全工况高效冷却塔简介及优势分析

全工况高效冷却塔简介及优势分析
全工况高效冷却塔简介及优势分析

全工况高效冷却塔(北京华彦邦科技)

一、全工况高效冷却塔

变流量布水系统,在不同流量下,能够合理的均衡洒水,增加了冷却水泵的变频空间,建议根据艾客产品优势,采用变频控制;

1)采用塔内双过滤技术,可去除泵前管道过滤器,减少管道阻力3m-5m,降低水泵功耗。并提升循环水泵效率与变频节能空间,减小管道清洗维护工作,提升管理效率。

2)离心机设计的冷却水的温差为5℃,那么我们就让冷却水泵输送5℃温差下流量的冷却水,不做无用功,增加水泵节能空间。

全工况高效冷却塔全钣金精密工艺,基于解决传统冷却塔组以标准恒定工况、对应冷机一对一的设计模式,在实际运行中,由于气候条件、系统负荷、循环流量、水量分配、风机状态等参数即使变化,影响传统冷却塔的热力性能,造成系统能耗高、管理难等问题。

全工况高效冷却塔(All Condition Efficient Cooling)系统能即时、自动感测制冷换热负荷和环境湿球温度,充分利用所有填料换热面积,在变流量的条件下,对应演算冷却塔的热力性能曲线,用最小的风机能耗,为制冷主机提供最佳回水温度,进而保证制冷主机在“环境气候、系统负荷”随时变化的条件下,始终运行在合理的COP能效范围内,达到真正的高效节能要求。

二、核心技术

1.改变传统一对一设计方案,形成一套完整独立的冷却系统。

2.自变量布水、喷头技术、充分利用所有填料换热面积,提升热力性能。

3.自力式、整流、止回风阀技术,优化调节风流场状态。

4.热力目标自控技术,实现既有工况下,达到最佳冷却水温,提高系统cop而节能。

5.全新低阻力、消涡流、自反冲高效过滤技术,实现设备在线维护。

三、八大优势

1.优化设计方案,减少设计工作量!

2.减少电动联动阀投入,及其故障、维护导致的影响!

3.减少管道过滤器投入、减少系统压降,优化设备维护方式!

4.减少管道连接工程量,美化工程!

5.优化运行管理方式,减少维护工作量!

6.实现冷却泵随标准设计工况(5℃温差)变频运行,节省冷却泵功耗30%~70%!

7.系统节能,使整个系统cop提高10%-35%!

8.实时显示运行参数,可带入权威第三方软件,计算实际热力性能!

四、系统性能对比:

全工况高效冷却塔方案与传统冷却塔方案对比优势如下:

1、自平衡全膜化、风路共腔技术实现任意工况冷却能力最大化,相互备用

共享性。

2、有序的管理成本高,而不合理的运行管理会造成运行效率低、维护成本

高等问题,采用ACEC管理全工况热力系统智能自动运行,减小运行管理

工作强度,提升管理效率,节约管理成本。

3、优化管路布局,减少60%管道、阀门施工工程。

4、变流量布水系统,在不同流量下,能够合理的均衡洒水,增加了冷却水

泵的变频空间,建议根据艾客产品优势,采用变频控制;

5、减少电动阀门、联动控制和风机控制柜投入;

6、最保守估计每年提高空调冷机COP性能;

7、减少冷却风机全年电量。

8、消除因水力不平衡带来的溢水、吸空问题及其对空调系统正常运行带来

的管理影响。

综上所述:全工况高效冷却塔的专利产品技术,通过部分负荷变流量时较好地利用富余的填料传质散热面积,得到较理想的冷却气水比,及智能系统,使冷却始终运行于最佳COP而节能;较普通空调系统设计方案,保守估计可为项目节省15%。

冷却塔选型计算28843

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。 (2)冷却后水温t2和空气湿球温度ξ的接近程度Δt’。Δt’=t2-ξ(℃)Δt’称为冷却幅高。Δt’值越小,

300MW机组自然通风冷却塔节能技术研究

300MW机组自然通风冷却塔节能技术研究 摘要对循环水系统及冷却塔淋水区的不同排列组合,通过实验的方法得到不同气温下的运行组合,去除冷却塔低效换热区运行,降低循环水量,提高冷却塔换热效率。 关键词自然通风冷却塔;循环水;堵塞现象;深度节能;节能运行 1 概述 目前我国最常用的冷却塔塔型仍为双曲线型常规冷却塔,具有能创造良好的空气动力条件,可减少通风阻力和塔顶出口处的空气回流,冷却效果相对稳定等特点。 自然通风冷却塔是发电厂冷端系统中重要的热力设备,冷却塔主要作用是循环水系统冷却,循环水通过循环水泵在冷却塔与凝汽器之间打循环,循环水在凝汽器端吸收汽轮机排汽热量,在冷却塔通过喷淋与空气进行换热降温。循环水在冷却塔中是通过塔底部的水道压入中央竖井,通过与中央竖井相连通的四个水槽流出,并在水槽两侧均布配水管道,通过配水喷头均匀地喷洒在冷却塔填料上方,通过填料进一步分散后从冷却塔填料层淋入底部水池中,高差約12米[1]。 2 国内外研究概况 以前,国内外研究人员对锅炉、汽轮机做了大量、深入、细致的研究工作,并研究出了相应的优化调整方法来提高热效率。目前,围绕电厂的节能降耗,更多的节能工作逐渐转向于电站的冷端系统,即致力于降低汽轮机的排汽温度,以提高朗肯循环热效率,主要体现在两方面:一是改善凝汽器的传热,提高真空度;二是研究冷却塔出水温度的降低途径,提高冷却塔的效率。近几年,关于冷却塔的研究多集中于塔内传热传质。 3 科技意义和应用前景 自然通风湿式冷却塔广泛应用于电站汽轮机冷端循环水的冷却。来自凝汽器的循环水由喷嘴喷淋出来,依次在配水区、填料区和雨区与进塔空气发生传热传质的换热,被冷却后返回凝汽器,参与系统的循环。 冷却塔冷却性能的好坏直接影响机组的效率。若冷却塔的性能不好或运行不稳定,将导致循环冷却水温度升高,进而导致凝汽器的真空下降,使汽轮机组的工作效率下降,导致发电煤耗量的增加。研究表明,对于300MW的机组,出塔水温升高1℃,汽轮机组效率降低0.23%,煤耗增加0.798g/kW·h。因此,研究冷却塔特性并提高其换热效率具有十分重要的意义。 目前,火力发电厂的冷端主要采用“一机一塔”的配置方式。

冷却塔的有关知识

冷却塔的有关知识 This manuscript was revised by the office on December 10, 2020.

冷却塔的有关知识 1)蒸发量(WE)kg/h ,一般空调用的场合,Tw1-Tw2=5℃,WE=×L,也就是说循环水量的%被蒸发。 2)2)漂水量(WD)kg/h 3) 4)根据冷却塔的构造、通风速度有所差别,一般漂水量如下: 5) 6)开放式,循环水量的% 7) 8)密闭式,循环水量的% 9) 10)3)排污水量(WB)kg/h 11) 12)排污水量是根据水质、浓缩倍数而不同。一般空调用的场合,开放式、密闭式一样为循环水量的%。 13) 14)补水水量(ΔL)kg/h 15) 16)补水水量是上计3项的合计。(ΔL=WE+WD+WB) 17)补水水量是上计3项的合计。(ΔL=WE+WD+WB) 18) 19)空调用开放式的场合:循环水量的% 20) 21)密闭式的场合:循环水量的%。 冷却塔是一种广泛应用的热力设备,其作用是通过热、质交换将高温冷却水的热量散入大气,从而降低冷却水的温度,其凉水作用主要是靠冷热两股流体在塔内混合接触,借助两股流体间的水蒸汽分压力差使热流体部分蒸发并自身冷却。 进行冷却塔选型时,具体该怎么做啊只是有个流量和进出水温差就可以了么 目前,公知的冷却塔为凉水式和空气冷却式两种主要形式。这两种冷却塔又有自然通风冷却塔和机械通风冷却塔。 由于凉水塔主要受空气湿球温度的影响,是靠水的蒸发和传导来散热,因此其对水的消耗量非常大。 而空气冷却塔是利用传导使空气吸热来实现散热,主要受空气干球温度的影响。 由于空气干球温度较高,比热小,吸热能力有限,且冷却效率低,因此,需要空气冷却器有很大的表面积,使的空气冷却器造价高。 冷却塔服务的工艺设备各行业有所不同,现在从工艺设备的差异来看冷却塔的合理变化。民用冷却塔所服务的对象都是制冷机,它要求冷却塔的水温是相同的,即:进塔水温37℃,出塔水温32℃。所不同的是:制冷机的容量不同,不同的容量配不同大小水量的冷却塔,民用塔的冷却水量与其它工业冷却

冷却塔、冷却水泵及冷冻水泵选型计算方法

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O;

h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O 冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O

上海市地方标准《冷却塔能效限定值、能源效率等级及节能评价值》

备案号: 上海市地方标 DB 31/414-2008 冷却塔能效限定值、能源效率等级 及节能评价值 The minimum allowable values of energy efficiency、energy efficiency grades and evaluating values of energy conservation for cooling tower. (报批稿) 2008-09-26发布2009-03-01 实施 上海市质量技术监督局发布

DB31/414-2008 前言 为加强合理用电、合理用水、推动产品的升级换代﹑确保上海市“十一五”节能减排目标的实现,提高冷却塔产品质量及其系统的经济运行管理水平,特制订本标准。 本标准中6.2条和7.1条是强制性的,其余是推荐性的。 本标准由上海市经济委员会、上海市能源标准化技术委员会共同提出。 本标准由上海市能源标准化技术委员会归口。 本标准主要起草单位:上海交通大学、上海市能源标准化技术委员会、上海市供水管理处本标准参加起草单位:上海良机冷却设备有限公司、上海金日冷却设备有限公司、上海尔华杰机电装备制造有限公司、斯必克(广州)冷却技术有限公司、江阴富兴复合材料制品有限公司、吴江北宇冷却塔有限公司。 本标准主要起草人:任世瑶、陈津迪、吴耀民、陈溢进﹑赖春发、罗金枝、张焕武、韩振东、江建林、吴金土。 DB31/414-2008 冷却塔能效限定值、能源效率等级及节能评价值 1 范围 本标准规定了机力通风冷却塔的能效限定值、能效等级、节能评价值、试验方法及检验规则。 本标准适用于以空气作冷源的机力通风横流、逆流、混流式湿式冷却塔。 2 规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB7190.1 玻璃纤维增强塑料冷却塔第一部分:中小型玻璃纤维增强塑料冷却塔 GB7190.2 玻璃纤维增强塑料冷却塔第二部分:大型玻璃纤维增强塑料冷却塔 GB/T18870节水型产品技术条件与管理通则 DB31/T204 冷却塔及其系统经济运行管理 3 术语

冷库节能潜力分析

低温与超导第37卷 第10期制冷技术 Refrigerati on Cryo .&Supercond .Vol .37 No .10 收稿日期:2009-08-07 作者简介:毕明华(1972-),男,工程硕士,工程师,主要从事制冷与空调方面的教学和科研工作。 冷库节能潜力分析 毕明华 (桂林航天工业高等专科学校,桂林541004) 摘要:食品冷冻冷藏属高耗能行业,长期存在着大量不重视能源管理与浪费能源的现象。分别从隔热材料、压缩机能量调节方式、冷凝器系统、油系统以及运行管理等方面,分析了冷库的节能潜力。针对冷库工程设计、工程施工及常规管理工作的技术要求和需要,提出了相应的节能措施。这些措施对冷库企业降低生产成本、节约能耗,具有现实意义。 关键词:冷库;节能潜力;节能措施;竞争力 Energy s av i n g poten ti a l ana lysis of refr i gera tory B iM inghua (Guilin Juni or College of Aer os pace Technol ogy,Guilin 541004,China ) Abstract:Refrigerated p reservati on of f ood is regarded as a high energy consu m ing trade .There are many phenomena of ig 2noring energy manage ment and wasting energy f or a l ong ti m e .Fr om as pects of heat -resistant materials,the energy regulati on means of comp ress or,condenser system,oil syste m,operati on and maintenance,the energy saving potential of refrigerat ory is an 2alyzed in this paper .I n vie w of the technical de mands and needs in engineering design,engineering constructi on and conventi onal management,the corres ponding measures f or energy saving are br ought for ward .The measures have great significance f or enter 2p rises decreasing energy consu mp ti on and p r oducti on cost . Keywords:Refrigerat ory,Energy saving potential,Energy saving measures,Cmpetence 1 引言 目前,随着农业深加工、农业产业化的发展和 人民生活水平的提高,我国的食品冷冻冷藏事业发展很快。尤其是加入世界贸易组织以来,商业外贸对食品的需求量增加,冷库的容量和规模都迅速增长。从近几年冷库发展和使用情况来看,冷库的设计、建造和管理上还存在不少问题,例如制冷效果差、技术配套不规范、使用成本高,从而导致了不必要的能源浪费。冷库的制冷和动力用电,是冷库成本的主要部分,约占总成本的25%~40%。减少装置的电能消耗,降低生产成本,对 于冷库企业具有相当大的经济效益[1] 。笔者根据多年的工作经验和调研,分别从隔热材料、压缩机能量调节方式、冷凝器系统、油系统以及运行管理等方面分析了冷库的节能潜力,并提出了一些基本的技术措施(有利于冷库节能挖潜增效),供有关科技人员参考。 2 节能潜力及节能措施分析 2.1 合理选用高性能隔热材料 冷库投资是一项长期的、有收益回报的投资,目前隔热材料在冷库建设中对初期投资成本和长期的收益有着重要的作用。高性能隔热材料的使用,虽然在一定程度上增加了用户的一次性投资,但在长期的使用中可大大减少综合运行费用,能最大程度地提高资本投资回报率,体现节能收益。2.1.1 冷库围护结构的隔热 冷库是在特定的温度和相对湿度条件下加工和贮藏食品等物品的专用建筑。由于建筑的特殊性,保温隔热(直接关系到冷库使用的合理性)是节约能源的重要因素。根据对各类冷库的统计表明,一般冷库的围护结构传热量约占冷库总冷负荷的2%~3%,而小冷库占的比例更大 [2] 。通过 围护结构的漏冷量与冷库围护结构单位热流量成

典型示功图具体分析

典型示功图具体分析 1.泵工作正常时的示功图 和理论示功图的差异不大,均为一近似的平行四边形,除 了由于抽油机设备的轻微振动引起的一些微小波纹外,其它因 素影响在图上显示不明显。 2.气体影响时的示功图 由点到面在下冲程末余隙内还存在一定数量的溶解气和压缩 气,上冲程开始后泵内压力因气体的膨胀而不能很快降低,使吸入 凡尔打开滞后,加载变慢,余隙越大,残存的气量越多,泵进口压 力越低,则吸入凡尔打开滞后的越多。 特点: 下冲程时,气体受压缩,泵内压力不能迅速提高,使排出凡尔滞后打开,卸载变慢,泵的余隙 越大,进入泵内的气量越多,卸载线越长“示功图”的刀把越明显。 3.气锁现象时的示功图 是指大量气体进入泵内后,引起游动凡尔、固定凡尔均失效,活 塞对气体起压缩和膨胀的作用,泵排不出油。 4.供液不足时的示功图 沉没度小,供油不足,使液体不能充满工作筒。 下冲程中悬点载荷不能立即减小,只有当活塞遇到液面时,才 迅速卸载,所以,卸载线较气体影响的卸载线陡而直。 5.油井出砂时的示功图 油井大量出砂,油流携带着砂子冲刺,载荷受砂卡原因呈不规则 毛刺现象;致使工作筒、活塞、凡尔等磨损,导致泵效降低,严重时 固定凡尔或游动凡尔砂卡或砂埋,直接影响泵效。 6.油井结蜡时的示功图 由于活塞上行时,泵内压力下降,在泵的入口处及泵内极易结 蜡,使油流阻力增大,光杆负荷增大,引起凡尔失灵或卡死凡尔、 活塞,堵死油管等现象。

7.抽油杆断脱时的示功图 抽油杆断脱后的悬点载荷实际上是断脱点以上的抽油杆柱重 量,只是由于摩擦力才使载荷线不重合。 8.连抽带喷时的示功图 具有一定自喷能力的抽油井,抽汲实际上只起诱喷和助喷作用。 特点: 在抽汲过程中,游动凡尔和固定凡尔处于同时打开状态,液柱载荷 基本上加不到悬点,示功图的位置和载荷变化的大小取决于喷势的强弱 及抽汲流体的粘度。 9.固定凡尔漏失时的示功图 固定凡尔球和凡尔座配合不严,凡尔座锥体装配不紧,凡尔罩内落 入脏物或蜡卡着凡尔球等而造成的漏失,典型表现为加载和减载缓慢, 呈弧形,减载更严重。 10.游动凡尔漏失时的示功图 游动凡尔漏失时,活塞上冲程的有效冲程长度将减少,而下冲程 有效冲程长度将增加,漏失越严重,上冲程的有效冲程长度的减少和 下冲程长度的增加越厉害。 特点: 增载线的倾角比泵工作正常时为小,既左上角圆滑,漏失量越大,其圆滑程度愈厉害,增载线成为一圆弧线,卸载线比增载线陡。 11.双凡尔漏失时的示功图 在上冲程过程中,游动凡尔漏失起主导作用,使图形左上角和 右上角变圆,但负荷线能达到理论上负荷线。 在下冲程过程中,固定凡尔漏失起主导作用,使图形左下角和 右下角变圆,但下负荷线能降到理论下负荷线处,所以,示功图变 成两头尖圆。 12.油管漏失时的示功图 油管的丝扣连接未上紧,油管被磨损、腐蚀而产生破裂和孔洞时进入油管中的液体就会从这些裂缝、孔洞及未上紧处重新漏入油套环行空间。

火力发电厂冷却塔节能节水技术

火力发电厂冷却塔节能节水技术 高效雾化降温降低蒸发损耗装置 一、技术背景 冷却塔是能源动力及化工等领域的重要传热传质设备,其作用是将排出生产工艺流程的废热,通过使循环冷却水在塔内进行传热传质过程,将循环冷却水的温度降低。循环水在冷却塔中以传热和蒸发两种方式与空气进行热交换,传热即直接将循环水的热量传递给空气使其的温度升高;而蒸发是通过循环水向空气中的蒸发使空气湿度增大,称为潜热传递方式。由于空气在冷却塔中的温度升高,且蒸发饱和压力随其温度增高而增大,而冷却塔出口即为饱和湿空气,因此潜热占总热量传递的份额相当大,对火电厂的大型自然循环冷却塔而言冬天潜热占50%左右,而夏天潜热则占70%以上。这种换热方式导致了大量的蒸发水量损失。然而淡水资源短缺是当前世界面临的重要问题。火电企业是耗水大户,目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。 二、冷却塔的工作原理 冷却塔是指在塔内将热水喷洒到淋水填料上形成水滴或水膜,自上而下地与从下向上流动的具有吸热能力的冷空气进行对流传热,并利用水的蒸发扩散作用带走水中热量的冷却设备。这种冷却设备主要为湿式冷却塔。湿式冷却塔又以抽风式逆流冷却塔型式为主。在设计冷却塔时,为了减少水量损失,一般设有节水装置收水器。它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。这种节水装置对湿热空气中的水蒸汽基本不起作用。冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。蒸发损失是为完成水的冷却而必须蒸发的水量。因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。 三、冷却塔蒸发水损耗

(完整版)冷却塔的选型

冷却塔的选型 冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。英文名叫做The cooling tower。 最近几年,冷却塔高速发展,产品不断更新。正因如此,才使玻璃钢冷却塔问世。玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力: P =99.4×103 kPa 干球温度:θ=31.5℃ 湿球温度:τ=28℃(方形和普通型为27℃) 冷却塔设计参数1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.普通型:进塔水温37℃,出塔水温32℃ 5.大型塔:进塔水温42℃,出塔水温32℃工业中,使热水冷却的一种设备。水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。 分类编辑 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷

却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。 五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。 适用范围编辑 工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。例如:火电厂内,锅炉将水加热成 高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。这一过程中乏汽的废热传给了冷却水,使水温度升高,挟带废热的冷却水,在冷却塔中将热量传递给空气,从风筒处排入大气环境中。冷却塔应用范围:主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。

冷却塔的节能潜力分析

冷却塔的节能潜力分析 随着经济意识的增强,节能降耗已经越来越引起人们的高度重视。发电 厂的热力系统及设备的节能给电厂运行和经营带来明显的经济效益。目前,节 能降耗主要集中于三大主要设备和复杂系统,经过理论研究和广泛应用,已经 取得很大经济效益。但是长期以来我们对循环水系统中冷却塔缺乏足够的重视。一方面,认为凝结器循环水入口温度为环境因素的单值函数;另一方面,它的 维护比较繁重复杂,由于缺乏对冷却塔节能潜力的认识,甚至许多电厂忽略本文针对自然通风冷却塔的节能潜力和热力性能影响因素进行分析讨论, 以其对发电厂优化运行和检修维护有所帮助和参考。 1 冷水塔节能潜力分析 循环水1oC温差并存在的节能潜力 冷却塔的工作过程是循环水从凝结器中吸收排气热量,以温度t1送入冷水塔经由压力管道分流至配水槽,热水通过喷溅装置散成细小均匀的水珠洒落到 淋水填料上,沿填料层高度和深度与冷空气以蒸发,传导和对流等方式完成热 交换。空气吸收热量和水分,其温度和湿度逐渐增加接近饱和状态由塔顶逸出,冷却后的循环水以温度t2返回凝结器。由此可见,冷却塔的出塔水温直接影响汽轮机的排气压力和循环热效率。运行的电厂中,冷水塔经常在偏离设计条件 的环境下工作,出塔水温高于设计值导致真空下降,机组经济性降低。表2给 出6种型号机组因为塔的冷却能力降低造成出塔水温升高1oC对机组经济性能 影响。 由此可见,运行电厂凝结器循环水进口温度升高1oC伴随的节能潜力。目 前大多数冷水塔缺少性能检测,因热负荷增加或检修维护不当致使冷却塔出力 不足,出口温度偏高是普遍现象。例如我公司135MW机组循环水淤泥浑浊,淋 水填料严重结垢,出塔水温比相同条件下设计温度升高4oC,这台机组每年因 此而损失的标准煤约达2706t,仅此一项经济损失约达55万元(煤价按200元 /t)。 因此选择性能优良的淋水填料能降低出塔水温且有较小的通风阻力。据文 献介绍,无论顺流还是逆流的冷却塔该换高性能的薄膜填料能导致冷却水降低 5~8 oC,对于现存的冷却塔等于提高50%的冷却能力或者增加的更多。重视淋 水填料运行维护,减少冷却塔结冰和填料损坏,是提高冷却塔热力性能的重要 手段。 1.3 淋水密度潜在的节能效益 淋水密度是指单位面积淋水填料所通过的冷却水量,它也是影响冷却塔出 力的主要因素之一。由于运行方式不当,维护不及时造成喷嘴堵塞、填料破损 及生长藻类,致使换热面积减少、淋水密度增加。附图为淋水面积相对减少 1%~25%的出塔水温变化情况。

冷却塔选型计算

冷却塔选型 1.冷却水流量计算: L=(Q1+Q2)/(Δt*1.163)*1.1 L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取4.5-5 冷却塔的水流量= 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32o C/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法:

. 6.冷却水管径选择

7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6。 8.冷却塔的选择:

冷却塔选型

冷却塔选型 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冷却塔选型 冷却水量的计算: [1]. Q = m s △ t Q 冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力) m 水流量(质量) Kg / h s 水的比热值 1 Kcal / 1 kg - ℃ △ t 进入冷凝器的水温与离开冷凝器的水温之差 [2]. Q 的计算 Q = 72 q ( I 入口- I 出口 ) Q 冷却能力 Kcal / h q 冷却水塔的风量 CMM I 入口冷却水塔入口空气的焓(enthalpy) I 出口冷却水塔出口空气的焓(enthalpy) [3]. q 冷却水塔的风量 CMM 的计算 q = Q / 72 ( I 入口- I 出口 ) 上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。 更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式: Q = K ×S × ( hw -ha ) Q 冷却水塔的总传热量 K 焓的热传导系数 S 冷却水塔的热传面积 hw 空气与冷却水蒸发的混合湿空气之焓 ha 进入冷却水塔的外气空气之焓 此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却水塔热传方程式。详细的计算你可以从Heat Transfer的热力学内查阅。 冷却水塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。诸多人士认为冷却水塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。这是一种「积非成是,以讹传讹」的谬论。 顺便一提,楼上有一位兄弟提到,湿球温度从27℃→28℃,冷却水塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。 湿球温度愈高,湿球温度的冷却能力愈差。所以,当湿球温度增高时,冷却水塔的能力下降,换言之,冷却水塔的出水量减少了。 从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。Psychrometrics 就像医学上的X 光照片、心电图等等一样,让我门100%掌握空气性能的变化,所有制冷空调的问题均迎刃而解。

冷却塔计算

冷却塔设计计算参考方法 本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。 一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约

4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。 冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件:

冷却塔系统节能降耗的初步探讨

冷却塔系统节能降耗的初步探讨 针对工业园内的循环水现状,总结了冷却水损失的途径,及损失量的相对大小。从节能降耗出发,减少循环水的损耗,结合实际对系统现状进行理论改造的探讨。 标签:节能降耗冷却塔液位 所谓冷却水塔即是应用于散热冷却为目的的塔状洒水系统;以中泰化学工业园的冷却塔为例,其结构为方形PVC材料壳体,而壳体顶部由上而下分别为抽风马达及其带动的抽风扇,壳体内为挡水板,布(散)水器,散热材(填充材料),入风口,最底下为集水池、蓄水池、进出水管、排污水管旁滤器及抽水马达,运行中将在生产车间所产生的热量经由冷却循环水传送到冷却水塔中,与空气直接接触,或与抽风扇作用的空气对流将热能以热蒸汽的形式排放至大气中。其机理是从换热设备排出的热水从塔顶向下喷淋成水滴在填料上形成水膜状,空气由下向上与水滴或水膜呈逆向流动,在气水接触过程中进行传热和传质,使水温降低。由于水具有高潜热(蒸发热)热能,加上获取容易,而空气具有吸湿能力,在这种有利条件下,冷却水塔成为散热效果较佳且最便宜的工具。 据资料显示,新疆年均降水量为146毫米,达不到地球上相同纬度的其他大陆地区年均降水量的30%[1]。工业园所处的位置是世界上最严重的干旱地区之一,属于低水资源利用潜能的地区。随着近几年新疆工农业的发展,用水量高速倍增,水资源消耗惊人,对原本就比较脆弱的工业水来说,更凸显水资源的可贵。 工业园目前所利用的冷却水塔为开放式结构,空气中的污染物质很容易在与冷却水接触的同时被水吸收。随着冷却水不断蒸发、散失、溅落、排放及新鲜水的补充,使冷却水的离子浓度增加,另外掺尘及其它各种因素,亦会造成输送的冷却水水质污浊及离子浓度增加,在增大回水排污,增加工业用水消耗量的同时极易在循环水管路及冷凝器中形成结垢现象,这些积存的水垢不断累积导致流道缩减,造成输送泵的马力增加以及冷凝器内的热阻抗增加等,热交换效率因而降低使得系统的效率下降,形成能源浪费及热交换器使用年限降低等问题。 经过对工业园的敞开式冷却水塔的实际操作,总体归纳出其消耗水的途径分别为蒸发、飞散、溅落与排放,但根据理论分析与多次实际测量来量化各种耗水的比重,发现耗水的大小依次是蒸发、排放、飞散与溅落。从节水降耗来看,减少不必要的蒸发损失具有最大的节省空间,利用检测分析大气湿度及实际负荷,可以调整冷却水塔的循环水量以及送风量,大大地减少非必要的蒸发耗水,同时也可以通过为抽风电机加变频器来节省风扇所需要的的电量。其次,由水质的检测及适当的水处理,包括自动反冲洗超微过滤防止结垢,可以收到降低花费而节省排放损失的效果。另外,可实施循环排污水作为厂区冲厕、园区绿化二次水资源的循环利用。 冷却水塔内上层加挡水板主要用于阻挡细小水滴的散失。当热水透过洒水喷

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

循环水冷却塔节能技改分析-冯浩

循环水冷却塔节能技改分析 冯浩周世祥 (山西鲁能河曲发电有限公司036500) 摘要:本文主要通过分析发电厂循环水冷却塔在各种运行工况下对机组循环水温度的影响,经过对循环水冷却塔运行方式的调整和部分设计参数进行改造,达到提高发电厂机组循环热效率、节约能源的目的。 关键词:循环水冷却塔;节能;技改 1引言 山西鲁能河曲发电公司位于山西省西北部河曲县境内,一期工程安装2×600MW二台机组,汽轮机为东方汽轮机厂生产的亚临界、一次中间再热、单轴三缸四排汽、冲动凝汽式,汽轮机型号为N600-16.7/538/538-1;锅炉为哈尔滨锅炉厂生产的亚临界、中间一次再热、强制循环、平衡通风、单炉膛、悬吊式、燃煤汽包炉;发电机为东方电机厂生产的全封闭、自然通风、强制润滑、水--氢--氢冷却、圆筒型转子、同步交流发电机。 2循环水冷却塔的设计 2.1 循环水冷却塔基本设计参数 每台机组配套一座7000m2自然通风双曲线冷水塔,塔高130米,冷却塔进风口标高9.0米,塔池底部直径104米。冷却塔采用虹吸式竖井配水设计,分内外区,内区安装有¢38mm的XPH(XPZ)改进型喷头1920个;外区安装有¢40 mm及¢42mm的XPH(XPZ)改进型喷头4576个。冷却塔配水系统的设计是按两台循环水泵全年一个冷却倍率运行。冬季时采取关闭内区配水,启用防冻管的运行方式。全年平均运行冷却水温为20℃左右。冷却塔填料采用两层塑料填料,厚1.0米,经热力计算,夏季P=10%的气象条件下冷却塔出水水温29.14℃。按汽轮机最大连续工况设计,循环水温度20℃,高背压为5.61kPa,低背压为4.27kPa。循环水量60800m3/h,总水阻小于57kPa,额定工况的排汽量,冷却倍率采用50,循环水进水温度20℃,循环水温升10.4℃。 2.2循环水冷却塔的防冻设计 由于我公司地处北部较寒冷地区,冬季运行时必须采取了以下防冻措施: 2.2.1关闭内围配水的压力沟,只利用外围配水。 2.2.2在进风口上缘内侧沿壳壁装设防冻管。 2.2.3在进风口悬挂玻璃钢挡风板。 2.2.4为避免冷态循环,设置旁路管把热水直接送入水池。 2.2.5淋水填料和除水器均采用PVC塑料材质。 329

典型示功图分析及解决措施讲义

幻灯片1 幻灯片2 幻灯片3 各位观众大家好,如果您刚刚打 开电视机,现在正为您直播的是 《典型示功图分析及解决措施》, 我是主持人韩伟,和大家开个小 玩笑。 很高兴认识大家,今天这堂课我 们将学习因为单一因素影响而形 成的典型示功图的分析及解决措 施。 通过这次课程,将使大家能够快 速准确的分析判断生产中党见示 功图,并提出相应解决措施。

幻灯片4 众所周知,示功图是日党管理中 一项必不可少的动态资料,通过 示功图,我们可以判断深井泵及 地层的工作状况。 然而抽油井在生产过程中使深井 泵受到:制造质量、安装质量以 及砂、蜡、水气、稠油和腐蚀等 多种因素影响,因此出现了各种 各样的示功图。今天我们主要学 习由某种单一因素影响形成的典 型示功图。 在讲解前我们先来熟悉一个概 念:弹性变形。 幻灯片5 弹性变形指材料在受到外力作用 时产生变形或尺寸的变化,而且 能够恢复的变形叫做弹性变形。 弹性变形的重要特征是其可逆 性,即受力作用后产生变形,卸 除载荷后,变形消失。 生产中抽油杆柱所承受的弹性变 形主要是:轴向拉伸变形和轴向 压缩变形。 幻灯片6 下面我们通过动画了解弹性变形 在深井泵工作过程中的影响及作 用。 深井泵工作原理分为两大部分, 也就是上行程和下行程。 上行程开始时,驴头上行,游动 阀、固定阀均关闭,杆柱承受光 杆向上拉伸及活塞上部液柱重力 作用在活塞上对杆柱的拉伸而伸 长,同时油管柱缩短,悬点载荷 逐步增加,达到拉伸极限时变形 结束,载荷达到理论最大值,但 是活塞未移动,加载过程AB段 形成光杆冲程损失BB1 随着驴头继续上移,活塞开始向 上移动,泵筒内压力降低,当压 力低于油套环空压力时,油套环

冷却塔节能技术介绍.

节能冷却塔技改技术介绍 一、冷却塔节能技改方法: 冷却塔节能技改技术的核心是水轮机取代冷却塔原来电机、减速器、传动轴等部件,把系统中被浪费的多余的动能转化为机械能,直接带动风扇转动。对能被改造的冷却塔而言实现100%的节能。 (冷却塔节能改造,会不会对现在系统造成不利的影响呢?结论是不会 二、节能技改后状况: 1、不改变冷却循环水系统的整体结构布局,不改变循环水泵的状态如电流等。 2、冷却塔的节能技改不是能量的转移,不会增加水泵的功率,只是充分利用系 统中多余的能量来推动水轮机,带动风扇转动,实现节能。 3、改造后风扇输入的轴功率保证不变,风扇的转速保证不变,在冷却塔其他方 面不做改动的情况下,风量保证不变。 4、冷却效果会更好,冷却后的水温T2会降低,温差将增大。 (可能现在大家最关心的就是:即不增加水泵的功率,也不改造冷却塔的结构,那到底是从那里来的能量呢? 三、能量的来源: 根据能量守恒原理,能量不能凭空产生,我公司的水轮机也是不能造能。它是充分回收利用水循环系统中本身就有的多余的能量来推动水轮机,带动风扇转动的。 每化工设备在单位时间内的产生的热量是一定的,需要一定的水量把热量带走转移到空气中去,满足生产需求。

1,每个循环水系统中的水量很难被精确的计算出来,工艺工程师计算系统水流量时,为了安全生产及个方面的因素考虑都会在满足最大需求水量的基础上加至少10%-20%的余量来确定水泵的流量---------整个系统中的水量一定是富裕的。 2,在整个循环水系统中,每段水管、弯头都有一定的阻力,冷却塔的位置高低、换热部件的阻力、及压力要求都会在系统中产生阻力,这些阻力也不能很精确的计算出来,所以工艺工程师计算的阻力值只是一个大概的数据,根据这个数值在确定水泵的扬程时,考虑更安全的满足生产需求,就在满足所计算出的阻力数值的基础上至少加10%-20%的余量来选型--------整个循环系统中扬程一定是富裕的。 富裕的流量及扬程就是我们可利用的富裕能量。 那么这些多余的能量会体现在哪里呢? 一般表现在下面两个方面: 第一、循环水水泵的泵前、泵后一般都安装阀门。 阀门的作用有两个:(1调节流量,(2方便维修。 由于设计的循环水系统中流量及扬程大于实际需要。根据水泵的特性曲 线,富裕扬程最终也要转化为流量。流量的增加就会导致水泵的电流增加, 而超过水泵的额定电流。故系统中的阀门都有一定程度的关闭,这样阀门 上就消耗一定的压力。 第二、循环水系统的实际温差往往都是小于设计的标准温差,化工系统中多为6-8度。根据实际热量和循环水量的关系式:Q=C·M·△t,当实际测得 循环水系统的温差小于设计标准温差时,实际水流量就大于系统所需的 水量,导致系统中有大量富裕能量。

相关文档
最新文档