基于预测模型的动态多目标优化算法研究

基于预测模型的动态多目标优化算法研究
基于预测模型的动态多目标优化算法研究

湖南大学

硕士学位论文

基于预测模型的动态多目标优化算法研究

姓名:陈超

申请学位级别:硕士

专业:计算机科学与技术

指导教师:李智勇

20120512

1多目标优化

多目标优化算法 ——11级计算一班 20113745 陆慧玲 近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto 最优概念的多目标演化算法则是当前演化计算的研究热点。多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。 最优化问题是工程实践和科学研究中主要的问题形式之一,其中,仅有一个目标函数的最优化问题称为单目标优化问题,目标函数超过一个并且需要同时处理的最优化问题称为多目标优化问题(multiobjectiveoptimizationprob- lems,简称MOPs)。对于多目标优化问题,一个解对于某个目标来说可能是较好的,而对于其他目标来讲可能是较差的,因此,存在一个折衷解的集合,称为Pareto 最优解集(Pareto optimal set)或非支配解集(nondominated set)。起初,多目标优化问题往往通过加权等方式转化为单目标问题,然后用数学规划的方法来求解,每次只能得到一种权值情况下的最优解。同时,由于多目标优化问题的目标函数和约束函数可能是非线性、不可微或不连续的,传统的数学规划方法往往效率较低,且它们对于权重值或目标给定的次序较敏感。进化算法通过在代与代之间维持由潜在解组成的种群来实现全局搜索,这种从种群到种群的方法对于搜索多目标优化问题的Pareto 最优解集是很有用的。 第一代进化多目标优化算法以Goldberg 的建议为萌芽。1989 年,Goldberg 建议用非支配排序和小生境技术来解决多目标优化问题。非支配排序的过程为:对当前种群中的非支配个体分配等级1,并将其从竞争中移去;然后从当前种群中选出非支配个体,并对其分配等级2,该过程持续到种群中所有个体都分配到次序后结束。小生境技术用来保持种群多样性,防止早熟。Goldberg 虽然没有把他的思想具体实施到进化多目标优化中,但是其思想对以后的学者来说,具有启发意义。随后,一些学者基于这种思想提出了MOGA,NSGA 和NPGA。 从20 世纪末期开始,进化多目标优化领域的研究趋势发生了巨大的变化,l999 年,Zitzler 等人提出了SPEA。该方法使精英保留机制在进化多目标优化领域流行起来。第二代进化多目标优化算法的诞生就是以精英保留策略的引入为标志。在进化多目标优化领域,精英保留策略指的是采用一个外部种群(相对于原来个体种群而言)来保留非支配个体。(1)SPEA 和SPEA2 SPEA 是Zitzler 和Thiele 在1999 年提出来的算法。在该算法中,个体的适应度又称为Pareto 强度,非支配集中个体的适应度定义为其所支配的个体总数在群体中所占的比

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法

基于优化问题的多目标布谷鸟搜索算法 关键字:布谷鸟搜索、元启发式算法、多目标、最优化 摘要:在工程设计方面,很多问题都是典型的多目标问题,而且,都是复杂的非线性问题。现在我们研究的优化算法就是为了解决多目标化的问题,使得与单一目标问题的解决有明显的区别,计算结果和函数值有可能会增加多目标问题的特性。此时,元启发式算法开始显示出自己在解决多目标优化问题中的优越性。在本篇文章中,我们构造了一个新的用于解决多目标优化问题的算法——布谷鸟搜索算法。我们通过一系列的多目标检验函数对其的有效性已经做出来检验,发现它可以应用于解决结构设计等问题中去,例如:光路设计、制动器设计等。另外,我么还对该算法的主要特性和应用做了相关的分析。 1.简介 在设计问题中经常会考虑到很多多重的复杂问题,而且这些问题往往都具有很高的非线性性。在实际中,不同的目标之间往往会有分歧和冲突,有时候,实际的最优化解决方案往往不存在,而一些折中的和近似的方案往往也可以使用。除了这些挑战性和复杂性以外,设计问题还会受到不同设计目标的约束,而且还会被设计代码、设计标准、材料适应性、和可用资源的选择,以及

设计花费等所限制,甚至是关于单一目标的全局最优问题也是如此,如果设计函数有着高度的非线性性,那么全局最优解是很难达到的,而且,很多现实世界中的问题经常是NP-hard的,这就意味着没有一个行之有效的算法可以解决我们提出的问题,因此,对于一个已经提出的问题,启发式算法和科学技术与具体的学科交叉知识经常被用于其中,用来作为解决问题的向导。 另一方面,元启发算法在解决此类优化问题方面是非常有效的,而且已经在很多刊物和书籍中得以运用,与单一目标的优化问题相反的是,多目标优化问题具有典型的复杂性和困难性,在单一目标的优化问题中我们必须去找出一个最优化的解决方法,此方法在问题的解决中存在着一个单一的点,并且在此问题中不包括那些多重的、平均优化的点,对于一个多目标的优化问题,存在着名为Pareto-front的多重的复杂的优化问题,为了了解我们所不熟悉的Pareto-front问题,我们需要收集并整理很多不同的方法,从而,此计算结果将会随着近似解的变化、问题的复杂度和解决方法的多样性而有所变化甚至增加。在理论上,此类解决方法应包括问题并且应相对的有一致无分歧的分布情况,然而,还没有科学的方法可以证明这种解决方法可以在实际中得以应用。 从问题的出发点我们可以得知,算法可以在单一目标优化问题中运行的很好,但是却不能在多目标的优化问题中直接的运用,除非是在特殊的环境与条件下才可以应用。例如,使用一些

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

MOEAD(基于分解的多目标进化算法)

基于分解的多目标进化算法
摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的 应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目 标优化问题分解为一组???单目标优化问题并对它们同时优化。通过利用与每一个子问题 相邻的子问题的优化信息来优化它本身,这是的该算法比 MOGLS 和非支配排序遗传算法 NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在 0-1 背包问题和连续的多目标优化问 题上,利用一些简单的分解方法本算法就可以比 MOGLS 和 NSGA-Ⅱ表现的更加出色或者 表现相近。实验也表明目标正态化的 MOEA/D 算法可以解决规模围相异的多目标问题,同 时使用一个先进分解方法的 MOEA/D 可以产生一组分别非常均匀的解对于有 3 个目标问题 的测试样例。最后,MOEA/D 在较小种群数量是的性能,还有可扩展性和敏感性都在本篇 论文过实验经行了相应的研究。
I. 介绍
多目标优化问题可以用下面式子表示:
其中 Ω 是决策空间, 以得到的目标集合成为
,包含了 m 个实值目标方法, 被称为目标区间。对于可 。
如果
,并且所有的目标函数都是连续的,那么 Ω 则可以用
其中 hj 是连续的函数,我们可以称(1)为一个连续的多目标优化问题。 如果目标函数互斥,那么同时对所有目标函数求最优解往往是无意义的。有意义的是获
得一个能维持他们之间平衡的解。这些在目标之间获得最佳平衡的以租借被定义 Pareto 最 优。
令 u, v∈Rm,如果
对于任意的 i,并且至少存在一个
,那
么 u 支配 v。如果在决策空间中,没有一个点 F(y)能够支配 F(x)点,那么 x 就是 Pareto 最优, F(x)则被称为 Pareto 最优向量。换句话说,对于 Pareto 最优点在某一个目标函数上的提高, 都会造成至少一个其余目标函数的退化。所有 Pareto 最优解的集合称为 Pareto 集合,所有 最优向量的集合被称为 Pareto 前沿。
在许多多目标优化的实际应用中,通过选择器选择一个接近 Pareto 最优前沿的解作为 最后的解。大多数多目标优化问题都有许多甚至是无穷个 Pareto 最优向量,如果想要获得 一个完整的最优前沿,将是一件非常耗时的事情。另一方面,选择器可能不会专注于获得一 个过于庞大的最优解向量集合来解决问题,因为信息的溢出。因此,许多多目标优化算法往 往是获得一个均匀分布在 Pareto 最优前沿周围的最优解向量,这样就具有更好的代表性。 许多研究人员也致力于使用数学模型来获得一个近似的最优前沿。
一般来说,在温和控制下多目标优化问题的 Pareto 最优解,可以看做是一个标量优化 问题的最优解(其中目标函数是 fi 的集合)。因此,Pareto 最优前沿的近似求解可以被分解为

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

多目标优化进化算法比较综述

龙源期刊网 https://www.360docs.net/doc/c211469496.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

多目标进化算法总结

i x 是第t 代种群中个体,其rank 值定义为: ()(,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况: 1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j P o p m S h dij ∈ = ??? ?∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设臵共享参数 需要选择一个适当的锦标赛机制 限制了该算法的实际应用效果

09第九章 多目标优化算法

第九章多目标优化算法习题与答案 1. 填空题 (1)多目标优化问题由于存在目标,使得同时优化的对象增多。由于目标之间往往相互冲突,某一目标性能的提高会引起其他目标性能的,因此只能通过的方法使所有目标尽可能达到最优。 (2)多目标优化问题需要求解一个由不同程度折中的组成的解集,并且需要保证解集的和,这就导致多目标优化问题的求解难度远远大于单目标优化问题。 解释: 本题考查多目标优化算法的基础知识。 具体内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: (1)多个,降低,权衡折中 (2)最优解,收敛性,均匀性 2.如何理解多目标优化问题? 解释: 本题考查多目标优化问题的形式和实质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 多目标优化问题由于存在多个目标,优化对象增多,且目标之间往往是相互冲突的,某一目标性能的提高会引起其他目标性能的降低,因此只能通过权衡折中的方法使所有目标尽可能达到最优。不同于单目标优化只需求得一个最优解,多目标优化需要求解一个由不同程度折中的最优解组成的解集,且需同时保证解集的收敛性和均匀性。例如,购买汽车时考虑到汽车性能和价格两个方面,往往

当性能较好时性能优良且价格昂贵,而性能较差时价格低廉,人们总是想得到价格便宜同时性能又好的汽车,但这两方面往往不能同时兼优,只能在某一方面有所偏重,这就形成了一个以汽车性能(比如百米加速时间)和价格为两个冲突目标的多目标优化问题。 3. 试举例说明Pareto 支配关系具有传递性。 解释: 本题考查Pareto 支配关系的性质。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 假设两目标最小优化的三个个体,123=(2,2)=(3,3)=(4,4)C C C ,,,则1 2C C , 2 3C C ,又因为1 3C C ,所以Pareto 支配关系具有传递性。 4. 考虑一个具有两个目标最小化问题,20个个体的进化群体,进行Pareto 非支配排序分层。20个个体定义如下:C 1=(9,1),C 2=(7,2),C 3= (5,4),C 4=(4,5),C 5=(3,6),C 6=(2,7),C 7=(1,9),C 8=(10,1),C 9=(8,5),C 10=(7,6),C 11=(5,7),C 12=(4,8),C 13=(3,9),C 14=(10,5),C 15=(9,6),C 16=(8,7),C 17=(7,9),C 18=(10,6),C 19=(9,7),C 20=(8,9) 解释: 本题考查基于Pareto 支配的排序方法。 内容请参考课堂视频“第9章多目标优化算法”及其课件。 答案: 由于{}18C C ;{}2349,,C C C C ;{}234510,,,C C C C C ;{}345611,,,C C C C C ; {} 45612 ,,C C C C ; {} 56713 ,,C C C C ; {} 12348914 ,,,,,C C C C C C C ;{} 1234591015 ,,,,,,C C C C C C C C ; {} 234569101116 ,,,,,,,C C C C C C C C C ;

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

相关文档
最新文档