伽罗瓦 介绍

伽罗瓦 介绍
伽罗瓦 介绍

伽罗瓦

河北师范学院邓明立

伽罗瓦,E.(Galois,Evariste)1811年10月25日生于法国巴黎附近的拉赖因堡;1832年5月31日卒于巴黎.数学.

伽罗瓦的父亲N.G.伽罗瓦(Galois)是法国资产阶级革命的支持者,为人正直厚道.他在1815年拿破仑发动“百日政变”期间,当选为拉赖因堡市的市长.伽罗瓦的母亲是一位当地法官的女儿,聪明而有教养,但个性倔强,甚至有些古怪.她是伽罗瓦的启蒙老师,为他的希腊语和拉丁语打下了基础,并且把她自己对传统宗教的怀疑态度传给了儿子.1823年10月,12岁的伽罗瓦离别双亲,考入路易·勒格兰皇家中学,开始接受正规教育.在中学的前两年,他因希腊语和拉丁语成绩优异而多次获奖;但在第三年(1826),伽罗瓦对修辞学没有下足够的功夫,因而只得重读一年.在这次挫折之后,他被批准选学第一门数学课.这门课由H.J.韦尼耶(Vernier)讲授,他唤起了伽罗瓦的数学才能,使他对数学发生了浓厚的兴趣.他一开始就对那些不谈推理方法而只注重形式和技巧问题的教科书感到厌倦,于是,他毅然抛开教科书,直接阅读数学大师们的专著.A.M.勒让德(Legendre)的经典著作《几何原理》(Eléments de géo-me tre,1792),使他领悟到数学推理方法的严密性;J.L.拉格朗日(Lagrange)的《解数值方程》(Rélution deséquations nume-riques,1769)、《解析函数论》(Théorie des fonctions analytiques,1797)等著作,不仅使他的思维更加严谨,而且其中的思想方法对他的工作产生了重要的影响;接着他又研究了L.欧拉(Euler)、C.F.高斯(Gauss)和A.L.柯西(Cauchy)的著作,为自己打下了坚实的数学基础.学习和研究数学大师的经典著作、是伽罗瓦获得成功的重要途径.他深信自己能做到的,决不会比他们少.他的一位教师说:“他被数学的鬼魅迷住了心窍.”然而,他忽视了其他学科,导致了他首次(1828)报考巴黎综合工科学校失败.

1828年10月,伽罗瓦从初级数学班升到L.P.E.里查德(Richard)的数学专业班.里查德是一位年轻而富有才华的教授,并且具有发掘科学英才的敏锐判断力和高度责任感.他认为伽罗瓦是最有数学天赋的人物,“只宜在数学的尖端领域中工作”.于是,年仅17岁的伽罗瓦开始着手研究关于方程理论、整数理论和椭圆函数理论的最新著作.他的第一篇论文“周期连分数的一个定理的证明”(Démonstration d’un théoréme sur les fractionscontinues périodiques),于1829年3月发表在J.D.热尔岗(Gergonne)主办的《纯粹与应用数学年刊》(Annales de Mathé-matiques Pures et Appliquées)上,它更为清楚地论述和说明了欧拉与拉格朗日关于连分式的结果.

据伽罗瓦说,他在1828年犯了和N.H.阿贝尔(Abel)在8年前犯的同样错误,以为自己解出了一般的五次方程.但他很快意识到了这一点,并重新研究方程理论,他坚持不懈,直到成功地用群论阐明了这个带普遍性的问题.1829年5月25日和6月1日,他先后将他的两篇关于群的初步理论的论文呈送法国科学院.科学院请柯西做论文的主审.然而,一些事件挫伤了这个良好的开端,而已在这位年轻数学家的个性上留下了深深的烙印.首先,伽罗瓦的父亲由于受不了保守的天主教牧师的恶毒诽谤于7月2日自杀身亡.之后不到一个月,伽罗瓦参加了巴黎综合工科学校的入学考试,由于他拒绝采用主考官建议的解答方法,结果又遭失败.最后他不得已报考了高等师范学院,于1829年10月被录取.

柯西审核的伽罗瓦的论文,新概念较多,又过于简略,因此柯西建议他重新修改.1830年2月,伽罗瓦将他仔细修改过的论文再次呈送科学院,科学院决定由J.B.J.傅里叶(Fourier)主审.不幸,傅里叶5月份去世,在他的遗物中未能找到伽罗瓦的手稿.

1830年4月,伽罗瓦的论文“关于方程代数解法论文的分析”发表在B.D.费吕萨克(Férussac)的《数学科学通报》(Bulle-tetin des Sciences Mathématiques)上.同年6月,他又在

同一杂志上发表了两篇论文——“关于数值方程解法的注记”和“数的理论”,这期杂志上还刊登着柯西和S.D.泊松(Poisson)的文章,这充分说明了伽罗瓦已在数学界赢得了声誉.伽罗瓦进入师范学院一年,正当他做出卓越的研究工作之时,法国历史上著名的1830年“七月革命”爆发了.伽罗瓦作为一名勇敢追求真理的共和主义战士,反对学校的苛刻校规,抨击校长在“七月革命”期间的两面行为.为此,他于1830年12月8日被校方开除.于是,他便根据自己的意志投身于政治活动.1831年5月9日,在一个共和主义者的宴会上,伽罗瓦举杯对国王进行了挑衅性的祝酒,于第二天被捕.罪名是教唆谋害国王生命的未遂罪.6月15日被塞纳陪审法院释放.在此期间,伽罗瓦继续进行数学研究.他于1831年1月13日开了一门关于高等代数的公开课,以讲授自己独创的学术见解谋生.但是,这个设想并未获得多大成功.1831年1月17日,他向科学院呈送了题为“关于方程根式解的条件”的论文,这次负责审查论文的是泊松和S.F.拉克鲁瓦(Lacroix).虽然泊松认真地审阅了它,可得出的结论却是“不可理解”.在他们给科学院的报告中说:“我们已经尽了最大努力来研究伽罗瓦的证明,他的推理显得不很清楚,到目前为止,我们还不能对它作出正确评价,因为有说服力的证明还没有得到.因此,在这篇报告中,我们甚至不能给出他的证明思想.”最后,泊松建议伽罗瓦进一步改进并详细阐述他的工作.

1831年7月14日,伽罗瓦率众上街示威游行时,再次被捕,他被关押在圣佩拉吉监狱.他在狱中顽强地进行数学研究,一面修改他关于方程论的论文,研究椭圆函数,一面着手撰写将来出版他著作时的序言.1832年3月16日,由于宣布霍乱正在流行,伽罗瓦被转移到一家私人医院中服刑.他在那里陷入恋爱,后因爱情纠纷而卷入一场决斗.4月29日,伽罗瓦获释.5月29日,即决斗的前一天,伽罗瓦给共和主义者的朋友们写了绝笔信.尤其在给A.舍瓦列耶(Cheralier)的信中,表明他在生命即将结束的时候,仍在整理、概述他的数学著作.第二天清晨,在冈提勒的葛拉塞尔湖附近,他与对手决斗,结果中弹致伤后被送进医院.1832年5月31日,这位未满21岁的数学家与世长辞了.

伽罗瓦最主要的成就是提出了群的概念,用群论彻底解决了代数方程的可解性问题.人们为了纪念他,把用群论的方法研究代数方程根式解的理论称之为伽罗瓦理论.它已成为近世代数学的最有生命力的一种理论.

群论起源于代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果.对于方程论,拉格朗日有过卓越的概括.在1770年前后,他利用统一的方法(现在称为拉格朗日预解式方法),详细分析了二次、三次、四次方程的根式解法,提出了方程根的排列置换理论是解决问题的关键所在.他的方法对于求解低次方程卓有成效,但对一般的五次方程却没有任何明确的结果,致使他对高次方程的求解问题产生了怀疑.P.鲁菲尼(Ruffini)于1799年首次证明了高于四次的一般方程的不可解性,但其证明并不完善.在1824—1826年,阿贝尔修正了鲁菲尼证明中的缺陷,严格证明了一般的五次或五次以上的代数方程不可能有根式解.其间,高斯于1801年建立了分圆方程理论,解决了二项方程的可解性问题,这对于伽罗瓦理论的创立至关重要.1815年,柯西对于置换理论的发展做出了贡献.固然高于四次的一般方程不能有根式解,但是有些特殊类型的方程(如二项方程、阿贝尔方程割仍然可以用根式求解.因此,全面地刻画可用根式求解的代数方程的特性问题,乃是一个需要进一步解决的问题.伽罗瓦的理论正是在这样的背景上发展起来的.

伽罗瓦继承和发展了前人及同时代人的研究成果,融会贯通了各流派的数学思想,并且凭着他对近代数学概念特性的一种直觉,超越了他们.他系统地研究了方程根的排列置换的性质,首次定义了置换群的概念,他认为了解置换群是解决方程理论的关键.在1831年的论文中,伽罗瓦把具有封闭性的置换的集合称为“群”.当然,这只是抽象群的一条重要性质而已.群是近代数学中最重要的概念之一,它不仅对数学的许多分支有深刻的影响,而

且在近代物理、化学中也有许多重要的作用.因此,群的概念需要以高度抽象的形式来表达.

现在公认群是元素间存在二元运算(例如乘法)并具有下列四条性质的集合:

(1)(封闭性)集合中任意两个元素的乘积仍属于该集合;

(2)(结合性)乘法满足结合律,即(a·b)·c=a·(b·c);

(3)(存在单位元)集合中存在单位元I,对集合中任意元素a满足I·a=a·I=a;

(4)(存在逆元)对集合中任一元素a,存在唯一元素a-1,使得a-1·a=a·a-1=I.

伽罗瓦是利用群论的方法解决代数方程可解性问题的.他注意到每个方程都可以与一个置换群联系起来,即与它的根之间的某些置换组成的群联系;现在称这种群为伽罗瓦群.对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使该函数的值不变.反过来,如果伽罗瓦群中的每个置换都使一个根的多项式函数的值不变,则这多项式函数的值是有理的.因此,一个方程的伽罗瓦群完全体现了它的根(整体)的对称性.伽罗瓦的思想方法大致是这样的:他将每个方程对应于一个域,即含有方程全部根的域(现在称之为方程的伽罗瓦域),这个域又对应一个群,即这个方程的伽罗瓦群.这样,他就把代数方程可解性问题转化为与方程相关的置换群及其子群性质的分析问题.这是伽罗瓦工作的重大突破.

具体说来,假设方程x n+a1x n-1+a1x n-2+…+a n

-1

x+a n=0的系数生成的域为F,E是方程的伽罗瓦域,它是将方程的根添加到F上所生成的域,现在称之为伽罗瓦扩张.让G表示方程的伽罗瓦群.这个方程是否可用根式求解的关键问题是:数域F是否可以经过有限次添加

根式而扩张为根域E.也就是说是否存在有限多个中间域:F1,F1,…,F s

-1

,F s=E,使

F=F0F1F1…F s=E.其中每个F i都是由F i

-1添加F i

-1

中的数的根式所生成的扩域.不妨假定,F

是含有这个方程的系数及1的各次方根的最小域,且每次所添加的根式均为素数次根.那么,这样的中间域Fi与Fi-1之间有何关系呢?伽罗瓦经过认真的研究,认为关键取决于使Fi-1保持不变的Fi的自同构变换群的结构.可以证明,这样的自同构群是素数阶的循环群,且阶数为[Fi∶Fi-1].域上的自同构群概念的引入,使域与群发生了联系.即建立了伽罗瓦域的子域与伽罗瓦群的子群之间的一一对应关系.事实上,保持F=F0的元素不动的E的每个自同构决定方程根的一个置换,它属于伽罗瓦群G;反之,G中每个置换引起E的一个自同构,它使F的元素不动.这样就建立了E的自同构群和方程的伽罗瓦群之间的同构.由此建立E的子域(包含F)和G的子群之间的一一对应:保持子域Fi元素不动的G中全部置换构成G的一个子群Gi,让Gi与Fi对应,而且反过来也可用Gi来刻划Fi,即Fi是E中对Gi的每个置换保持不动的元素全体.

伽罗瓦还利用方程根的n!值的线性系数θ(n表示方程根的个数)来定出方程的伽罗瓦群.虽然这种计算并非易事,但的确给出了计算伽罗瓦群的一种方法,而且伽罗瓦在这里给出了域扩张的本原元素的概念.

在代数方程可解性的研究中,伽罗瓦的主要思想是对给定方程的系数以及经过有限次扩张的中间域给出了一个群的序列,使得每个扩域相对应的群是它前一个域相应的群的子群.伽罗瓦基本定理就描述了中间域与伽罗瓦群的子群之间的对应关系.利用这种关系,可由群的性质描述域的性质;或由域的性质描述群的性质.因此,伽罗瓦的理论是域与群这两种代数结构综合的结果.

伽罗瓦的工作主要基于两篇论文——“关于方程根式解的条件”和“用根式求解的本原方程”.这两篇论文于1846年由J.刘维尔(Liouille)编辑出版.此后,人们便开始介绍和评价伽罗瓦的工作,他的思想方法逐渐为人们所接受.在这些论文中,伽罗瓦将其理论应用于代数方程的可解性问题,由此引入了群论的一系列重要概念.

当伽罗瓦将二项方程作为预解方程研究时,他发现其相应的置换子群应是正规子群且

指数为素数才行.正规子群概念的引入及其性质和作用的研究,是伽罗瓦工作的又一重大突破.属于伽罗瓦的另一个群论概念是两个群之间的同构.这是两个群的元素之间的一一对应,使得如果在第一个群中有a·b=c,则对第二个群的对应元素,有a′·b′=c′.他还引进了单群和合成群的概念.一个没有正规子群的群是单群,否则是合成群.他表述了最小单群定理:阶是合成数的最小单群是60阶的群.

伽罗瓦还利用正规子群判别已知方程能否转化为低次方程的可解性问题.用现代语言可将他的思想方法描述如下:首先定义正规子群的概念,即群G的子群N叫做G的正规子群,是指对于每个g∈G,g-1Ng=N;其次是寻找极大正规子群列,确定极大正规子群列的一系列合成因子.如果一个群所生成的全部合成因子都是素数,伽罗瓦就称这个群为可解的.他利用可解群的概念全面刻画了用根式解方程的特性,给出了判别方程可解性的准则:一个方程可用根式解的充要条件是这个方程的伽罗瓦群是可解群.虽然这一准则不能使一个确定方程的精确求解更为简单,但它确实提供了一些方法,可以用来得出低于五次的一般方程,以及二项方程和某些特殊类型方程的可解性的有关结果,还可以直接推导出高于四次的一般方程的不可解性.因为一般的n次方程的伽罗瓦群是n个文字的对称群Sn;当n>4时,n次交错群An是非交换的单群(不可解),An又是Sn的极大正规子群.由此可推出Sn 是不可解的.既然对于所有这样的n值,都存在其Sn是伽罗瓦群的n次方程,所以一般的高于四次的方程不可能得到根式解.

在“关于方程代数解法论文的分析”中,伽罗瓦提出了一个重要定理(未加证明):一个素数次方程可用根式求解的充要条件是这个方程的每个根都是其中两个根的有理函数.伽罗瓦用它判别特殊类型方程的根式解问题.他所研究的这种方程,现在称之为伽罗瓦方程,是阿贝尔方程的推广.在“数的理论”一文中,伽罗瓦用现在所谓的“伽罗瓦虚数”对同余理论作了推广并将之应用于研究本原方程可用根式求解的情况.关于伽罗瓦虚数,在伽罗瓦之前只知道特征0的域,如有理数域、实数域、复数域等,伽罗瓦在这篇论文中给出了一类新的域,即伽罗瓦域,现在称为有限域,它们是素数特征的城.有限域在现在通讯中的重要作用是尽人皆知的.

伽罗瓦的数学遗作,首次(1846)发表在刘维尔主办的《纯粹与应用数学杂志》(Journal de Mathématiques Pures et Appliquées)上.1897年,E.皮卡(Picard)再次出版了《伽罗瓦数学手稿》(Ocuvres mathématiques d’Evariste Galois).之后,J.塔涅伊(Tannery)编辑的《伽罗瓦的手稿》(Manuscriste d’Evariste Galo-is)于1908年正式出版.1962年,R.布尔哥涅(Bourgne)和J.P.阿兹拉(Azra)编辑出版了带有评论性的典型版本《伽罗瓦数学论文全集》(Ecrists et mémoires mathématiques d’EvaristeGalois),它汇集了伽罗瓦所有已发表的著作,以及绝大部分还保存的数学提纲、信件和原稿.这些史料证实了伽罗瓦的数学研究,与他对数学本质尤其对数学方法的追求、探索是密不可分的,展示了他对现代数学精神的远见卓识.从中精选出的有关数学观、方法论的原文,已成为当今研究的方向.

伽罗瓦不仅研究具体的数学问题,而且研究能概括这些具体成果并决定数学长期发展及人们思维方式转变的新理论——群论.由此还发展了域论.D.希尔伯特(Hilbert)曾把伽罗瓦的理论称为“一个明确的概念结构的建立”.这种理论,对于近代数学、物理学、化学的发展,甚至对于20世纪结构主义哲学的产生和发展,都发生了巨大影响.正象E.T.贝尔(Bell)所说的:“无论在什么地方,只要能应用群论,从一切纷乱混淆中立刻结晶出简洁与和谐,群的概念是近世科学思想的出色的新工具之一.”

伽罗瓦还是头一位有意识地以结构研究代替计算的人.他使人们从偏重“计算”研究的思维方式转变为用“结构”观念研究的思维方式,他的理论是群与域这两种代数结构综合的结果.在他的论文序言部分明确表述了这种思想,他提出:“使计算听命于自己的意志,

把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类——这就是我所理解的未来数学家的任务,这就是我所要走的道路.”这种深邃的数学思想,已明显地具有现代数学的精神.

伽罗瓦“‘把数学运算归类”这句话,毫无疑问是指现在所谓群论.群的功能正是将所研究的对象进行分类,而不管研究对象本身及其运算的具体内容,它是在错综复杂的现象中探讨共同的结构.一般说来,一个抽象的集合不过是一组元素而已,无所谓结构,一旦引进了运算或变换就形成了结构;所形成的结构中必须包含着元素间的关系,这些关系通常是由运算或变换联系着的.“把数学运算归类,而不是按照它们的外部特征加以分类”,其思想实质是:数学由研究具体的数和形的外部特征转变成研究一般的、抽象的结构.伽罗瓦对代数结构的探索,深化了人们关于数学研究对象的认识——按照这种观念,数学的研究对象不是孤立的量,而是数学的结构.从自发到自觉转变的意义上说,伽罗瓦已经处于近代数学的开端.他为19世纪数学家们提出的问题及任务,导致了公理方法的系统发展和代数基本结构的深入研究.因此,伽罗瓦是近世代数学的创始人.

伽罗瓦在数学上做出了巨大的贡献,他在数学观、认识论方面也有不少独立的见解.他认为科学是人类精神的产物,与其说是用来认识和发现真理,不如说是用来研究和探索真理.科学作为人类的事业,它始于任何一个抓住它的不足并重新整理它的人.伽罗瓦指出:“科学通过一系列的结合而得到进展,在这些结合中,机会起着不小的作用,科学的生命是无原由的、没有计划的(盲目的),就像交错生长的矿物一样.”在数学中,正像在所有的科学中一样,每个时代都会以某种方式提出当时存在的若干问题,其中有一些迫切的问题,它们把最聪慧的学者吸引在一起,这既不以任何个人的思想和意识为转移,也不受任何协议的支配.伽罗瓦向往着科学家之间的真诚合作,认为科学家不应比其余的人孤独,他们也属于特定时代,迟早要协同合作的.

伽罗瓦的奠基性工作及其思想中孕育的开创精神,并未得到他同时代人的充分赏识和理解,其原因不是人为的偏见,而是当时人们认识上的不足.直到伽罗瓦去世14年后的1846年,刘维尔编辑出版了他的部分文章;1866年,J.A.塞雷特(Serret)出版的《高等代数教程》(第三版)(Cours d’algébre superieure),澄清了伽罗瓦关于代数方程可解性理论的思想,建立了置换理论;1870年,C.若尔当(Jordan)出版的《置换和代数方程专论》(Traitédes substitutions et deséquations algébriques),全面介绍了伽罗瓦的理论.从此,群论和伽罗瓦的全部工作才真正被归入数学的主流.伽岁瓦的理论导致了抽象代数学的兴起.

“数学”简介含义起源 历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其

代数史

代数史 代数是慷慨的,它提供给人们的常常比人们要求的还要多。 达朗贝尔 过去的三个世纪中,代数在两条轨道上延续:一条是走向更高层的抽象理论,另一条是走向具象的计算方法。 约翰.塔巴克 前言 1.重视难点。 数学的难点表现在什么地方?表现在如下三个方面: 其一是概念,数学概念是从实际事物中抽象出来的,含义精确。正确地学好概念是学好数学的关键。 另一个难点是符号。可以说,数学是符号的科学。其深远意义还在于,它为其他科学,如物理学、化学等科学提供了简明语言。数学符号的作用在于它们给出了抽象概念的简单的具体化身,而且还给出了非常简单的实现各种运算的可能性。 第三难点是抽象。数学的抽象远远超过其他科学,数学的抽象度是逐步提高的。 在教学中,我们应当突出重点,分散难点,或化解难点,以利学生的理解。 2.传授理解。 对代数学来说,理解什么?我们认为,有两件事情是重要的:一件是理解代数的基本思想,一件是掌握代数的基本方法。 我们知道,代数是研究“运算”的科学。运算有两层含义:一是运算对象,一是运算或变换的规则。但是,运算对象在不断扩充,运算的含义也在变化和加深。 §1. 中学代数的主要内容 中学代数主要完成了那些成果呢? 1.从数值运算过渡到符号运算。算术的特点是数值运算,代数的特点是符号运算。中学代数实现了从数值运算到符号运算的过渡,沿着抽象思维的道路走上了数学的更高级的阶段。但是,在中学代数中,符号代表的仍然是数。 2.二元、三元一次线性方程组的解。三元一次线性方程组的一般形式是333322221111dzcybxadzcybxadzcybxa=++=++=++ 为了求解线性方程组,我们采用逐次消去一些未知量的方法以简化方程组,这就是实施了下面的变换: 1)互换两个方程的位置; 2)把某一方程两边同乘一常数; 3)某一方程加上另一方程的常数倍。 这些变换称为初等变换。这样,在代数里第一次出现了变换的概念。一个简单而重要的事实是,线性方程组经过一系列初等变换,变成一个新的方程组,新的方程组与原方程组同解,即,在初等变换下,方程组的解保持不变,或者说,解是初等变换下的不变量。由此,代数方程组给两个重要的概念:变换与不变量。 由线性方程组的理论自然地引出了2、3阶矩阵和2、3阶行列式的概念,这2

著名数学定理

著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174. 阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如, 任意给定二次方程ax 2 +bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++???++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10??? 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都 无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦 给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此. 阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -= ,又有 ??? ? ??r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系. 艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式 ()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0, 1,...,n -1);p2 不整除a 0 ,那么f (x )在有理数域上是不可约的. 奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的 任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路 . 阿基米德折弦定理

《数学史概论》课程标准

《数学史概论》课程标准 课程名称:数学史概论 课程类型:A类 课程编码:0702033280 适用专业及层次:数学计算机系教育专业、专科层次 课程总学时:32学时,其中理论28学时,其他4学时。 课程总学分:2 一、课程的性质、目的与任务 1.本课程的性质:专业选修课 2.课程目的与任务:本课程是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。数学史不是单纯的数学成就的编年记录,而是数学家在自然科学领域内克服困难、战胜危机和发现真理的斗争记录。因此,它是培养学生素质以及了解数学发展历史的重要途径,本课程对提升学生的数学文化素养有着重要的意义。 通过教学使学生了解本课程的性质、地位和意义,知道这门课程的研究对象、范围,以及它与所学数学知识的联系,了解数学史在自然科学技术史中的地位和作用,全面提升专业素养;理解数学史的理论、思想和方法。培养学生综合运用数学理论和方法分析问题、解决问题的能力,提高学生的整体素质;通过数学史的学习,使学生认识到要解决实际问题,自己所学知识远远不够,学而后知不足,激发学生强烈的学习愿望和求知欲。 3.课程与其它课程的联系:《数学史概论》是数学教育专业的选修课程。数学史是人类文明史的重要组成部分,本课程不仅与数学专业的基础课程及自然科学有直接联系,也与人文历史等学科领域密切相关,所以也可作为其他专业的拓展课程,借以提高学生的整体素养。 二、教学内容、教学要求及教学重难点 本课程由六个专题组成,内容应反映出数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法。教学内容可参考标准给出的可供选择的专题,并在此基础上可根据学生的知识结构及相关课程设置可相应增减专题的内容,如三次数学危机、数学的严格性与三个数学学派、从透视学到射影几

伽罗瓦理论1

伽罗瓦理论---域的扩张与分裂域 命题1.如果k 域,(())I p x =,()p x ∈[]k x ,则[]k x I 是域iff ()p x 在[]k x 中不可约. Proof: 假设()p x 不可约,我们证[]k x I 是域。任取[]k x I 中的非零元()f x I +,只需找到其逆即可。由于()f x I +非零,则()f x ?I ,即|p f /,又()p x 不可约, 故(,)1p f =,从而存在,[]s t k x ∈使得1sf tp +=,为此我们有1sf tp I -=∈ 即()()1s I f I sf I I ++=+=+,这说明1()f I s I -+=+。由()f x I +的任意性知[]k x I 是域。 另一方面假设[]k x I 是域。假设()f x 可约,(此处用()f x 代替()p x )。则()f x 在[]k x 中有分解式()()()f x g x h x =,且deg()deg(),deg()deg()g f h f <<。 下面说明,g I h I ++是[]k x I 中非零元,否则(())g I f x ∈= 则有|f g ,即deg()deg()f g ≤,这与deg()deg()g f <矛盾,故,g I h I ++是[]k x I 中非零元。 注意到()()g I h I f I I ++=+=,即,g I h I ++是 []k x I 的零因子,这与假设[]k x I 是域矛盾(域是整环,无零因子)。# 命题2.设k 是域,()p x ∈[]k x 是d 次首一不可约多项式(monic irreducible ), 设[]k x K I =,其中(())I p x =,且设x I K β=+∈. (i) K 是域,且{,}k a I a k '=+∈是同构于k 的K 的子域,因此K 可以看做是域k 的扩张. (ii) β是()p x 在K 中的根. (iii)如果()[]g x k x ∈,且β是()g x 的根,则|p g . (iv) ()p x 是[]k x 中唯一的以β为根的首一不可约多项式.

经典数学史论文

通过对《数学史与数学文化》这门课程一个多月的学习,我对数学史有了进一步的了解,对数学的发展有了更加理性的认识。数学史是一部大百科全书,是一场精彩纷呈的电影,是科技发展的生命历程!它饱含着无数个前辈伟大的数学家的杰出贡献,又为那些愿意为数学历史写下新篇章的后来者铺好了道路! 法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这们学科的历史和现状”尽管我们反复强调学习知识的意义,但是如果没有适当的历史叙述,那么这些知识的来龙去脉对于学生来说仍然是感到费解的.对于学习数学的学生来说,一些课程所介绍的通常是一些似乎没有什么关系的数学片段,而历史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们跟数学思想的主干也联系起来.因此数学学习中,应在学习数学知识的同时,把一些重要的数学史料结合起来,更能掌握数学发展的基本规律,了解数学的基本思想,同时我们还可以看到数学发展的曲折,数学家们所经历的艰苦漫长的道路.数学史中那些能够深深感动我们、惊心动魄、引人入胜的例子不胜枚举.从而激发我们学习数学的积极性和创造性。那样的话,我们不仅获得真知灼见,还将获得顽强学习的勇气,进而塑造完善的人格. 1.数学史料对理解数学发展的作用 (1)数学发展到今天,已经延伸出上百个分支,但它毕竟是一个整体,并且有它自己的重大问题和目标.如果一些分支专题对于数学的心脏无所贡献,它们就不会开花结果,一些被分裂的学科就面临着这种危险.如由于在工业技术上的极大应用,哈密顿四元法曾传播很广,风行一时,但不久后,四元法就不再使用了.如同Hilbert说的:“数学是一个有机体,它的生命力的一个必要条件是所有各部分的不可分离的结合.” (2)数学课程所介绍的似乎是一些没有什么关系的数学片段.历史可以提供整个课程的概貌,不仅使课程的内容互相联系,而且使它们和数学思想的主干也联系起来.数学史既可以展示数学发展的总体过程,又详加介绍各学科的具体发展过程,把握数学这一发展过程可使我们视野开阔,深刻理解数学的本质,以便在今后的学习中能高瞻远瞩.把握数学这一发展过程,还可以加深对所学知识的理解.正如无理数是由于度量问题而产生的,它的发现导致几何学在一定时期内独立于算术孤立发展;求极大、极小问题、求曲线长等问题的研究,直接促使牛顿、莱布尼兹发明微积分.微积分产生后,出现了许多分支,如常微分方程、偏微分方程;分析学中的“病态”函数给勒贝格以启发,后来勒贝格创立了测度论;著名数学家康托因研究分析学问题而发明朴素集合论,朴素集合论又包含悖论.因此,集合论应运而生.深刻地理解数学史的内容,才能了解数学发展的基本进程. (3)通常的数学课程直接给出一个系统的逻辑叙述,使我们产生这样的印象:数学家们几乎理所当然地从定理到定理,数学家们能克服任何困难,并且这些课程完全经过锤炼,己成定局.我们可能被湮没在成串的定理中,特别是当我们刚开始学习这些课程的时候.历史却形成对比,它教导我们,一个科目的发展是由汇集不同方面的成果,点滴积累而成的.我们也知道,常常需要几十年,甚至几百年的努力才能迈出有意义的几步.不但这些科目并非天衣无缝,就是那些已经取得的成就,也常常只是一个开始,许多缺陷有待填补,或者真正重要的扩展还有待创造.今天的小学生都知道阿拉伯数字为1、2、3、4、5、6、7、8、9、0,

伽罗瓦理论的理解

要点: Galois关于代数方程根式可解等价于它的Galois群可解这一定理的证明思路。(1)存在性证明与数的计算相分离;如极限值、代数学基本定理、方程的根;

(2)三次方程根的置换群和五次方程根的置换群有什么不同?3个根共有3!=6个可能的置换,5个根共有5!=120个可能的置换。为什么说方程的可解性可以在根的置换群的某些性质中有所反映? (3)方程的对称性质与有无求根公式有关系吗? (4)GALOIS定理是通过研究根式扩张和根对称性得出来的结果.问题是怎样求一个多项式方程的GALOIS群?怎样判断GALOIS群是否可解?为什么一般的五次以上方程GALOIS群不可解,但是某些特殊的五次以上方程有根式解?x^n-1=0可用根式解,它的n个根是? (5)假设一个多项式方程有根式解,发现了有根式的情况下,各个根的对称性要满足一定关系.五次以上的方程这个关系不一定满足.那么这个关系是什么呢? (6)阿贝尔定理:如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数. (7)怎样构造任意次数的代数可解的方程?怎样判定已知方程是否可用根式求解?怎样全部刻画可用根式求解的方程的特性? (8)一个方程究竟有多少个根?如何预知方程的正、负、复根的个数?方程的根与系数的关系如何?方程是否一定有根式解存在? (9)方程本身蕴涵的代数结构: 方程根的置换群中某些置换组成的子群被伽罗瓦称之为方程的群(伽罗瓦群),伽罗瓦群就是由方程的根的置换群中这样一些置换构成的子群。那么某些置换是哪些置换呢? 四次方程x^4+p*x^2+q=0的四个根的系数在方程的基本域F中有两个关系成立:x1+x2=0,x3+x4=0.在方程根的所有24=4!个可能置换中,下面8个置换 E=(1),E1=(12),E2=(34),E3=(12)(34),E4=(13)(24),E5=(1423),E6=(1324),E7= (14)(23)都能使上述两个关系在F中保持成立,并且这8个置换是24个置换中,使根之间在域F中的全部代数关系都保持不变的仅有的置换。这8个置换就是方

著名数学定理1

著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174. 阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如, 任意给定二次方程ax 2 +bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++???++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10??? 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都 无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦 给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此. 阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -= ,又有 ??? ? ??r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系. 艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=--Λ如果存在素数 p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p2 不整除a 0 ,那么f (x )在有理数域上是不可约的.

伽罗华与群论

伽罗华与群论》L.R.Lieber著樊识译 引言 大家都知道:科学知识是与时俱进的,科学是一种活的,蓬勃滋长的东西。 然而一般人总把数学看做又老又朽,似乎再也不能滋长发扬的了。的确,在学 校里所教的数学——算术,代数,几何——在几世纪前大家早都知道;就是专 门学院的教程差不多也有三百多年的历史。笛卡尔(Descartes)之创造解析学 和牛顿(Newton)之发明微积分,那都是十七世纪的事情。可是,事实是这样的: 数学的范围甚至比科学的范围还要来的广些,就从那个时候起,他已在脚踏实 地的向前迈进了。 数学中一些比较新颖的概念是什么?是不是他们太抽象了——虽然好些概念 还是由很年轻的数学天才所创的——使得这一代的青年人连听都够不上听一听呢? 是不是他们距离平常的一般思维方法太远了,以致不能使一般普通的人们从中得 到任何用处和快乐?难道连一般数学教员对于这些概念也不能有一个认识的机会 吗?不是的!其实是这样的:那些近代数学上的发展不但能使数学家发生兴趣, 而且正像微积分一样,对于科学家也能有相当伟大的帮助。哲学家公认:近代数 学与基本的宇宙说是有直接关系的。心理学家在近代数学中也会看到一种能从偏 见中把心胸解放出来的以及能在陈腐的偏见之荒墟上建立起簇新有力之结构来的 伟大工具——像是在非欧几里得几何学之创造中所可以看到的。的确,谁都要珍 重现代数学之特殊的旺盛和卓绝的本色。 这本小册子,作者有心把他当做现代数学中一支的入门,使得那些对于这门 数学愿作更进一步研究的人们在阅读时较为容易有趣些。 这本小册子里所讲的是群论(Theory of Groups),群论是近代数学的一种,伽罗华(Evaristo Galois)对于这门数学的理论和应用很多发扬。伽罗华殁于一百年以前, 死的时候还不满二十一岁,在他那短促而悲惨的生命中,于群论颇多贡献;而这门 数学在今日已成为数学中的重要部分了。自古以来的二十五位大数学家中,他就是 其中之一位。 他的一生,除了在数学上有惊人的成功,其余尽是失意的事,他渴望着进巴黎的 L'Ecole Polytechnique,但在入学考试时竟失败了;过了一年,他再去应试,然而 仍旧是失败,他拿自己研究的结果给歌西(Cauchy)和傅利(Fourier)二氏看,这两人 是当时很出色的数学家,但是他们对他都没有注意,而且两人都把他的稿本抛弃了, 他的师长们谈起他的时候,常说:“他什么也不懂”,“他没有智慧,不然就是他 把他的智慧隐藏得太好了,使我简直没法子去发现他”,他被学校开除了,又因为 是革命党徒,曾经被拘入狱,他曾与人决斗,就在这决斗中他是被杀了。(在决斗的 前夜,他自己预知必死,仓猝中将自己在数学上的心得草率写出,交给他的一个朋友)。 敬祝他的灵魂安乐! --

伽罗瓦对数学的贡献

SHANGHAI UNIVERSITY 上海大学第一学年春季学期 (新生研讨课) 课程名称:数学进展中的几个案例和启示 课程号:0100Y035 授课教师:郭秀云 学号:_____13122070____ 姓名:_____曹颖_______ 所属:____理工二组____ 成绩:_______________ 评语:

论伽罗瓦对数学的贡献 曹颖(13122070) 摘要:埃瓦里斯特·伽罗瓦法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人,被公认为数学界两个最具浪漫主义色彩的人物之一。他在21年的人生中为数学领域做出了杰出的贡献,可惜他的一生只能被称为“天才的悲剧”,令人惋惜悲叹。 关键词:伽罗瓦、群论、贡献、体会 一、引言 在数学中,代数方程的求解有悠久的历史。很早就会解1次和2次方程,16世纪也成功解决了3次和4次方程,它们的根都可以表示为系数的根的四则运算,我们称它们有根式解。而5次和5次以上代数方程求解遇到了严重的障碍,经过300年的努力仍然得不出求解公式。经过多次失败之后,阿贝尔和伽罗华从反方向来看问题。在19世纪20年代,他们证明:一般的5次和5次以上代数方程没有根式解。而伽罗华走得更远,他引进群的概念来判断一个5次或5次以上方程是否有根式解。 二、正文 1.伽罗瓦理论的产生背景 用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。 伽罗瓦从1828年开始研究代数方程理论,他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式△1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群

伽罗瓦理论

伽罗瓦理论 用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。19世纪上半叶,阿贝尔受高斯处理二项方程(p为素数)的方法的启示,研究五次以上代数方程的求解问题,终于证明了五次以上的方程不能用根式求解。他还发现一类能用根式求解的特殊方程。这类方程现在称为阿贝尔方程。阿贝尔还试图研究出能用根式求解的方程的特性,由于他的早逝而未能完成这项工作。伽罗瓦从1828年开始研究代数方程理论(当时他并不了解阿贝尔的工作),他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。在几乎整整一个世纪中,伽罗瓦的思想对代数学的发展起了决定性的影响。伽罗瓦理论被扩充并推广到很多方向。戴德金曾把伽罗瓦的结果解释为关于域的自同构群的对偶定理。随着20世纪20年代拓扑代数系概念的形成,德国数学家克鲁尔推广了戴德金的思想,建立了无限代数扩张的伽罗瓦理论。伽罗瓦理论发展的另一条路线,也是由戴德金开创的,即建立非交换环的伽罗瓦理论。1940年前后,美国数学家雅各布森开始研究非交换环的伽罗瓦理论,并成功地建立了交换域的一般伽罗瓦理论。伽罗瓦理论还特别对尺规作图问题给出完全的刻画。人们已经证明:这种作图问题可归结为解有理数域上的某些代数方程。这样一来,一个用直尺和圆规作图的问题是否可解,就转化为研究相应方程的伽罗瓦群的性质。 在伽罗瓦死去14年后的1846年,法国数学家刘维尔整理出版了伽罗瓦的手稿,人们才逐渐理解了伽罗瓦的思想。 伽罗瓦运用他的理论彻底解决了方程的根式可解问题,他的主要结论可以归结为:一个方程根式可解当且仅当他的伽罗瓦群是可解群。 诚然,对于伽罗瓦的时代来说,群论无疑太过于超前了,当时的数学家们要么完全不能理解,以至于在几十年之后,当一位大数学家看到了他的理论后,苦苦思索了3个月,才能够理解其含义;当时的数学家们要么出于某种偏见,不给予他正确的评价,短视蒙蔽了他们,使得英才早逝。伽罗瓦的生命永远的停留在了21岁,我们不敢去想象,如果他的生命再

模块六2.探究活动 重温代数学

重温代数学 如果没有一些数学知识,那么就是对最简单的自然现象也很难理解什么,而 要对自然的奥秘做更深入的探索,就必须同时地发展数学 J.W.A.Y oung 数学的历史是重要的,它是文明史的有价值的组成部分。人类的进步是与科 学思想极为一致的。数学和物理的研究是智慧进一步的一个可靠的记录。 F.Cajori §1. 初等数学回顾 1. 主要内容。这里对初等数学作一简要回顾。孔子说:“温故而知新”。柏拉 图说:“天下本无新事”。这是告诉我们,要从旧中找出新,从新中辩出旧。只有如此我们才能学得深、理解得透。 初等数学的主要内容计有:算术,代数,几何,三角和解析几何。它们提供 了最基本的数学知识和最基本的思维模式. 这些内容清楚地表明,数学是空间形式和数量关系的学科。那么,形与数的 本质是什么? 形:空间形式的科学,视觉思维占主导,培养逻辑推理能力,培养洞察力。数:数量关系的科学,有序思维占主导,培养符号运算能力。 在学习数学的时候要注意数、形结合。已故著名数学家华罗庚对此非常重视。他曾写了一首词: 数与形,本是相倚依,焉能分作两边飞。 数缺形时少知觉,形少数时难入微。 数形结合百般好,隔离分家万事非。 切莫忘,几何代数统一体, 永远联系,切莫分离。 数与形相结合,既有助于加深理解,也有助于记忆。 在初等数学中,算术与代数以研究数量关系为主,几何与三角以研究空间形 式为主。解析几何是数与形结合的典范。几何学教给我们逻辑推理的能力,代数学教给我们数学演算的能力。在整个初等数学中代数占有更加重要的作用。 2. 中学代数的主要内容。中学代数主要完成了那些成果呢? 1).从数值运算过渡到符号运算。算术的特点是数值运算,代数的特点是符 号运算。中学代数实现了从数值运算到符号运算的过渡,沿着抽象思维的道路走上了数学的更高级的阶段。但是,在中学代数中,符号代表的仍然是数。2).二元、三元一次线性方程组的解。三元一次线性方程组的一般形式是 3 3 3 3 2 2 2 2 1 1 1 1 a x b y c z d a x b y c z d a x b y c z d + + = + + = + + = 为了求解线性方程组,我们采用逐次消去一些未知量的方法以简化方程组,这就是实施了下面的变换:

阿贝尔和伽罗瓦的比较(精制甲类)

阿贝尔和伽罗瓦的比较 今天我要向大家介绍两位朋友――阿贝尔和伽罗瓦 1 阿贝尔与伽罗瓦的不同点 1.1 两人的个人基本情况比较 1.2 数学研究的成就不同 阿贝尔证明对一般的四次以上的方程没有代数解. 伽罗瓦解决了什么样的方程有代数解,即方程有根式解的充要条件. 1.3 运气不同 “阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他.继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在‘克雷勒杂志‘上发表了.这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他业已成为众所瞩目的优秀数学家之一.遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知.” 但是伽罗瓦的重大创作在生前始终没有机会发表. 1.4 成果的广泛性不同

阿贝尔在数学上的贡献,主要表现在方程论、无穷级数和椭圆函数等方面.即除了代数方程论之外,阿贝尔还从事分析方面的研究.所以说阿贝尔是多产的. 但是伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论.即伽罗瓦的成果重在代数方程论.1.5 成就的影响不同 “阿贝尔的一系列工作为后人留下丰厚的数学遗产,为群论、域论和椭圆函数论的研究开拓了道路.他的数学思想至今深刻地影响着其他数学分支.C.埃尔米特(Hermite)曾这样评价阿贝尔的功绩:阿贝尔留下的一些思想,可供数学家们工作150年.” “伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗瓦理论.正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程.正是这套理论为数学研究工作提供了新的数学工具―群论.它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始.” 1.6 心理状况不同 阿贝尔――“从满怀希望到渐生疑虑终至完全失望,阿

多项式理论及其应用

多项式理论及其应用 许洋 巢湖学院 数学系 安徽 巢湖 238000 摘 要 多项式是代数学中最基本的对象之一。它不但与高次方程的讨论有关,而且在进一步学习代数以及其他数学分支时也会碰到。本文将介绍一些有关多项式的基本理论以及多项式在矩阵问题,行列式问题和初等数学中的运用。 关键词:多项式;矩阵;行列式 Abstract Abstract:polymial is the most basic object of algebra one.It does not but with high times equation,and discussion about the further study algebra and other branches of mathematic may encounter.This paper will intraduce the basic theory of some relevant polynomial in matrix,determinants and polynomial in the application,elementary algebra Keywords:polynomial;matrix;determinants 引言:多项式理论是古典代数的主要内容。多项式的研究源于“代数方程求解”,是最古老的数学问题之一。16世纪以前,人们对一般的一元二次方程已经有了公式解法,但对于一般的一元二次方程,数学家却束手无策。16世纪的欧洲数学家们都致力于寻求一般的一元三次方程的求根公式。1799年,高斯(Garss,1777-1855)在他的博士论文中第一次严格证明了代数基本定理:在复数域中,任何n(n ≥1)次多项式至少有一个根。经过多年,数学家仍找不到用根式求解五次多项式的一般解法。终于在1824年阿贝尔(Galois,1811-1832)引入了群的概念,证明不存在用根式求解五次或以上的多项式的一般方法,这理论被引申为伽罗华理论。以下本文将介绍多项式的有关理论及其应用。 一,多项式的有关理论 (一)多项式的有关概念 定义1:f(x)= 110...n n x x x -++++n n-1a a a a (0≠n a ,n N ∈)称为关于x 的一元n 次多项式,n 称为f(x)的次数,记作:deg f(x)=n 。 定义2:如果在多项式f(x)与g(x)中,除去系数为零的项外,同次项的系数全相等,那么f(x)与g(x)就称为相等,记为f(x)=g (x ).系数全为零的多项式称为零多项式。 性质:设f(x)≠0与g(x)≠0是两个多项式,且f(x)±g(x) ≠0,则 deg[f(x)±g(x)] ≤max{deg f (x ),deg g(x)};deg[f(x)·g(x)]=deg f(x)+ deg g(x) . (二)多项式的整除法

《抽象代数》课程的一些体会

《抽象代数》课程的一些体会 邓少强 (数学系) 近几年,我担任了我院非数学专业课程《抽象代数》的主讲任务。由于该课程是我院非数学专业课程总体改革的重要一环,院领导和各相关人员对本课程都非常重视。通过几年的教学实践,我在教学方法、手段等方面都积累了一定的经验。下面谈谈自己的体会,与大家分享。 首先,一门课程是否成功,准确的定位是关键之一。课程开始之前,我们碰到的第一个问题就是,这门课程到底要讲到什么程度。《抽象代数》本来是数学系传统课程之一,并不将数学专业与其他专业分开来上,后来由于其他专业计算机等课程的增加,才将这门重要的课程从非数学专业的教学计划中删去。这样做的好处自然是可以开设更多更“现代”的课程。但是时间一长,问题就接踵而至。由于受到的数学训练不够,本院非数学专业的很多学生基础不够扎实,进一步学习的能力不强。最明显的表现就是,连续几届考研,我院报考本校的很多学生的成绩还比不上一般的师范类大学的学生;而报考经济类专业的一些学生,其《高等数学》的成绩比不上经济类专业的学生。正是由于这一原因,我院才下定决心,重新在非数学各专业中开设传统的数学课,如《实变函数》、《泛函分析》、《微分方程》等。但是,恢复开课并不意味着可以将以前数学专业对应课程的教材、内容或者教学方法照搬。因为这些专业的学生,无论基础、能力或者学习的兴趣等方面,毕竟与数学专业的学生大不相同。因此,本课程必须力求适合这些学生的具体情况,既要达到加强学生的基础和训练学生的抽象思维能力的目的,又不能把目标定的太高,使学生望而生畏。 举一个最简单的例子来说,我国出版的抽象代数的教材就没有一本适合本课程。传统教材大都求多、求全,习题力求设计得有难度和深度,讲法务必严格,有的甚至以其讲法抽象为荣。当然,这样的教材对于数学专业的学生而言是有好处的,因为他们将来的工作要求他们必须具有十分坚实的学科基础和相当强的抽象思维能力。但是,对于非数专的学生而言,使用的教材过于深奥,不但收不到预想的效果,反而会使学生因为惧怕而失去学习的兴趣。老一批的教材中,只有张禾瑞的《近世代数基础》从教学内容上比较接近他们的要求,但是,该教材讲法有些陈旧,习题太少,也不是十分合适。在这种情况下,本院副院长顾沛教授与我为此专门编写了一本教材,全书由顾沛教授统筹设计,两人合作编写。正是考虑到这些具体情况,我们舍弃了很多原先预备的内容,而且将伽罗瓦理论作为附录。此外,为了使教材更有适应性,将习题分开普通题和补充题设计,而且教材名称也改为《简明抽象代数》,由高教出版社出版。几年的教学实践表明,该教材十分适合每周三学时的抽象代数课使用。究其原因,就是因为我们的定位比较准确。 我的第二点体会是,一个课程是否成功,能否抓住重点是关键。抽象代数的主要内容,自然是群、环、域的基本理论。但是,如果将这三个理论看作同等重要的三部分而平均使用时间和力量,就大错特错了。事实上,这三个理论有很多

数学史上两个最具浪漫主义色彩的人物之一伽罗华

数学史上两个最具浪漫主义色彩的人物之一伽罗华 伽罗华(Évariste Galois,公元1811年~公元1 832年)是法国对函数论、方程式论和数论作出重要贡献的数学 家,他的工作为群论(一个他引进的名词)奠定了基础;所有这 些进展都源自他尚在校就读时欲证明五次多项式方程根数解(So lution by Radicals)的不可能性(其实当时已为阿贝尔(Abe l)所证明,只不过伽罗华并不知道),和描述任意多项式方程可 解性的一般条件的打算。虽然他已经发表了一些论文,但当他于 1829年将论文送交法兰西科学院时,第一次所交论文却被柯西 (Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与巴黎综合理工大学(École Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文均被泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学史上两个最具浪漫主义色彩的人物之一。 Galois小传: 1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华。 天才的童年 1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗华街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特?伽罗华生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗华表示敬意,于1909年6月设置的。 伽罗华的双亲都受过良好的教育。在父母的熏陶下,伽罗华童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉?加布里埃尔?伽罗华参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗华曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”。可见父亲的政治态度和当时法国的革命热潮对伽罗华的成长和处事有较大的影响。 伽罗华的母亲玛利亚?阿代累达?伽罗华曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗华的传记中,特别谈到“伽罗华的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗华在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。

相关文档
最新文档