最新ANSYS热分析-表面效应单元

最新ANSYS热分析-表面效应单元
最新ANSYS热分析-表面效应单元

A N S Y S热分析-表面效

应单元

ANSYS热分析指南(第五章)

第五章表面效应单元

5.1简介

表面效应单元类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。

ANSYS 5.7中热分析专用表面效应单元为SURF151(2-D)以及SRUF152(3-D)。有关单元的详细描述请参阅《ANSYS Element Reference》。

5.2表面效应单元在热分析中的应用

利用表面效应单元可更加灵活地定义表面热载荷:

当热流密度和热对流边界条件同时施加于同一表面时,必须将其中一个施加于实体单元表面,另一个施加在表面效应单元。建议将热对流边界施加于表面效应单元。

可将热对流边界条件中的流体温度施加于孤立节点上,将对流系数施加于表面单元,这样,可更灵活地控制对流载荷。

当对流系数随温度变化时,表面效应单元可提供设置计算对流系数的选项。

表面效应单元还可以用于模拟点与面的辐射传热。

5.3表面效应单元的有关热分析设置选项

SURF151是单元可用于多种载荷和表面效应的应用。可以覆盖在任何二维热实体单元的表面(除轴对称谐波单元PLANE75和PLANE78外)。该单元可用于二维热分析,多种载荷和表面效应可以同时存在。SURF151单元有2到4个节点,如考虑对流传热和辐射的影响需要定义一个外部节点。传热量和热对流量以表面载荷的形式施加在单元上。详细单元说明请参见《ANSYS Theory Reference》。

SURF152是三维热表面效应单元,可用于多种载荷和表面效应的应用。它可以覆盖在任何三维热单元的表面,该单元可用于三维热分析。该单元中多种载荷和表面效应可以同时存在。详细单元说明请参见《ANSYS Theory Reference》。

选定单元:

命令:ET

GUI: Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Options

分析设置选项:

中间节点:

Include: keyopt(4)=0

Exclude:keyopt(4)=1

如果实体单元为带中间节点的单元,如Solid90,则设为Include,否则为Exclude。

是否有孤立节点:

Exclude: Keyopt(5)=0

Include:Keyopt(5)=1

如果在表面效应单元上施加热流密度,则为Exclude;如果在表面效应单元上施加热对流,则可为Exclude,也可为Include。如果有孤立节点,则对流系数施加在表面效应单元上,流体温度施加在孤立节点上。如果无孤立节点,则对流系数和流体温度都施加在表面效应单元上。

热流密度或对流边界条件:

忽略热流密度和对流边界条件:Keyopt(8)=0

施加热流密度,忽略对流:Keyopt(8)=1

根据平均温度(壁面与流体)(TS+TB)/2,计算对流系数:Keyopt(8)=2

根据固体表面温度TS,计算对流系数:Keyopt(8)=3

根据流体温度TB,计算对流系数:Keyopt(8)=4

根据固体表面与流体温差|TB-TS|,计算对流系数:Keyopt(8)=5

是否考虑辐射,选择Exclude radiation:

Keyopt(9)=

设置单元行为:

Plane:Keyopt(8)=4

Axisymmetric:Keyopt(8)=4

Plane with thickness:Keyopt(8)=4

图5-1面效应单元的选项设置

5.4表面效应单元的实常数

使用表面效应单元施加对流或热流密度边界条件,一般不需要定义实常数。面内厚度在表面效应单元的每个角节点默认为1。只有当生热载荷施加于表面效应单元时,厚度才有作用,因为生热基于单元体积。其它实常数,在辐射热分析或结构分析时设置。

5.5表面效应单元的材料属性

使用表面效应单元施加对流或热流密度边界条件,一般不需要定义材料属性,但有一例外:对流系数随温度变化时,最好单独设定一材料编号,定义材料的对流系数随温度变化的表。在表面单元上施加对流边界时输入负号及材料编号。例如“-3”。其它材料属性在辐射或结构分析时设置。

5.6创建无孤立节点的表面效应单元

划分实体网格

设定表面效应单元的属性

GUI:Main>Menu>Preprocessor>Meshing Attributes>Default Attribs

一般无需设定表面效应单元的材料编号,但为了选择、加载及后处理方便,最好为每组表面单元设置一个唯一的材料编号。

生成表面单元

第一种方法:直接在相应的线或面上生成网格:

GUI:Main>Menu>Preprocessor> Meshing>Mesh Lines/Area

第二种方法:

选择要生成表面效应单元的边(2D)或面(3D)及所属节点;

设定表面效应单元的属性(TYPE,MAT等);

创建表面效应单元;

GUI:Main>Menu>Preprocessor> Modeling>Create>Element> Surf Effect 5.7创建带孤立节点的表面效应单元

如果在表面效应单元选项设置时,带孤立节点,Keyopt(5)=1,则:

创建孤立节点

GUI:Main>Menu>Preprocessor>modeling>create>nodes

选择要创建表面效应单元的面或线,以及所属节点;

设定单元属性;

创建表面效应单元:

GUI:Main>Menu>Preprocessor>modeling>create> Element>on free SURF,输入关键点编号,OK

5.8管流单元热分析

在ANSYS中有三个用于管流热分析的单元:

FLUID116热管流单元

SURF1512-D热表面单元

SURF1523-D热表面单元

其中FLUID116单元求解一维带泵送效应的泊努利方程和一维带质量传递的热传递,可与SURF151或SURF152连接模拟对流效应。它的压力、流率、温度、角速度、滑移系数可以表格化参数方式输入。主要的单元属性有流体导热系数、流体密度、流体比热、流体粘度、流体流率等。

而表面效应单元的额外节点在FLUID116单元上,这样用管流单元FLUID116上的节点温度作为对流中的流体温度,将对流系数赋予表面效应单元上,模拟流体与管壁的耦合传热。

LFSUR, Sline, Tline

对组元Sline中包含的线划分表面效应单元,并连接表面效应单元和距离最近的管流单元。这些管流单元已经划分网格,并定义为组元Tline。

AFSUR, Sarea, Tline

对组元Sarea中包含的面划分表面效应单元,并连接表面效应单元和距离最近的管流单元。这些管流单元同样已经划分网格,并定义为组元Tline。

可用如下命令控制显示表面效应单元的额外节点:

命令:/PSYMB,XNODE,1

GUI:Utility Menu>PlotCtrls>Symbols

5.9表面效应单元的实例1-冷却栅的热分析

5.9.1问题描述

分析冷却栅的温度分布及与空气的热传递速率。冷却栅的横截面如下图所示,单位为英寸。材料为铝,导热系数为8.5 BTU/hr.in°F。冷却栅底部流入的热流密度为17BTU/hr.sq.in。空气的温度为90 °F,自然对流。

5.9.2菜单操作过程

5.9.2.1设置分析标题

1、选择“Utility Menu>File>Change Title”,输入HEATSINK1。

2、选择“Utility Menu>File>Change title”,输入Heat convection using SURF151 ignoring radiation。

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

使用 ANSYS 表面效应单元施加周向载荷的一个例子

使用 ANSYS 表面效应单元施加周向载荷的一个例子 作者:Simwe 来源:互联网发布时间:2012-05-09 【收藏】【打印】复制连接【大中小】我来说两句:(0) 逛逛论坛 本例主要说明如何在圆柱坐标系中使用表面效应单元来定义表面载荷,以施加扭矩之类的载荷。 所使用的几何模型如图,是两个镶嵌在一起的圆柱体。为了划分MAP 网格,将它切割为8 块: 虽然切割后的模型可以采用MAP 方式划分网格,但是为了更有一般性,这里采用Free 方式划分网格,所用单元是SOLID45 单元,它退化后是线性四面体,在结果分析中是不推荐的,这里只是为了说明问题,为了简单而使用。实际结构分析时,仍推荐Solid92 或Solid95 二次单元:

定义表面效应单元: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Surface Effict > Surf154

为了在圆柱坐标系中使用表面效应单元,不能使用系统的圆柱坐标系,而必须另外创建局部圆柱坐标系。 采用三个KP 点(或节点,或三个指定坐标点) 来创建局部坐标系,为此,在GUI 中显示Lines:

创建局部坐标系: Utility Menu > Workplane > Local Coordinate > Create Local CS > By 3 Keypoints > 弹出选择KP 对话框 顺序选择3 个KP 点:

选择3 个KP 点后,弹出创建坐标系对话框: 在其中,设置坐标系编号为11;坐标系类型为Cylindrical:

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容

本文介绍用ANSYS APDL命令流实现加载表面效应单元的任意方向荷载的相关内容。 !用表面效应单元加任意方向的荷载 finish /PREP7 et,1,45 !定义实体单元solid45 et,2,154 !定义三维表面效应单元 KEYOPT,2,2,0 !指定表面效应单元的K2=0,所加荷载与单元坐标系方向相同 KEYOPT,2,4,1 !指定表面效应单元的K4=0,去掉边中点,成为四结点表面单元 block,-5,5,-5,5,0,5 !建实体模型 mp,dens,1,2000 mp,ex,1,10e9 mp,prxy,1,0.2 asel,s,loc,z,5.0,5.0 !选中实体上表面 AATT, 1, , 2, 0, !指定实体上表面用154号单元 MSHAPE,0,2D MSHKEY,1 esize,,5 amesh,all !对上表面划分网格 allsel,all VATT, 1, , 1, 0 !指定实体用45号单元 MSHAPE,0,3D MSHKEY,1 vmesh,all /PSYMB,ESYS,1 !显示单元坐标系 esel,s,type,,2 !选中实体上表面的表面效应单元以方便加荷载 sfe,all,1,pres,,50 !在面内加Z向荷载,大小为50,荷载方向可通过值的正负控制sfe,all,2,pres,,100 !在面内加X向荷载,大小为100 sfe,all,3,pres,,150 !在面内加Y向荷载,大小为150 /psf,pres,,2,0,1 !以箭头方式显示所加荷载

!如果已经知道荷载在整体坐标系内的方向失量为(0,1,1),可以用如语句加该方向的荷载 sfe,all,5,pres,,100,0,1,1 !荷载值100后的三个数为方向失量 allsel,all eplot

ansys热分析

第三章稳态热分析 3.1稳态传热的定义 ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和 ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。 稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括: 对流 辐射 热流率 热流密度(单位面积热流) 热生成率(单位体积热流) 固定温度的边界条件 稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。 3.2热分析的单元 ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下: 表3-1二维实体单元 单元维数形状及特点自由度 PLANE35 二维六节点三角形单元温度(每个节点) PLANE55 二维四节点四边形单元温度(每个节点) PLANE75 二维四节点谐单元温度(每个节点) PLANE77 二维八节点四边形单元温度(每个节点) PLANE38 二维八节点谐单元温度(每个节点)

ansys表面效应单元模拟一螺栓扭转问题)

ansys表面效应单元模拟一螺栓扭转问题 表面效应单元模拟一螺栓扭转问题表面效应单元模拟一螺栓扭转问题模拟一螺栓扭转问题描述:表面效应单元:类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。用 ANSYS 对螺栓模型施加扭转荷载,求解并在后处理器中观察整体柱坐标系下的 UY。载荷和边界条件:沿螺栓上端的扭矩Mt 等效为切向等效切应力:q=10MPa,底部固定 (UX=UY=UZ=0)。设:螺栓直径d=100mm,螺栓长度 L=200mm,螺帽直径 D=160mm,螺帽高度 H=30mm。材料应力—应变关系为线弹性模型,弹性模量 E = 200GPa ,泊松比ν = 0.3 。 2.1 进入ANSYS ANSYSED 10.0 →input Initial jobname: bolt_torque →OK 2.2 设置计算类型Main Menu: Preferences… →select Structural → OK 2.3 选择单元类型Main Menu: Preprocessor →Eleme nt Type →Add/Edit/Delete →Add →select Solid Brick 8node 45 → Apply→ select Surface Effect →3D structural 154 OK (back to Element Types window) → Close 2.4 定义材料参数Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:200E3, PRXY:0.3 → OK 注意前后单位的一致性,本例后面的单位应用 mm,所以此处弹性模量用 200E 3. 2.5 生成几何模型生成带帽螺栓,用 Sweep 方法,分别生成中空圆环状的螺帽(R=80mm, r=50mm, H=30mm)和圆柱状的螺栓(r=50mm,L=200mm),然后用布尔命令 Glue,将两体结合. Main Menu: Preprocessor →Modeling →Create →Volumes →Cylinder →By Di mensions 在弹出的对话框中输入 Outer radius 50, Z-coordinates0 200 →Apply 在对话框中输入螺帽的尺寸。Outer radius 50,Optional inner radius 80, Z-coordinates 0 30. →OK 生成图形之后点击 ansys 截面右上角的蓝色立方体按键(Isometric view)Utility Menu →workplane →offset WP by Increments, 在弹出的对话框中 XY,YZ,ZX 一栏中填入 0,-90,0 →OK Main Menu: Preprocessor →Modeling →Operate →Booleans →Divide →Volu by WrkPlane →Pick All →点击蓝色立方体(Isometric view)Main Menu: Preprocessor →Modeling →Operate →Booleans →Glue →Volumes →Pick All 2.6 网格划分 Main Menu: Preprocessor → Meshing → MeshTool 在弹出的MeshTool 对话框中,并在 SizeControls 一栏中的 Lines 组里点击 set 按键。用鼠标选中所有圆的轮廓线,如图。(如果选错可以点击鼠标左键取消)选好之后在左边的 Element Size on lines 的对话框中点击 Apply。会弹出Element Sizes on Picked Lines 对话框。在 NDIV 栏里填入 5 →Apply. 同样做法,选 AB 段→NDIV:5.选 BC,CD 段→NDIV: 2. →OK Main Menu: Preprocessor → Meshing → MeshTool 在对话框第 4 栏 Shape 组中选中 Hex 和 Sweep 选项。选中后点 击 Sweep 按钮。弹出的对话框选择 Pick All。 2.7 选择螺栓帽的侧表面, 然后选择与面相关的节点: Utility Menu → Select → Entities → Areas → From Full: 用鼠标选取螺栓帽的侧表 OK

最新ANSYS 中的表面效应单元.doc

ANSYS 中的表面效应单元 使用表面效应单元施加载荷 * 有时,可能需要施加所使用单元不支持的表面载荷,例如:可能需要在实体结构单元上施加沿表面切向或任何方向的均布载荷;在热实体单元的表面上同时施加热流载荷和对流载荷,或者施加指定的辐射,等。在这种情况,可以用表面效应单元覆盖需要施加载荷的表面并使用它们作为一个管道以施加所需的载荷。* 目前可以使用的表面效应单元:对二维问题:SURF151和SURF153;对三维问题:SURF152和SURF154。 * 怎样施加如下的压力荷载: –像剪切荷载一样与表面相切的荷载? –像螺栓荷载一样在表面上变化的荷载? –像屋顶上冰载荷一样与面成一定角度的载荷? - 像水压一样的非均布压力载荷? * 表面效应单元为处理这些问题提供了有效的方法。 表面效应单元的特点: * 像“皮肤”一样覆盖在网格表面 * 如同面载荷的管道 * 很容易创建,一般操作过程如下: - 选择感兴趣表面上的节点; - 激活恰当的单元类型; - 执行ESURF (或Preprocessor > Create > Elements > Surf Effect > GenerlSurf > No Extra…); - 选择所有节点,定义SURF 单元。

* 对2-D 和3-D 模型都有用: – SURF151 & 153 是线单元(热和结构的),表示2-D 模型的边界线。 – SURF152 & 154 是面单元(热和结构的),表示3-D 模型的边界面。 * 本节只讨论SURF154,其它单元可同样处理。 SURF154 单元,详见参考手册中的描述 * SURF154 使用不同的单元面号来接受不同类型的载荷。 * 面号在“Apply PRES on elems”对话框中: Solution > Difine Loads > Apply > Pressures > On Elements,如下所示。 或在SFE 命令的LKEY 范围内: SFE, ELEM, LKEY, PRES, , VAL1, VAL2, VAL3, VAL4

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

ANSYS命令流学习笔记18-表面效应单元

! ANSYS命令流学习笔记18-表面效应单元surface effect !学习重点: !1 表面载荷的施加 当施加表面载荷时,在WorkBench中可以很方便地施加。但其本质也是借助表面效应单元来完成的。譬如当实体结构表面施加沿切向或者任何方向的均布载荷(甚至不均布?)时,都可以使用表面效应单元。 !2 表面效应单元的建立 表面单元,意思就是要依附于现有单元的表面,利用现有节点形成单元,因此单元增加,而节点不增加。单元通过制定坐标系方向等,施加不同方向的载荷。 !3 表面效应单元的典型应用 目前可以使用的表面效应单元:对二维问题:SURF151和SURF153;对三维问题:SURF152和SURF154。151和152为热表面效应单元,153和154为结构表面效应单元。 表面单元可以很好用,如下例子中的通过表面施加扭矩;总之就是定义与表面成各种方向力的载荷。在热流问题也有广泛应用。 !问题描述 ! 在workbench中可以轻松实现其定义,根据图示边界条件,得出位移结果如右图。这里把此问题转到APDL里运行。并再熟悉一下接触设定。(案例参考ansys官方教程,有点不同) !APDL命令: finish /clear /title,surf effect ~parain,'2s','x_t' !导入当前路径下的2s.x_t文件,包括所有体面线。实在不想在APDL 里建模了,这是在SCDM中建模导出的文件。 /facet,normal /replot !单位m、Pa !!!以上导入x_t模型

et,1,solid185 r,2 real,2 et,2,surf154 mp,ex,1,2.1e11 mp,prxy,1,0.3 !定义材料1为结构钢 mshape,0,3D mshkey,2 esize,0.0005 !网格无关分析之后,选择该尺寸,因为接触存在,网格需要细分vsweep,all !划分网格 !!!以上定义材料及划分网格 !复习下接触,而且规则形状分开,方便简单划分网格 r,3 mat,1 real,3 et,3,targe170 et,4,conta174 keyopt,4,12,5 !bonded约束 vsel,s,loc,z,0.04,0.05 asel,s,loc,z,0.04 type,3 nsla,s,1 esln,s,0 esurf !根据线创建target170 allsel vsel,s,loc,z,0,0.04 asel,s,loc,z,0.04 type,4 nsla,s,1 esln,s,0 esurf !根据线创建contact174 !!!以上建立两个体之间的绑定接触 !建立surf154单元,为3D面单元 csys,1 allsel asel,s,loc,x,0.015 !切换到圆柱坐标系,方便选择圆周上节点 nsla,s,1

ANSYS热分析-表面效应单元

ANSYS热分析指南(第五章) 第五章表面效应单元 5.1简介 表面效应单元类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。 ANSYS 5.7中热分析专用表面效应单元为SURF151(2-D)以及SRUF152(3-D)。 有关单元的详细描述请参阅《ANSYS Element Reference》。 5.2表面效应单元在热分析中的应用 利用表面效应单元可更加灵活地定义表面热载荷: 当热流密度和热对流边界条件同时施加于同一表面时,必须将其中一个施加于实体单元表面,另一个施加在表面效应单元。建议将热对流边界施加于表面效应单元。 可将热对流边界条件中的流体温度施加于孤立节点上,将对流系数施加于表面单元,这样,可更灵活地控制对流载荷。 当对流系数随温度变化时,表面效应单元可提供设置计算对流系数的选项。 表面效应单元还可以用于模拟点与面的辐射传热。 5.3表面效应单元的有关热分析设置选项 SURF151是单元可用于多种载荷和表面效应的应用。可以覆盖在任何二维热实体单元的表面(除轴对称谐波单元PLANE75和PLANE78外)。该单元可用于二维热分析,多种载荷和表面效应可以同时存在。SURF151单元有2到4个节点,如考虑对流传热和辐射的影响需要定义一个外部节点。传热量和热对流量

以表面载荷的形式施加在单元上。详细单元说明请参见《ANSYS Theory Reference》。 SURF152是三维热表面效应单元,可用于多种载荷和表面效应的应用。它可以覆盖在任何三维热单元的表面,该单元可用于三维热分析。该单元中多种载荷和表面效应可以同时存在。详细单元说明请参见《ANSYS Theory Reference》。 选定单元: 命令:ET GUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Options分析设置选项: 中间节点: Include:keyopt(4)=0 Exclude:keyopt(4)=1 如果实体单元为带中间节点的单元,如Solid90,则设为Include,否则为Exclude。 是否有孤立节点: Exclude:Keyopt(5)=0 Include:Keyopt(5)=1 如果在表面效应单元上施加热流密度,则为Exclude;如果在表面效应单元上施加热对流,则可为Exclude,也可为Include。如果有孤立节点,则对流系数施加在表面效应单元上,流体温度施加在孤立节点上。如果无孤立节点,则对流系数和流体温度都施加在表面效应单元上。 热流密度或对流边界条件: 忽略热流密度和对流边界条件:Keyopt(8)=0

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

ANSYS热分析指南——ANSYS瞬态热分析

4.1瞬态传热的定义 ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRAN ANSYS/Professional 这些产品支持瞬态热分析。瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分 析。许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。 瞬态热分析的基本步骤与稳态热分析类似。 主要的区别是瞬态热分析中的载 荷是随时间变化的。为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷?时间曲线并将该函数作为载荷施加(请参考《 ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷?时间曲线分为载荷步。 载荷?时间曲线中的每一个拐点为一个载荷步,如下图所示 : 图4-1用荷载步定义时变荷载 对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。本章对一个铸件的分 析的实例对此有进一步说明。 4.2瞬态热分析中使用的单元和命令 瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。 要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。 4.3瞬态热分析的过程 瞬态热分析的过程为: 建模 施加荷载并求解 ANSYS 热分析指南(第四 章) 第四章瞬态热分析 Load ▲ Stepped (KBCJ) ■Stepped Steady

相关文档
最新文档