLAB 命令如下:

[x,y]=meshgrid(x1,y1); s=x+i*y;

上述命令产生的矩阵s 包含了复平面2.02.0<<-σ, 2.02.0<<-ωj 范围内以时间间隔0.03取样的所有样点。

最后再计算出信号拉普拉斯变换在复平面的这些样点上的值,即可用函数mesh()绘出其曲面图,对应命令为:

fs=abs(1./s); mesh(x,y,fs); surf(x,y,fs);

title('单位阶跃信号拉氏变换曲面图'); colormap(hsv);

axis([-0.2,0.2,-0.2,0.2,0.2,60]); rotate3d;

执行上述命令后,绘制的单位阶跃信号拉普拉斯变换曲面图如图1所示。

2.2 拉普拉斯变化编程设计及实现

已知连续时间信号)()sin()(t u t t f =,求出该信号的拉普拉斯变换,并利用MATLAB 绘制拉普拉斯变换的曲面图。 解:该信号的拉普拉斯变换为:

11

)(2

+=s s F

利用上面介绍的方法来绘制单边正弦信号拉普拉斯变换的曲面图,实现过程如下:

绘制单边正弦信号拉普拉斯变换曲面图程序

图2 单边正弦信号拉氏变换曲面图

clf;

a=-0.5:0.08:0.5; b=-1.99:0.08:1.99; [a,b]=meshgrid(a,b);

d=ones(size(a)); c=a+i*b;

%确定绘制曲面图的复平面区域

c=c.*c; c=c+d; c=1./c; c=abs(c);

%计算拉普拉斯变换的样值 mesh(a,b,c);

%绘制曲面图

surf(a,b,c);

axis([-0.5,0.5,-2,2,0,15]);

title('单边正弦信号拉氏变换曲面图'); colormap(hsv);

上述程序运行结果如图2所示。

2.3 拉普拉斯逆变化编程设计及实现

连续信号)(t f 的拉普拉斯变换具有如下一般形式:

∑∑===

=L

i i

i

K

j j

j

s

d s c s D s C s F 1

1)

()()(

若L K ≥,则)(s F 可以分解为有理多项式与真分式之和,即

∑∑==+

=+=+=N

i i i

M

j j

j

s a s

b s P s A s B s P s R s P s F 1

1)()

()

()()()()(

其中,)(s P 是关于s 的多项式,其逆变换可直接求得(冲激信号及其各阶导数),

)(s R 为关于s 的有理真分式,即满足N M <。以下进讨论N M <的情况。

设连续信号)(t f 的拉普拉斯变换为)(s F ,则

∏=-=

=N

i i

p s s B s A s B s F 1

)()

()

()

()(

在满足N M <情况下,有以下几种情况

(1)极点均为单重情况下,可对其直接进行部分分式展开得:

N

N

p s r p s r p s r s F -+

+-+-= 2211)(

其中,),,2,1()()(N i s F p s r i p s i i =-==称为有理函数)(s F 的留数。则)(s F 的拉普

拉斯逆变换为:

)()(1

t u e r t f N

i t

i p i ∑==

(2)有k 重极点,设为1p ,则部分分式展开为

)

()

()()()()(111

112111s D s E p s K p s K p s K s F k k k +-++-+-=-

i K 1可用下式求得

[]1

11

1

1)()()!1(1p s k

i i i s F p s ds d i K =----= 则)(s F 的拉普拉斯逆变换为:

)

()()!()(2

11t u e r t u e t j k K t f N i t

i p i k

j t

i p j k j ∑∑==-+-= (3)有共轭极点

N N

t f p s r p s r p s r p s r s F -+

+-+-+-=

32)

(22211)(

设)(s F 有一对共轭极点βαj p ±-=2,1,则

θ

j p s e

r s F p s r 1111)()(=-==

*

12r r =

由共轭极点所决定的两项复指数信号可以合并成一项,故有

)()cos(2)(12t u t e r t f t

θβα+=-

从以上分析可以看出,只要求出)(s F 部分分式展开的系数(留数)i r ,就可直接求出)(s F 的逆变换)(t f 。

上述求解过程,可以利用MATLAB 的residue()函数来实现。令A 和B 分别为)(s F 的分子和分母多项式构成的系数向量,则函数:

[r,p,k]=residue(B,A)

将产生三个向量r 、p 和k ,其中p 为包含)(s F 所有极点的列向量,r 为包含)(s F 部分分式展开系数i r 的列向量,k 为包含)(s F 部分分式展开的多项式的系数行向量,若N M <,则k 为空。 例:已知连续信号的拉普拉斯变换为:

s

s s s F 44

2)(3

++=

试用MATLAB 求其拉普拉斯逆变换)(t f 。 解:MATLAB 命令如下:

a=[1 0 4 0]; b=[2 4];

[r,p,k]=residue(b,a) 运行结果: r =

-0.5000 - 0.5000i -0.5000 + 0.5000i 1.0000 p =

0 + 2.0000i 0 - 2.0000i 0 k = []

由上述结果可以看出,)(s F 有三个极点22,1j p ±=,03=p ,为了求得共轭极点对应的信号分量,可用abs()和angle()分别求出部分分式展开系数的模和幅角,命令如下:

abs(r) ans =

0.7071 0.7071 1.0000 angle(r)/pi ans = -0.7500 0.7500 0

由上述结果可得)()]4

3

2cos(21[)(t u t t f π-+=。

例:求下式函数的逆变换

3

)

1(2

)(+-=s s s s F

解:MATLAB 程序如下:

a=[1 3 3 1 0]; b=[1 -2];

[r,p,k]=residue(b,a) 运行结果: r = 2.0000 2.0000 3.0000 -2.0000 p = -1.0000 -1.0000 -1.0000 0 k =

[]

s

s s s s F 2

)1(3)1(2)1(2)(32-+++++=,对应的逆变换为

)(]2)222

3[()(2

t u e t t t f t -++=-

3. 总结

通过本次综合实践让我们在学习“信号与系统”课程的同时,掌握MATLAB 的应用,对MATLAB 语言在中的推广应用起到促进作用。从而将便多的时间留于对信号与系统的基本分析方法和应用的理解与思考学会应用 MATLAB的数值计算功能,将学生从繁琐的数学运算中解脱出来,从而将便多的时间留于对信号与系统的基本分析方法和应用的理解与思考。让我们将课程中的重点、难点及部分课后练习用 MATLAB 进行形象、直观的可视化计算机模拟与仿真实现,从而加深对信号与系统基本原理、方法及应用的理解,以培养学生主动获取知识和独立解决问题的能力,为学习后继专业课打下坚实的基础。

4. 参考文献

【1】郑君里信号与系统高等教育出版社2011.03

【2】王立宁MATLAB与通信仿真.北京高等教育出版社.2000.4 【3】刘泉数字信号处理与实现.北京:电子工业出版社.2005.6

【4】徐端MATLAB.科学计算与工程分析北京科学出版社.2008 【5】陈亚勇MATLAB信号处理详解。人民邮电出版社.2001.09

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 32 8 .95781 2028.6?? =N 5 3)164.1(? 是很复杂的,而引用对数后,可先把上式变换为 164 .1lg 53 )20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义12.1 设函数()f t 当0t ≥时有定义,若广义积分 ()pt f t e dt +∞ -? 在P 的某一区域内 收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= 0)()( (12.1) 称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为() f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数) ,记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00[]()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =- =-+? ?? 2020 ][0p a e p a dt e p a pt pt =-=+ =∞ +-∞+-? ) 0(>p

拉普拉斯变换习题集

1. 求下列函数的拉式变换。 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 3. 求下列函数的拉普拉斯逆变换。 4. 分别求下列函数的逆变换的初值和终值。 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求()t v r 并讨 论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向”“2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()() () s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到()()()()()∑∞ =-= =0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()() () s E s V s H 2= ; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 12. 如图7所示电路, (1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ; (2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零输入 响应)。

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉普拉斯变换题库

六.拉普拉斯变换 ㈠选择 ㈡填空 1.)(2)(t t f δ=的拉普拉斯变换是_______________ 2.)1()(-=t u t f 的拉普拉斯变换是_________________. 3.)2()(-=t u t f 的拉普拉斯变换是_________________. 4.t e t t f 22)(+=的拉普拉斯变换是_______________. 5.)(5)(2t e t f t δ+=的拉普拉斯变换是_______________ 6.)2()(2-=t u e t f t 的拉普拉斯变换是________________. 7.k e t t f kt n ()(=为实数)的拉普拉斯变换是__________________. 8.t e t f t 3sin )(2-=的拉普拉斯变换是__________________. 9.t e t f 2)(-=的拉普拉斯变换是_________________. 10.t e t f 2)(=的拉普拉斯变换是__________________。 11.t t f =)(的拉普拉斯变换是________________ 12.t te t f -=)(的拉普拉斯变换是____________________. 13.t t f 2cos )(=的拉普拉斯变换是_____________. 14.at t f sin )(=的拉普拉斯变换是_________________. 15.t t t f cos sin )(=的拉普拉斯变换是___________________. 16. ()()sin f t u t t =的拉普拉斯变换是________________. 17. ()sin(2)f t t =-的拉普拉斯变换是________________. 18.t t f 2cos )(=的拉普拉斯变换是________________. 19.t t f 2sin )(=的拉普拉斯变换是_______________. 20.t e t f t sin )(-=的拉普拉斯变换是_________________.

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++= =----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== 0)(=s A 有重根

设0)(=s A 有r 重根1s ,F(s)可写为 ()) s s ()s s ()s s () s (B s F n 1 r r 1 ---= +Λ = n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r s s c s s c s s c )s s (c )s s (c )s s (c -+ +-++-+-++-+-++--ΛΛΛ 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )s (F )s s (lim c r 1 s s r 1 -=→ )]s (F )s s ([ds d lim c r 1 s s 1 r 1 -=→- M )s (F )s s (ds d lim !j 1c r 1 ) j () j (s s j r 1 -=→- )s (F )s s (ds d lim )!1r (1c r 1 ) 1r () 1r (s s 1 1 --=--→ 原函数)(t f 为 [])()(1s F L t f -= ?? ? ???-+ +-++-+-++-+-=++---n n i i 1 r 1 r 1 1 1 r 1 1 r r 1 r 1 s s c s s c s s c )s s (c ) s s (c )s s (c L ΛΛΛ t s n 1 r i i t s 1 2 2 r 1 r 1 r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+?? ? ???+++-+-=Λ (F-6)

拉普拉斯逆变换

拉普拉斯逆变换 对于单边拉普拉斯变换,由式(8.1-9)知,象函数F(s)的拉普拉斯逆变换为 ????? ><=?∞ +∞-j 0 )(2 10,0)(σσj st t ds e s F j t t f ,π (8.3-1) 上述积分应在收敛域内进行,若选常数0σσ>[0σ为)(s F 的收敛坐标],则积分路线是横坐标为σ,平行于与纵坐标轴的直线。实用中,常设法将积分路线变为适当的闭合路径,应用复变函数中的留数定理求得原函数。若F(s)是s 的有理分式,可将F(s)展开为部分分式,然后求得其原函数。若直接利用拉普拉斯逆变换表(见附录五),将更为简便。 如果象函数F(s)是s 的有理分式,它可写为 11 10 111F(s)a s a s a s b s b s b s b n n n m m m m ++++++++=---- (8.3-2) 式中各系数),,1,0(),,,1,0(a i m j b n i j ==均为实数,为简便且不失一般性,设1=n a 。若n m ≥,可用多项式除法将象函数F(s)分解为有理多项式)(s P 与有理真分式之和,即 ) () ()()(s A s B s P s F += (8.3-3) 式中)(s B 的幂次小于)(s A 的幂次。例如 6 1163 32261161531258)(23223234+++++++=+++++++=s s s s s s s s s s s s s s F

由于)(]1[1t δ=-£,)(]['1t s δ=-£,…,故上面多项式)(s P 的拉普拉斯逆变换由冲激函数及其各阶导数组成,容易求得。下面主要讨论象函数为有理真分式的情形。 一、查表法 附录五是适用于求拉普拉斯逆变换的表,下面举例说明它的用法。 例8.3-1 求2 35 2)(2+++= s s s s F 得原函数)(t f 。 解 )(s F 分母多项式0)(=s A 的根为2,121-=-=s s ,故)(s F 可写为 ) 2)(1(5 22352)(2+++=+++= s s s s s s s F 由附录五查得,编号为2-12的象函数与本例)(s F 相同,其中 2,1,5,201====βαb b 。将以上数据代入到相应的原函数表示式,得 0,3)(2≥-=--t e e t f t t 或写为 )()3()(2t e e t f t t ε---= 例8.3-2 求10 23 3)(2 +++= s s s s F 的原函数)(t f 。 解 )(s F 分母多项式0)(=s A 的根为312,1j s ±-=,故)(s A 可写为 2223)1(102)(++=++=s s s s A 于是)(s F 可写为 2 223 )1() 1(310233)(+++=+++= s s s s s s F 查表可得,编号2-6的象函数形式与本例相同,只是本例的系数为3,故得

拉普拉斯变换公式总结..

拉普拉斯变换公式总结..

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞-- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ =? (2) 定义域

若0 σσ>时,lim ()0 t t f t e σ-→∞ =则()t f t e σ-在0 σσ>的全部范围内 收敛,积分0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换 存在。0 σσ>就是()f t 的单边拉普拉斯变换的收敛域。0 σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()() f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() []()(0)df t sF s f dt ζ- =- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0) r f -是r 阶导数() r r d f t dt 在0- 时刻的取值。 (3) 原函数积分 若 [()]() f t F s ζ=,则 (1)(0) ()[()]t f F s f t dt s s ζ---∞ =+ ? 式中 (1)(0)()f f t dt ---∞ =? (4) 延时性 若[()]()f t F s ζ=,则0 [()()]() st f t t u t t e F s ζ---= (5) s 域平移 若[()]()f t F s ζ=,则[()]() at f t e F s a ζ-=+ (6) 尺度变换

(完整word版)典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

拉普拉斯变换 习题集

1. 求下列函数的拉式变换。 (1) t t cos 2sin + (2) ()t e t 2sin - (3) ()[]t e t βα--cos 1 (4) ()t e t 732--δ (5) ()t Ω2cos (6) ()()t e t ωαcos +- (7) ()t t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ()()()t u e t f t 2--= (2) ()()()12sin -?=t u t t f (3) ()()()()[]211----=t u u u t t f 3. 求下列函数的拉普拉斯逆变换。 (1) () 512+s s (2) ()() 243+++s s s (3) 11 12++s (4) ()RCs s RCs +-11 (5) ()()() 2133+++s s s (6) 22K s A + (7) ()( )[]22βα+++s a s s (8) () 142+-s s e s

(9) ?? ? ??+9ln s s 4. 分别求下列函数的逆变换的初值和终值。 (1) ()()() 526+++s s s (2) ()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求 ()t v r 并讨论R 对波形的影响。 6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从” “1倒向” “2,求电流()t i 的表示式。 7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示 式和波形。 8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得 表示式和波形。 9. 电路如图5所示,注意图中()t Kv 2是受控源,试求 (1) 系统函数()()() s V s V s H 13=; (2) 若2=K ,求冲激响应。 10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到 ()()()()()∑∞ =-==0 ,n T T s nT t t t t f t f δδδ,求: (1) 抽样信号的拉氏变换()[]t f s L ; (2) 若()()t u e t f t α-=,求()[]t f s L 。 11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。 (1) 写出电压转移函数()()() s E s V s H 2=; (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1. 表A-1 拉氏变换的基本性质 1 L [ af ( t )] aF ( s ) 齐次性 线性定理L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) 叠加性 L [ df ( t ) ]sF ( s ) f ( 0 ) L [ d dt 2 f ( t ) dt 2 ] s 2 F ( s ) sf ( 0 ) f (0 ) L d n f ( t ) n dt n s n F ( s ) s n k f ( k 1 ) ( 0 ) k 1 f ( k 1 ) ( t ) d k 1 f dt ( t ) k 1 2 微分定理一般形式 初始条件为0 时L [ d n f ( t ) dt n ] s n F ( s ) L[ f (t )dt ] F ( s) s [ f (t )dt ]t 0 s [ 2 L[ f ( t)( dt ) ] 2 F ( s) s 2 f (t) d t ]t 0 s [ 2 f (t )(dt ) ]t 0 s 共n个共n个 L[ f (t)(dt )n ] F ( s) s n n k 1 s 1 n k 1 [ f (t)(dt ) n ] t 0 一般形式 共n个 3 积分定理 初始条件为0 时L[ f ( t)( dt) n ] F ( s) s n Ts 4 延迟定理(或称t 域平移定理) L[ f (t T)1(t T )] e F ( s) 精品资料

精品资料 5 衰减定理(或称 s 域平移定理) L[ f (t )e at ] F ( s a) 6 终值定理 lim f ( t ) lim t s sF ( s) lim f (t ) lim sF(s) 7 初值定理 t 0 s 8 卷积定理 t L[ f 1( t ) f 2 ( ) d ] t L[ f 1( t ) f 2 ( t ) d ] F 1 (s) F 2 ( s ) 2. 表 A-2 常用函数的拉氏变换和 z 变换表 序号 拉氏变换 F(s) 时间函数 f(t) Z 变 换 F(z) 1 1 δ(t) 1 1 2 1 e Ts T ( t) (t nT ) z n 0 z 1 1 1(t ) z s z 1 1 4 s 2 t Tz ( z 1)2 1 t 5 s 3 2 T 2 z(z 1) 2( z 1) 1 t n 6 n 1 lim ( 1) z n ( aT ) s n! a 0 n! a z e 1 7 s a e at z z e 1 at Tze 8 ( s a) 2 te a at ( z e (1 e aT ) 2 aT ) z 9 s(s a) 1 e (z 1)( z 2 3 n ) 3 n aT aT e aT

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = - =][ '- -=-=----=-∑1 1) 1() 1(1 22 2)()() 0()() (0)0()(])([) 0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换 表 Newly compiled on November 23, 2020

拉普拉斯变换及其反变换表 2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 n 1n n n 0 11m 1m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >) 式中系数n 1n 10a ,a ,...,a ,a -,m 1m 10b ,b ,b ,b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n 1 i i i n n i i 2211s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: 或 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 =n n i i 1r 1r 111 r 11r r 1r s s c s s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: 原函数)(t f 为 t s n 1r i i t s 122r 1r 1r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+??????+++-+-= (F-6)

Laplace变换习题课

《Laplace 变换》习题课 一、 基本要求 1. 理解并记住Laplace 变换及其逆变换的定义;了解Laplace 变换存在定理; 2. 理解Laplace 变换的性质,并会证明积分性质和微分性质; 3. 熟练掌握Laplace 变换及其逆变换的计算方法; 4. 理解卷积的定义与卷积定理,会计算两个函数的卷积; 5. 掌握Laplace 变换在求解线性微分方程(组)的求解方法 二、 内容提要 1. Laplace 变换及其逆变换的定义; 0()()st F s f t e dt +∞ -=?; )]([)(1s F L t f -== 1()2i st i F s e ds i ββπ+∞-∞?(右端成为反演积分) 2. Laplace 变换的性质; 线性性质;微分性质;积分性质;位移性质;延迟性质 3. Laplace 逆变换的计算方法; 重要定理: 若1s 、2s ……n s 是函数)(s F 的所有奇点(包含在β<)Re(s 的范围内),且0)(lim =∞→s F s ,则∑==n k k st s e s F s t f 1 ],)([Re )(,其中)]([)(t f L s F =。 有了以上定理,就可以利用复变函数求留数的方法来求像原函数)(t f ,下面就函数)(s F 是有理函数的情形来给出计算方法,即 ()()/()F s A s B s = 分两种情形考虑: 4. 卷积的定义与卷积定理; )(1t f 与)(2t f 的卷积(t>=0)定义为:?-=*t d t f f t f t f 02121)()()()(τττ 卷积定理: 1212[()*()]()()L f t f t F s F s =? 或 =*)()(21t f t f 112[()()]L F s F s -?

拉普拉斯变换的基本性质变换及反变换

拉普拉斯变换的基本性质、变换及反变换 2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式

11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) 原函数)(t f 为 (F-6)

拉普拉斯变换习题集

1.求下列函数的拉式变换。 (1) si nt 2 cost (2) e t sin 2t (3) 1 cos t e (4) 2 t 3e 7t (5) 2 cos t (6) t e cos t (7) sin t t 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。 (1) ft e 七 2 u t (2) f t sin 2t u t 1 (3) f t t 1 u u 1 u t 2 3. 求下列函数的拉普拉斯逆变换。 (5) (7) s e 4s s 2 1(6) A s 2 K 2 (1) 1 SS 2 5 (2) 3s s 4 s 2 (3) 1 s 2 1 (4) 1 RCs s 1 RCs

(9) ln - s 9 4. 分别求下列函数的逆变换的初值和终值。 s 6 s 2 s 5 s 3 s 1 2 s 2 5. 如图1所示电路,t 0以前,开关S 闭合,已进入稳定状态;t 0时,开关打开,求 v r t 并讨论R 对波形的影响。 6. 电路如图2所示,t 0以前开关位于“1”,电路以进入稳定状态,t 0时开关从“T 倒向“ 2 ,求电流i t 的表示式。 7. 电路如图3所示,t 0以前电路原件无储能,t 0时开关闭合,求电压 V 2 t 的表示 式和波形。 8. 激励信号et 波形如图|4 a 所示电路如图|4 b 所示,起始时刻L 中无储能,求V 2 t 得 表示式和波形。 9. 电路如图5所示,注意图中 KV 2 t 是受控源,试求 (1) 系统函数H S — V 1 s (2) 若K 2,求冲激响应。 10. 将连续信号 ft 以时间间隔T 进行冲激抽样得到 f s t ft T t , T t t nT ,求: n 0 (1) 抽样信号的拉氏变换 L f s t ; (2) 若 ft e t u t ,求 L f s t 。 11. 在图6所示网络中,L 2H,C 0.1F, R 10 。 (1) 写出电压转移函数 H s V2 s ; E s (2) 画出s 平面零、极点分布; (3) 求冲激响应、阶跃响应。 (1) (2)

(完整版)拉普拉斯变换及其逆变换表.doc

拉普拉斯变换及其反变换表1. 表 A-1 拉氏变换的基本性质 1 齐次性 线性定理 叠加性 2微分定理一般形式 初始条件为0 时L [ af ( t )] aF ( s ) L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) L [ df ( t ) sF ( s ) f ( 0 ) dt ] d 2 f 2 ( t ) L [ dt ] s 2 F ( s ) sf ( 0 ) f (0 ) L d n f n ( t ) s n F ( s ) n s n k f ( k 1 ) ( 0 ) k dt 1 f ( k 1 ) ( t ) d k1 f ( t ) dt k 1 L [ d n f n ( t ) ] s n F ( s ) dt 一般形式3积分定理L[ f (t )dt] F (s) [ f (t )dt]t 0 s s 2 F (s) [ f (t)dt]t 0 [ L[ f (t)( dt) ] s2 s2 共n个 n 共 n个 n F (s) 1 L[ f (t)(dt) ] [ s n k 1 s n k 1 共n个 2 f (t )(dt) ]t 0 f (t)(dt)n ]t 0 初始条件为0 时4延迟定理(或称 t 域平移定理)5衰减定理(或称 s 域平移定理)6终值定理 7初值定理 8卷积定理L[ f ( t)( dt) n ] F ( s) s n L[ f (t T )1(t T )] e Ts F ( s) L[ f (t )e at ] F ( s a) lim f ( t) lim sF ( s) t s 0 lim f (t ) lim sF (s) t 0 s t f1(t ) f2 ( )d ] t L[ L[ f1(t) f2 (t )d ] F1 (s)F2 (s) 0 0

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变 换表 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 n 1n n n 0 11m 1m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >) 式中系数n 1n 10a ,a ,...,a ,a -,m 1m 10b ,b ,b ,b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n 1 i i i n n i i 2211s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: 或 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 =n n i i 1r 1r 111 r 11r r 1r s s c s s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: 原函数)(t f 为 t s n 1r i i t s 122r 1r 1r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+??????+++-+-= (F-6)

拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表 精品

精品

精品 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++= =---- (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b - 都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1i i n 1 i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

拉普拉斯变换的基本性质变换及反变换

拉普拉斯变换的基本性质变换及反变换 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

拉普拉斯变换的基本性质、变换及反变换

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1)()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根

相关文档
最新文档