改进的多目标优化算法及其在船舶设计中的应用

改进的多目标优化算法及其在船舶设计中的应用
改进的多目标优化算法及其在船舶设计中的应用

1多目标优化

多目标优化算法 ——11级计算一班 20113745 陆慧玲 近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto 最优概念的多目标演化算法则是当前演化计算的研究热点。多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。 最优化问题是工程实践和科学研究中主要的问题形式之一,其中,仅有一个目标函数的最优化问题称为单目标优化问题,目标函数超过一个并且需要同时处理的最优化问题称为多目标优化问题(multiobjectiveoptimizationprob- lems,简称MOPs)。对于多目标优化问题,一个解对于某个目标来说可能是较好的,而对于其他目标来讲可能是较差的,因此,存在一个折衷解的集合,称为Pareto 最优解集(Pareto optimal set)或非支配解集(nondominated set)。起初,多目标优化问题往往通过加权等方式转化为单目标问题,然后用数学规划的方法来求解,每次只能得到一种权值情况下的最优解。同时,由于多目标优化问题的目标函数和约束函数可能是非线性、不可微或不连续的,传统的数学规划方法往往效率较低,且它们对于权重值或目标给定的次序较敏感。进化算法通过在代与代之间维持由潜在解组成的种群来实现全局搜索,这种从种群到种群的方法对于搜索多目标优化问题的Pareto 最优解集是很有用的。 第一代进化多目标优化算法以Goldberg 的建议为萌芽。1989 年,Goldberg 建议用非支配排序和小生境技术来解决多目标优化问题。非支配排序的过程为:对当前种群中的非支配个体分配等级1,并将其从竞争中移去;然后从当前种群中选出非支配个体,并对其分配等级2,该过程持续到种群中所有个体都分配到次序后结束。小生境技术用来保持种群多样性,防止早熟。Goldberg 虽然没有把他的思想具体实施到进化多目标优化中,但是其思想对以后的学者来说,具有启发意义。随后,一些学者基于这种思想提出了MOGA,NSGA 和NPGA。 从20 世纪末期开始,进化多目标优化领域的研究趋势发生了巨大的变化,l999 年,Zitzler 等人提出了SPEA。该方法使精英保留机制在进化多目标优化领域流行起来。第二代进化多目标优化算法的诞生就是以精英保留策略的引入为标志。在进化多目标优化领域,精英保留策略指的是采用一个外部种群(相对于原来个体种群而言)来保留非支配个体。(1)SPEA 和SPEA2 SPEA 是Zitzler 和Thiele 在1999 年提出来的算法。在该算法中,个体的适应度又称为Pareto 强度,非支配集中个体的适应度定义为其所支配的个体总数在群体中所占的比

多目标进化算法总结

MOGA i x 是第t 代种群中个体,其rank 值定义为: () (,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况:

1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

NPGA 基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j Pop m Sh d i j ∈= ????∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设置共享参数

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

用于约束多目标优化问题的双群体差分进化算法精编

用于约束多目标优化问题的双群体差分进化算 法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

用于约束多目标优化问题的双群体差分进化算法 孟红云 1 张小华2刘三阳1 (1.西安电子科技大学应用数学系,西安,710071; 2.西安电子科技大学智能信息处理研究所,西安,710071)摘要:首先给出一种改进的差分进化算法,然后提出一 种基于双群体搜索机制的求解约束多目标优化问题的差分 进化算法.该算法同时使用两个群体,其中一个用于保存 搜索过程中找到的可行解,另一个用于记录在搜索过程中 得到的部分具有某些优良特性的不可行解,避免了构造罚 函数和直接删除不可行解.此外,将本文算法、NSGA-Ⅱ和SPEA的时间复杂度进行比较表明,NSGA-Ⅱ最优,本文算法与SPEA相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字:差分进化算法;约束优化问题;多目标优化问题; 中图分类号:TP18 1 引言 达尔文的自然选择机理和个体的学习能力推动进化算 法的出现和发展,用进化算法求解优化问题已成为一个研 究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结 为求解一个带有约束条件的函数优化问题,因此研究基于 进化算法求解约束优化问题是非常有必要的.不失一般

性,以最小化问题为例,约束优化问题(Constrained Optimization Problem ,COP )可定义如下: )(COP ()()()()q j x h p i x g t s x f x f x f x F j i k R x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件, n n R x x x x ∈=),,,(21 称为n 维决策向量.将满足所有约束条件的 解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目 标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为 第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转 化为两个不等式约束: ?????≤--≤-0)(0)(δδx h x h j j (2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束() x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解. 定义1(全局最优解)()**2 *1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标 函数)(y F ,表示为)( )(*y F x F . 对于单目标优化问题, )( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不 存在y ,使得)(y F Pareto 优于)(*x F . 目前,进化算法用于无约束优化问题的文献居多,与 之比较,对约束优化问题的研究相对较少[4-6]。文[7] 对当前基于进化算法的各种约束处理方法进行了较为详细的综述. 对于约束优化问题的约束处理方法基本上分为两类:基于 罚函数的约束处理技术和基于多目标优化技术的约束处理

最新高维多目标进化算法总结

高维多目标进化算法 二、文献选读内容分析及思考 (一)Borg算法 Borg算法是基于ε-MOEA算法(Deb,2003)的一种全新改进算法[32],下面将从创新点、原理、算法流程和启发思考四方面进行阐述。 1.创新点 1)在ε支配关系的基础上提出ε盒支配的概念,具有能同时保证算法收敛性与多样性的特点。 2)提出了ε归档进程,能提高算法计算效率和防止早熟。 3)种群大小的自适应调整。 4)交叉算子的自适应选择。由于处理实际问题时,是不知道目标函数具有什么特性,前沿面如何,在具有多个交叉算子的池子里,根据进程反馈,选择不同的交叉算子,使产生的后代具有更好的特性针对要研究的问题。 2. Borg算法原理 1)ε盒支配:通过对目标空间向量的每一维除以一个较小的ε,然后取整后进行pareto支配比较。这样的支配关系达到的效果是把目标空间划分成以ε为边长的网格(2目标时),当点处于不同的网格时,按pareto支配关系比较;当处于同一网格时,比较哪个点距离中心点(网格最左下角)最近。这样一来,网格内都只有一个点。 2)ε归档进程 如图1所示,黑点表示已经归档的,想要添加到档案集的新解用×表示,阴影表示归档解支配的区域。当新解的性能提升量超过阈值ε才属于ε归档进程。比如解1、解2加入归档集属于ε归档进程,解3加入归档集就不属于ε归档进程。 图1 ε支配网格 在这个过程中设置了一个参数c,表示每一代中加入归档集解得个数,每隔一定迭代次数检测c有没有增加,如果没有增加表明算法停滞,重启机制启动。 3)重启 自适应种群大小:重启后的种群大小是根据归档集的大小设置。γ表示种群大小与归档集大小的比值,这个值也用于第二步中,如果γ值没超过1.25,重启机制也启动。启动后,γ人为设定为固定值,种群被清空,填充归档集的所有个体,不足的个体是随机选取归档集中个体变异所得。与之相匹配的锦标赛比较集大小是归档集大小乘以固定比值τ。 4)交叉算子的自适应选择 摒弃以往采用单一的交叉算子,采用包含各类交叉算子的池子,比如有K

浅析多目标优化问题

浅析多目标优化问题 【摘要】本文介绍了多目标优化问题的问题定义。通过对多目标优化算法、评估方法和测试用例的研究,分析了多目标优化问题所面临的挑战和困难。 【关键词】多目标优化问题;多目标优化算法;评估方法;测试用例 多目标优化问题MOPs (Multiobjective Optimization Problems)是工程实践和科学研究中的主要问题形式之一,广泛存在于优化控制、机械设计、数据挖掘、移动网络规划和逻辑电路设计等问题中。MOPs有多个目标,且各目标相互冲突。对于MOPs,通常存在一个折衷的解集(即Pareto最优解集),解集中的各个解在多目标之间进行权衡。获取具有良好收敛性及分布性的解集是求解MOPs的关键。 1 问题定义 最小化MOPs的一般描述如下: 2 多目标优化算法 目前,大量算法用于求解MOPs。通常,可以将求解MOPs的算法分为两类。 第一类算法,将MOPs转化为单目标优化问题。算法为每个目标设置权值,通过加权的方式将多目标转化为单目标。经过改变权值大小,多次求解MOPs 可以得到多个最优解,构成非支配解集[1]。 第二类算法,直接求解MOPs。这类算法主要依靠进化算法。进化算法这种面向种群的全局搜索法,对于直接得到非支配解集是非常有效的。基于进化算法的多目标优化算法被称为多目标进化算法。根据其特性,多目标进化算法可以划分为两代[2]。 (1)第一代算法:以适应度共享机制为分布性策略,并利用Pareto支配关系设计适应度函数。代表算法如下。VEGA将种群划分为若干子种群,每个子种群相对于一个目标进行优化,最终将子种群合并。MOGA根据解的支配关系,为每个解分配等级,算法按照等级为解设置适应度函数。NSGA采用非支配排序的思想为每个解分配虚拟适应度值,在进化过程中,算法根据虚拟适应度值采用比例选择法选择下一代。NPGA根据支配关系采用锦标赛选择法,当解的支配关系相同时,算法使用小生境技术选择最优的解进入下一代。 (2)第二代算法:以精英解保留机制为特征,并提出了多种较好的分布性策略。代表算法如下。NSGA-II降低了非支配排序的复杂度,并提出了基于拥挤距离的分布性策略。SPEA2提出了新的适应度分配策略和基于环境选择的分布性策略。PESA-II根据网络超格选择个体并使用了基于拥挤系数的分布性策略。

MOEAD(基于分解的多目标进化算法)

基于分解的多目标进化算法
摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的 应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目 标优化问题分解为一组???单目标优化问题并对它们同时优化。通过利用与每一个子问题 相邻的子问题的优化信息来优化它本身,这是的该算法比 MOGLS 和非支配排序遗传算法 NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在 0-1 背包问题和连续的多目标优化问 题上,利用一些简单的分解方法本算法就可以比 MOGLS 和 NSGA-Ⅱ表现的更加出色或者 表现相近。实验也表明目标正态化的 MOEA/D 算法可以解决规模围相异的多目标问题,同 时使用一个先进分解方法的 MOEA/D 可以产生一组分别非常均匀的解对于有 3 个目标问题 的测试样例。最后,MOEA/D 在较小种群数量是的性能,还有可扩展性和敏感性都在本篇 论文过实验经行了相应的研究。
I. 介绍
多目标优化问题可以用下面式子表示:
其中 Ω 是决策空间, 以得到的目标集合成为
,包含了 m 个实值目标方法, 被称为目标区间。对于可 。
如果
,并且所有的目标函数都是连续的,那么 Ω 则可以用
其中 hj 是连续的函数,我们可以称(1)为一个连续的多目标优化问题。 如果目标函数互斥,那么同时对所有目标函数求最优解往往是无意义的。有意义的是获
得一个能维持他们之间平衡的解。这些在目标之间获得最佳平衡的以租借被定义 Pareto 最 优。
令 u, v∈Rm,如果
对于任意的 i,并且至少存在一个
,那
么 u 支配 v。如果在决策空间中,没有一个点 F(y)能够支配 F(x)点,那么 x 就是 Pareto 最优, F(x)则被称为 Pareto 最优向量。换句话说,对于 Pareto 最优点在某一个目标函数上的提高, 都会造成至少一个其余目标函数的退化。所有 Pareto 最优解的集合称为 Pareto 集合,所有 最优向量的集合被称为 Pareto 前沿。
在许多多目标优化的实际应用中,通过选择器选择一个接近 Pareto 最优前沿的解作为 最后的解。大多数多目标优化问题都有许多甚至是无穷个 Pareto 最优向量,如果想要获得 一个完整的最优前沿,将是一件非常耗时的事情。另一方面,选择器可能不会专注于获得一 个过于庞大的最优解向量集合来解决问题,因为信息的溢出。因此,许多多目标优化算法往 往是获得一个均匀分布在 Pareto 最优前沿周围的最优解向量,这样就具有更好的代表性。 许多研究人员也致力于使用数学模型来获得一个近似的最优前沿。
一般来说,在温和控制下多目标优化问题的 Pareto 最优解,可以看做是一个标量优化 问题的最优解(其中目标函数是 fi 的集合)。因此,Pareto 最优前沿的近似求解可以被分解为

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

多目标优化算法与求解策略

多目标优化算法与求解策略 2多目标优化综述 2.1多目标优化的基本概念 多目标优化问题(Multi-objective Optimization Problem,MOP)起源于许多实际复杂系统的设计、建模和规划问题,这些系统所在的领域包括工业制造、城市运输、资本预算、森林管理、水库管理、新城市的布局和美化、能量分配等等。几乎每个重要的现实生活中的决策问题都要在考虑不同的约束的同时处理若干相互冲突的目标,这些问题都涉及多个目标的优化,这些目标并不是独立存在的,它们往往是祸合在一起的互相竞争的目标,每个目标具有不同的物理意义和量纲。它们的竞争性和复杂性使得对其优化变得困难。 多目标最优化是近20多年来迅速发展起来的应用数学的一门新兴学科。它研究向量目标函数满足一定约束条件时在某种意义下的最优化问题。由于现实世界的大量问题,都可归结为含有多个目标的最优化问题,自70年代以来,对于多目标最优化的研究,在国内和国际上都引起了人们极大的关注和重视。特别是近10多年来,理论探索不断深入,应用范围日益广泛,研究队伍迅速壮大,显示出勃勃生机。同时,随着对社会经济和工程设计中大型复杂系统研究的深入,多目标最优化的理论和方法也不断地受到严峻挑战并得到快速发展。近几年来,将遗传算法(Genetic Algorithm,GA)应用于多目标优化问题成为研究热点,这种算法通常称作多目标优化进化算法或多目标优化遗传算法。由于遗传算法的基本特点是多方向和全局搜索,这使得带有潜在解的种群能够一代一代地维持下来。从种群到种群的方法对于搜索Pareto解来说是十分有益的。 一般说来,科学研究与工程实践中许多优化问题大都是多目标优化问题。多目标优化问题中各目标之间通过决策变量相互制约,对其中一个目标优化必须以其它目标作为代价,而且各目标的单位又往往不一致,因此很难客观地评价多目标问题解的优劣性。与单目标优化问题的本质区别在于,多目标优化问题的解不是唯一的,而是存在一个最优解集合,集合中

多目标优化进化算法比较综述

龙源期刊网 https://www.360docs.net/doc/c67369304.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

多目标进化算法总结

i x 是第t 代种群中个体,其rank 值定义为: ()(,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况: 1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j P o p m S h dij ∈ = ??? ?∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设臵共享参数 需要选择一个适当的锦标赛机制 限制了该算法的实际应用效果

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

高维多目标优化算法及其应用研究

华中科技大学博士学位论文 目录 摘要............................................................I Abstract..........................................................III 目录............................................................VI 1绪论 1.1研究背景与意义 (1) 1.2高维多目标优化研究现状 (4) 1.3研究趋势与展望 (10) 1.4预备知识 (11) 1.5本文主要工作与组织结构 (15) 2非规则前沿面高维多目标问题优化算法 2.1引言 (19) 2.2非规则前沿面高维多目标问题优化算法 (21) 2.3算法测试与结果分析 (31) 2.4汽车碰撞可靠性设计 (38) 2.5本章小结 (39) 3多样性保持高维多目标优化算法 3.1引言 (41) 3.2雷达映射介绍与分析 (44) 3.3多样性保持高维多目标优化算法 (47) 3.4算法测试与结果分析 (56) 3.5本章小结 (68) 4昂贵高维多目标问题优化算法 4.1引言 (71) 4.2昂贵高维多目标优化算法 (74) 4.3优化算法分析 (82) 4.4算法测试与结果分析 (86) 4.5本章小结 (98)

华中科技大学博士学位论文 5基于多目标优化光伏最大功率点追踪方法 5.1引言 (100) 5.2光伏系统离线MPPT控制器 (102) 5.3基于RSEA的MPPT算法 (102) 5.4仿真实验对比与分析 (108) 5.5本章小结 (112) 6基于高维多目标优化的高阶滤波器设计 6.1引言 (113) 6.2滤波器介绍及高维多目标问题构造 (115) 6.3高阶滤波器设计方法 (120) 6.4实验结果与分析 (123) 6.5本章小结 (128) 7总结与展望 7.1全文总结 (129) 7.2尚待研究的工作 (130) 致谢 (132) 参考文献 (134) 附录1攻读学位期间发表和撰写的学术论文 (149) 附录2博士学位论文章节内容与博士期间论文的关系 (151) 附录3攻读博士学位论文期间参加的科研课题 (152) 附录4攻读博士学位期间申请专利 (153)

相关文档
最新文档