2017年广州中考常见几何模型分析与总结(含答案)

2017年广州中考常见几何模型分析与总结(含答案)
2017年广州中考常见几何模型分析与总结(含答案)

中考直通车·数学广州分册

第八章专题拓展

第24讲常见几何模型

【考点解读】

常见几何模型是广州市中考的压轴题常考题型,主要以考察选择、填空最后一题和几何压轴题为主。几何模型类型较多,综合性强,属于中考中重点但同样是难点的一个考点。 【考点分析】

2019年 考查三角形全等和三角形中位线性质,标准的手拉手模型。

2019年 考查三角形全等的判断和性质,根据手拉手模型找出全等三角形,再应用其性质 2019年 本年度模型思想明显,分值占比大,主要考查三角形全等的判定及其性质、图像的旋转,利用模型思想作为解题突破口顺利完成辅助线。 【模型介绍】 手拉手模型:

1、 【条件】 如图两个等边三角形ABD ?与BCE ?,连结

AE 与CD ,

【结论】(1)DBC ABE ???

(2)DC AE =

(3)AE 与DC 之间的夹角为?60 (4)AE 与DC 的交点设为H ,

BH 平分AHC ∠

2、 【条件】如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 。

【结论】 (1)CDE ADG ???是否成立?

(2)AG =CE

(3)AG 与CE 之间的夹角为ο

90

(4)HD 是否平分AHE ∠?

旋转模型:

一、邻角相等对角互补模型

【条件】如图,四边形ABCD 中,AB =AD ,90BAD BCD ?∠=∠=

【结论】45ACB ACD BC CD ?

∠=∠=+=

① ②

二、角含半角模型:全等 角含半角要旋转:构造两次全等

【条件】:如图,点分别是正方形的边上的点,,连接;

【结论】(1)AFE AGE △△? (2) ; 一线三等角模型:

【条件】 一条直线同一侧三个相等的角(如图); 【结论】CDE ABC ∽△△

1、锐角形一线三等角

2、直角形一线三等角

3、钝角形一线三等角 【真题拾遗】

1.(2019?广州)如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③=

;④(a ﹣b )2?S △EFO =b 2?S △DGO .其中结论正确的个数是( ) A . 4个

B . 3个

C . 2个

D . 1个

2.(2019?广州)如图,正方形ABCD 的边长为1,AC ,BD 是对角线.将△DCB 绕着点D 顺时针旋转45°得到△DGH ,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG .则下列结论:

①四边形AEGF 是菱形 ②△AED ≌△GED

③∠DFG=112.5°

④BC+FG=1.5

E F 、ABCD BC CD 、45EAF ∠=?EF EF BE FD =+

其中正确的结论是.

三、解答题

3.(2019广州中考)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.

(1)证明:B、C、E三点共线;

(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;

(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.

4.(2019广州中考)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°

(1)求证:BD是该外接圆的直径;

(2)连结CD,求证:AC=BC+CD;

(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.

参考答案

一、选择题

1、C

考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.

分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE

相似即可判定③错误,由△GOD与△FOE相似即可求得④.

解答:证明:①∵四边形ABCD和四边形CEFG是正方形,

∴BC=DC,CG=CE,∠BCD=∠ECG=90°,

∴∠BCG=∠DCE,

在△BCG和△DCE中,

∴△BCG≌△DCE(SAS),

②∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,

∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;

③∵四边形GCEF是正方形,

∴GF∥CE,

∴=,

∴=是错误的.

④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,

∴=()2=()2=,∴(a﹣b)2?S△EFO=b2?S△DGO.故应选B

点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直

角三角形的判定和性质.

二、填空题

2、①②③

考点:三角形全等、三角形内角和、菱形

分析:首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.

解答:证明:∵四边形ABCD是正方形,

∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,

∵△DHG是由△DBC旋转得到,

∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,

在RT△ADE和RT△GDE中,

∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,

∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,

∴四边形AEGF是菱形,故①正确,

∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.

∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误故答案为①②③.

点评:

本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型. 三、解答题 3、

考点:

(1)三点共线 (2)中位线、全等三角形(手拉手性质)(3)同(2) 分析: (1)根据直径所对的圆周角为直角得到∠BCA=90°,∠DCE 是直角,即可得到∠BCA+

∠DCE=90°+90°=180°;

(2)连接BD ,AE ,ON ,延长BD 交AE 于F ,先证明Rt △BCD ≌Rt △ACE ,得到BD=AE ,∠EBD=∠CAE ,则∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD ⊥AE ,再利用三角形的中位线的性质得到ON=BD ,OM=AE ,ON ∥BD ,AE ∥OM ,于是有ON=OM ,ON ⊥OM ,即△ONM 为等腰直角三角形,即可得到结论; (3)证明的方法和(2)一样. 解答:

(1)证明:∵AB 是直径, ∴∠BCA=90°,

而等腰直角三角形DCE 中∠DCE 是直角,

∴∠BCA+∠DCE=90°+90°=180°,∴B 、C 、E 三点共线; (2)连接BD ,AE ,ON ,延长BD 交AE 于F ,如图1,

∵CB=CA ,CD=CE ,∴Rt △BCD ≌Rt △ACE ,∴BD=AE ,∠EBD=∠CAE , ∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BF ⊥AE ,

又∵M 是线段BE 的中点,N 是线段AD 的中点,而O 为AB 的中点, ∴BD 21

=ON ,AE 2

1

=

OM ,ON ∥BD ,AE ∥OM ;

∴ON=OM,ON⊥OM,即△ONM为等腰直角三角形,

∴MN=OM;

(3)成立.

理由如下:如图2,连接BD1,AE1,ON1,∵∠ACB﹣∠ACD1=∠D1CE1﹣∠ACD1,∴∠BCD1=∠ACE1,又∵CB=CA,CD1=CE1,∴△BCD1≌△ACE1,

与(2)同理可证BD1⊥AE1,△ON1M1为等腰直角三角形,

从而有M1N1=OM1.

点评:本题考查主要三角形全等的判定和中位线的性质,熟练掌握手拉手模型,作为本题切入点,可以非常顺利的解决本题。

4、

考点:圆的相关概念、等腰三角形、截长补短(旋转模型性质)、勾股定理

分析:(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;

(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角

形即可得出结论;

(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于

点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明

△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.

解答:解:(1)∵=,∴∠ACB=∠ADB=45°,

∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径

(2)在CD的延长线上截取DE=BC,

连接EA,∵∠ABD=∠ADB,∴AB=AD,

∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,

在△ABC与△ADE中,

,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,

∴AC=CE,∴AC=CD+DE=CD+BC;

(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于

点F,连接BF,

由对称性可知:∠AMB=ACB=45°,

∴∠FMA=45°,

∴△AMF是等腰直角三角形,

∴AM=AF,MF=AM,

∵∠MAF+∠MAB=∠BAD+∠MAB,

∴∠FAB=∠MAD,

在△ABF与△ADM中,

,∴△ABF≌△ADM(SAS),

∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,BM2+2AM2=DM2.

点评:本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,熟练掌握旋转模型的特征和性质,作为本题切入点,构造出等腰直角三角形,方向明确,减小了本题的难度。

【模拟演练】

一、选择题

1、(2019番禺华附一模)如图2,在矩形ABCD中,E为AD的中点,EF⊥EC交边AB

的是(D ).

于F,连FC,下列结论不正确

...

A.AB≥AE B.△AEF∽△DCE

C.△AEF∽△ECF D.△AEF与△BFC不可能相似

2、(2019十六中一模)如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是( C ). (1)EF=√2OE ; (2)S 四边形OEBF :S 正方形ABCD =1:4; (3)BE+BF=√2OA ;

(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时, AE= 3

4;

(5)OG ?BD=AE 2+CF 2.

A.(1)(3)(4)(5)

B.(2)(3)(4)(5)

C.(1)(2)(3)(5)

D.(1)(2)(3)(4) 二、填空题

3、(2019黄埔区一模)如图6,已知ABC ?和AED ?均为等边三角形,点D 在BC 边上,

DE 与AB 相交于点F ,如果12AC =,4CD =,那么BF 的长度为 .

三、解答题

4、(2019荔湾区一模)如图,正三角形ABC 内接于⊙O ,P 是弧BC 上的一点(P 不与点

B 、

C 重合),且PC PB <,PA 交BC 于E ,

点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA .

(1)求证ABP ?≌ACF ?; (2)求证AE PA AC ?=2; (3)求PB 和PC 的长.

5、(2019海珠区一模)已知正方形ABCD 和正方形CEFG ,连接AF 交BC 于O 点,点P 是AF 的中点,过点P 作PH ⊥DG 于H ,CD=2,CG=1。

(1)如图1,点D 、C 、G 在同一直线上,点E 在BC 边上,求PH 得长; (2)把正方形CEFG 绕着点C 逆时针旋转α(0°<a <180°) ①如图2,当点E 落在AF 上时,求CO 的长; ②如图3,当DG=7时,求PH 的长。

6、(2019二中一模)已知抛物线C 1:23

(0)2

y ax bx a =+-≠经过点A (1,0)和B (-3,0).

(1)求抛物线C 1的解析式,并写出其顶点C 的坐标;

(2)如图1,把抛物线C 1沿着直线AC 方向平移到某处时得到抛物线C 2,此时点A ,C 分别平移到点D ,E 处.设点F 在抛物线C 1上且在x 轴的上方,若△DEF 是以EF 为底的等腰直角三角形,求点F 的坐标;

(3)如图2,在(2)的条件下,设点M 是线段BC 上一动点,EN ⊥EM 交直线BF 于点N ,点P 为线段MN 的中点,当点M 从点B 向点C 运动时:①tan ∠ENM 的值如何变化?请说明理由;②点M 到达点C 时,直接写出点P 经过的路线长.

参考答案

1、D

考点:

相似三角形、三角形内角和(一线三直角) 分析:

利用等角的余角相等得到∠AFE=∠DEC ,则根据有两组角对应相等的两个三角形相似得到Rt △AEF ∽Rt △DCE ,由相似的性质得CD :AE=DE :AF ,而CD=AB ,DE=AE ,则AB :AE=AE :AF ,即AE2=AB ?AF ,利用AF ≤AB ,得到AB ≥AE ;再利用Rt △AEF ∽Rt △DCE 得到EF :EC=AF :DE ,把DE=AE 代入得到EF :EC=AF :AE ,根据比例性质得EF :AF=EC :AE ,加上∠A=∠FEC=90°,则根据两组对应边的比相等且夹角

对应相等的两个三角形相似得到△AEF ∽△ECF ;由∠EFC ≠90°可判断△AEF ∽△BFC 相似不成立,而当∠AFE=∠BFC 时,可判断△AEF ∽△BCF .

解答:

∴∠AEF+∠DEC=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠DEC , ∴Rt △AEF ∽Rt △DCE ;∴CD:AE=DE:AF ,∵E 为矩形ABCD 的边AD 的中点, ∴CD=AB ,DE=AE ,∴AB:AE=AE:AF,即AE2=AB ?AF , 而AF ?AB ,∴AB ?AE ;

∵Rt △AEF ∽Rt △DCE ,∴EF:EC=AF:DE ,而DE=AE ,

∴EF:EC=AF:AE ,即EF:AF=EC:AE ,∵∠A=∠FEC=90°,∴△AEF ∽△ECF ; ∵∠EFC ≠90°∴△AEF ∽△BFC 相似不成立, 但当∠AFE=∠BFC 时,△AEF ∽△BCF.故选D.

点评: 此题为非常明显的考查相似三角形知识点,根据一线三等角模型特征快速得出答案。

2、C

考点: 正方形的性质,全等三角形的判定与性质,旋转的性质,相似三角形的判定与性质 分析:

①由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;

②由(1)易证得4

1

==BOC OEBF S S △四边形ABCD S 四边形, 则可证得结论;

③首先设AE=x ,则BE=CF=1-x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;

④易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG ?OB=OE2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论. 解答:

①∵四边形ABCD 是正方形,

∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°, ∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF , 在△BOE 和△COF 中,∠BOE=∠COF ,OB=OC

∠OBE=∠OCF ,∴△BOE ≌△COF(ASA),∴OE=OF ,BE=CF , ∴EF=22OE;故正确;

②∵ABCD 正方形BOC △COF △BOE △BOE △BOE △OEBF 四边边S 4

1

=S =S +S =+S =S S ∴4:1=S :S ABCD 正方形OEBF 四边边;故正确;

③过点O 作OH ⊥BC ,∵BC=1,∴OH=12BC=12, 设AE=x ,则BE=CF=1?x ,BF=x , ∴,32

9+14)-(x 21=21×x)-(121+x)-x(121=OH CF 21+BF BE 21=S +S 2COF △BEF △?? ∵a=?12<0,

∴当x=14时,COF △BEF △S +S 最大;

即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=14;故错误; ④∵∠EOG=∠BOE,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE:OB=OG:OE ,

∴,OE =OB OG 2

?∵OB=

2

1

BD,OE=22EF , ∴2EF =BD OG ?,

∵在△BEF 中,222BF +BE =EF , ∴222CF +AE =EF ,

∴22CF +AE =BD OG ?.故正确。 故选C.

点评:

从图形上看是一个比较复杂的题,但是实际题目难度并不是很大,利用对角互补旋转模型结论再结合个够定理就能解决此题。

3、

3

8

考点:

相似三角形的判定与性质, 等边三角形的性质 分析:

先利用等边三角形的性质得到∠C=∠ADE=∠B=60°,AB=BC=AC=12,再利用三角形外角性质证明∠BDF=∠CAD ,则可判断△DBF ∽△ACD ,然后利用相似比计算BF 的长.

点评: 此题利用对角互补旋转模型推导过程得到对应结论,再利用相似解决第(2)(3)问 4、

考点:

圆周角定理,等边三角形的性质,等边三角形的判定,圆内接四边形的任何一个外角都等于它的内对角

分析:

对于(1),先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得

解答:

(1)证明:∵正三角形ABC 内接于⊙O , ∴AB=AC.

∵四边形ABPC 为圆的内接四边形, ∴∠ACF =∠ABP . 在△ABP 和△ACF 中,

??

?

??CF =BP ACF ∠=ABP ∠AC

=AB ∴△ABP ≌△ACF.

(2)证明:∵正三角形ABC 内接于⊙O , ∴∠ABC =∠ACE=60°,

∴PB=1,PC=3.

点评:此题为标准手拉手模型,所以除了相似三角形得出答案,还能利用手拉手模型性质解决。

5

考点:梯形中位线、相似三角形、勾股定理、全等三角形(一线三直角)

分析:先判断出四边形APGF是梯形,再判断出PH是梯形的中位线,

得到

AD

+

FG

2

1

=

PH

(2)①先判断出△COE∽△AOB,得到AO是CO的2倍,设出CO,表示出BO,AO,再用勾股定理计算,②先找出辅助线,再判断出△ARD≌△DSC,△CSG≌△GTF,求出AR+FT,最后用梯形中位线即可.

在△ABO 中,根据勾股定理得,2

2(2x )=x )-(2+4, ∴3272-=

x 或3

2

72--=x (舍), ∴CO=x=3

2

72-=x . ②如图3,

分别过点A ,C ,F 作直线DG 的垂线,垂足分别为R ,S ,T , ∵∠ADR+∠CDS=90°,∠CDS+∠DCS=90°, ∴∠ADR=∠DCS , ∵∠ADR=∠CSD=90°, ∵AD=CD ∴△ARD ≌△DSC , ∴AR=DS ,

同理:△CSG ≌△GTF , ∴SG=FT ,

∴AR+FT=DS+SG=DG=7,

同(1)的方法得,PH 是梯形ARTF 的中位线, ∴2

7=FT)+(AR 21=

PH .

点评:

此题利用梯形中位线性质解决第(1)问,第(2)利用相似结合勾股定理这中常用方法求长度,第(3)问构造一线三直角模型解决问题。 6、

考点: 二次函数、等要直接三角形、相似三角形(一线三直接)、三角函数、中位线 分析:

(1)根据解析式求出坐标; (2)根据等腰三角形的性质,EF=DF 2求出EF 的长度,再根据抛物线与直线纵坐标差值求出答案。

(3)①根据答案需要求的正切值转换为相似比,再根据已知的两个直角构造出一线三直接模型,相似比为定值,②初中能解决的路径不是线段就是弧长,有关键位置分析可知轨迹为三角形中位线。

解答: 解:(1)∵抛物线C 1:2

3

(0)2

y ax bx a =+-

≠经过点A (1,0)和B (-3,0),

∴3

2{3

930

2

a b a b +-

=--= 解得1{21a b ==,

∴抛物线C 1的解析式为21322

y x x =+-, ∵22131

(1)2222

y x x x =

+-=+-, ∴顶点C 的坐标为(-1,-2); (2)如图,作CH ⊥x 轴于H , ∵A (1,0),C (-1,-2), ∴AH=CH=2, ∴∠CAB=∠ACH=45°

∴直线AC 的解析式为y=x-1, ∵△DEF 是以EF 为底的等腰直角三角形,

小学数学常见几何模型典型例题及解题思路

* 小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。 2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。△AEF 的面积是多少答案:20 |

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米答案: (2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。请问CE 的长是多少厘米。答案:8 @

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。求S 4。答案:10 D C E F S 1 S 2 S 3 S 4 思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。求四边形EFGO 的面积。答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

初中中考数学常见几何模型简介

几何问题 初中几何常见模型解析 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②;③平分。(3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②;③平分。?

(1)一般情况 ?条件:,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③;④;⑤连接AD、BC,必有 ; ⑥(对角线互相垂直的四边形) ?

(1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明;?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①;②平分; ?结论:①;②;③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②;③ . ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 ◇请思考初始条件的变化对模型的影响。

? 如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下: 结论:①;②;③.

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接 AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C 是线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN ”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD 的边长为1,AB,AD 上各存在一点P 、Q ,若△APQ 的周长为2, 求PCQ 的度数。 Q

六年级奥数专题-4几何五大模型——鸟头模型

几何五大模型——鸟头模型 本讲要点 一两点都在边上:鸟头定理: (现出“鸟头模型” 。然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。最后真实的鸟头隐去,只留下几何模型。最后按一下,出公式。) S AD×AE △ADE = S AB×AC △ABC A E D B C 二一点在边上,一点在边的延长线上: S CD×CE △CDE = S BC×AC △ABC A E D B C

例 1 如图, AD=DB,AE=EF=FC,已知阴影部分面积为 5 平方厘米,△ABC 的面积是平方厘米. 例 2 例 2 ( 1)如图在△ ABC中, D、E 分别是 AB,AC上的点,且 AD:AB=2:5, AE:AC=4:7,△ ABC 的面积是 16 平方厘米,求△ ABC的面积。 (2)如图在△ ABC中, D 在 BA 的延长线上, E 在 AC上,且 AB:AD=5:2, AE:EC=3:2,△ ADE 的面积是12 平方厘米,求△ABC的面积。

例3 已知△ DEF的面积为12 平方厘米, BE=CE,AD=2BD,CF=3AF,求△ ABC的面积。 例4 三角形 ABC面积为 1, AB 边延长一倍到 D, BC 延长 2 倍到 E, CA延长 3 倍到 F,问三角形DEF的面积为多少? F A E C B D

例5 长方形 ABCD面积为 120, EF 为 AD上的三等分点, G、 H、 I 为 DC上的四等分点,阴影面积是多大? 例 6 如图,过平行四边形 ABCD内的一点 P 作边AD、BC的平行线 EF 、GH,若 PBD 的面积为 8 平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米? AG D P E F B H C

初中数学9大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEA=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BE=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 2 1 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O C O C D E O B C D E O C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳 三角形的概念 三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0 360);③三角形的外角等于不相邻的两内角和。 三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心) 如);DE 之到?S 如图,已知AB ,AC 的长,求AF 的取值范围时。我们可以通过倍长 中线。利用三角形边的关系在三角形ABD 中构建不等关系。(AC AB AF AC AB +- 2). (2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)

如等 OE ; r = 2

(3)垂线(三角形顶点到对边的垂线);三角形三条边上的高交于一点(垂心) 如图,O为三角形ABC的垂心,我们可以得到比较多的锐角相等如 COD ABC ACO ABO∠ = ∠ ∠ = ∠;等。因此垂线(或高)这样的条件在题目中出现,我们往往可以得出比较多的锐角相等。(等角或同角的余角相等),此外,如果要求垂线段的长度或与垂线段有关的长度问题,我们通常用面积法求解。在上图中,若已知CE AC AB, ,的长度,求BE的长。 特别注意:在等腰三角形中,我们通常所指的三线合一就是指中线、角平分线、高线。三线合一:已知三角形三线中的任意两个条件是重合的,那么就可以得出第三条线也是重合的。在具体运用时,我们往往时把三线合一的等腰三角形补充完整再加以运用。 三角形全等 三角形全等我们要牢记住它的五个判定方法。(SSS,SAS,ASA,AAS,HL) 在具体运用时,我们需要找出判定三角形全等的各种条件,不外乎是关于边相等或相等的问题。 对于寻找角相等:常有四种方法:①两条平行线被第三条直线所截得出的“三线八角”的结论;②对顶角相等;③锐角互余;④三角形的外角等于不相邻的两内角和。 对于寻找边相等:常有三种方法:①特殊图形中隐含的条件(如等腰三角形、等边三角形、菱形、正方形。。。。。);②利用三线合一的正逆定理;③通过已有的全等三角形性质得出。对于证明角相等,证明边相等,我们都要优先考虑边或角所在的三角形全等。(一定要注意对应)如果不能直接通过全等证明,我们就要转化角或转化边(用上面的几种方法)然后再考虑全等。 全等三角形的基本图形: 平移类全等;对称类全等;旋转类全等;

盘点小升初平面几何常考五大模型

盘点小升初平面几何常考五大模型 (一)等积变换模型性质与应用简介 导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。 等积变换模型例题讲解与课后练习题 (一)例题讲解与分析 ?【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE的面积是1平方厘米,那么三角形ABC的面积是多少 【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4, S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12. 【总结】要找准那两个三角形的高相同。 【例2】:如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少

【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S△AOB=15所以S△BOC=12。 【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会 一下。 (二)课后练习题讲解与分析 (二)鸟头定理(共角定理)模型 导语:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

初中数学九大几何模型

初中数学九大几何模型 、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△ OAB^H A OCD均为等边三角 形; D AED 【结论】:①厶OA3A OBD②/ AEB=60 :③OE平分/ 【条件】:△ OAB^H A OCD均为等腰直角三角 形; 【结论】:①厶OA3A OBD②/ AEB=90 :③OE平分/ AED E D

【结论】:①右图中△ OC3A OAB>n A OAS A OBD ②延长AC交BD于点E,必有/ BECN BOA ③ AC OD tan/OCD④BD±AC ⑤连接AD BC,必有AD2 BC2 AB 2 三、模型三、对角互补模型 (1)全等型-90 ° 【条件】:①/ AOB=/ DCE=90 :②0C平分/ AOB 【结论】:①CD=CE②OD+OE= 2 OC③S^DCE S A OCD s CD :⑥ S^BCD 证明提示: ①作垂直,如图2,证明△ CDM^A CEN ②过点C作CF丄OC 如图3,证明△FEC ※当/ DCE的一边交AO的延长线于D时(如图4): 以上三个结论:①CD=CE ② OE-OD=''2 OC ③ S A OCE S A OCD

(2) 全等型-120 【条件】:①/ AOB=N DCE=120 :②。。平分/ AOB :3 【结论】:① CD=CE ②OD+OE=OC ③ S^CE S ^OCD S ^OCE — OC 2 4 证明提示:①可参考“全等型 -90。”证法一; ②如右下图:在 OB 上取一点F ,使OF=OC 证明△ OCF 为等边三角形。 【条件】:①/ AOB=2i,/DCE=18O-2a;②CD=CE 【结论】:①OC 平分/ AOB ②OD+OE=2OCcos a; ③ S A DCE S A OCD S A OCE OC sin a cos a ※当/ DCE 的一边交AO 的延长线于 D 时(如右下图): 原结论变成:① ______________________________________________________ ② ________________________________________________________ ; ③ ________________________________________________________ 。 (3)全等型-任意角a 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A D

小学数学几何五大模型教师版

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b; 4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S△ABC:S△ADE=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

20182019学年九年级数学初中常见几何模型汇总

初中常见几何模型汇总 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段

自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称

共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。 模型变换

说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 中点旋转:

说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。 几何最终模型 对称最值(两点间线段最短)

几何五大模型一

几何五大模型 一、等积变换模型 1、等底等高的两个三角形面积相等。 2、两个三角形高相等,面积比等于它们的底之比。 3、两个三角形底相等,面积比等于它的的高之比。 二、共角定理模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。 三、蝴蝶定理模型 (说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。) 四、相似三角形模型 相似三角形:是形状相同,但大小不同的三角形叫相似三角形。 相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。相似三角形的面积比等于它们相似比的平方。 五、燕尾定理模 等积变形: 等积变形是小学几何里面一个非常重要的思想,小学所以的几何题,或多或少的都会用到等积变形的思想,几何五大模型也都是依托等积变形思想变化而成的。

一半模型 平行四边形、梯形、任意四边形中的一些一半模型。 一、 模型归纳总结 1、等面积变换模型 (1)直线AB 平行于CD ,可知BCD ACD S S ??=; 反之,如果BCD ACD S S ??=,则可知直线AB 平行于CD .如图A (2)两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ::ABD ACD S S BD CD =△△如图 B D C B A D C B A 图A 图B (3)一半面积关系 S 4 S 3 S 2S 1 A B C D D C A 1 2 S S =阴影长方形 1324 S S S S +=+

【例1】、如图,每一个正方形四边中点的连线构成另一接小正方形,则阴影部分面积为原正方形面积的几分之几? 第8题 【例2】、如右图,过平行四边形ABCD 的一点P 作边的平行线EF 、GH ,若PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米? B C G H

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?】 ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?` ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ' ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②;③ ?证明提示: ①作垂直,如图,证明; - ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?<

?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等 边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?' ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导 ? 模型四:角含半角模型90°

小学奥数-几何五大模型

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平 方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC = 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. () 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形BCD 的 面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已 知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, 任意四边形、梯形与相似模型

初中几何常考模型汇总(完整版)

O D C B A 第01讲 8字模型与飞镖模型 模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O ,连接AD 、BC 。 结论:∠A+∠D=∠B+∠C 。 模型分析 8字模型往往在几何综合题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。 图1 2 图E A B C D E F D C B A 热搜精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。 O O 图1 2 图E A B C D E D C B A 2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。 H G E F D C B A

D C B A 105 O O 120D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。 模型分析 飞镖模型往往在几何综合题目中推导角度时用到。 模型实例 如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。探究∠AMC 与∠B 、∠D 间的数量关系。 M D C B A 热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ; O 135 E F D C B A 2.如图,求∠A+∠B+∠C+∠D = 。

O D C B A O D C B A O C B A O C B A 模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。 结论:AC+BD>AD+BC 。 模型实例 如图,四边形ABCD 的对角线AC 、BD 相交于点O 。 求证:(1)AB+BC+CD+AD>AC+BD ; (2)AB+BC+CD+AD<2AC+2BD. 模型4 边的飞镖模型 如图所示有结论:AB+AC>BD+CD 。 模型实例 如图,点O 为三角形内部一点。 求证:(1)2(AO+BO+CO )>AB+BC+AC ; (2)AB+BC+AC>AO+BO+CO.

初中数学九大几何模型-初中几何九大模型-初中九大几何模型

初中数学九大几何模型 结论】:①△OAC≌△OBD;②∠AEB=60°;③OE 平分∠AED 条件】:△OAB 和△OCD 均为等腰直角三角形; 结论】:①△OAC≌△OBD;②∠AEB=90°;③OE 平分∠AED 3)顶角相等的两任意等腰三角形 条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 结论】:①△OAC≌△OBD; ②∠AEB=∠AOB; ③OE 平分∠AED C 条件】:△OAB 和△OCD 均为等边三角形; 一、手拉手模型 -- 旋转型全等 B 图 1 D C

二、模型二:手拉手模型--- 旋转型相似 (1)一般情况【条件】:CD∥AB,将 △OCD 旋转至右图的位置 ②延长 AC交 BD 于点E,必有∠BEC=∠BOA; ③BD= OD= OB=tan∠OCD;④BD⊥AC;AC OC OA 2 ⑤连接AD、BC,必有AD2+ BC2= AB2+CD2;⑥S 三、模型三、对角互补模型 1)全等型-90° 结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD; 结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD; O O △BCD 条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB B

2)全等型-120° 条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 结论】:①CD=CE;②OD+OE=OC;③S△DCE = S△OCD + S△OCE = 3OC2 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。 3)全等型-任意角ɑ 条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE; 结论】:①OC 平分∠AOB;②OD+OE=2OC·cosɑ; ③S△DCE = S△OCD + S△OCE =OC2sinαcosα ※当∠DCE 的一边交 AO的延长线于 D 时(如右下图):原结论变成:①

全等三角形常见的几何模型

1、绕点型(手拉手模型) 遇 600旋 60 0,造等边三角形 遇 900旋 900,造等腰直角 ( 1)自旋转:自旋转构造方法 遇等腰旋顶角,造旋转全等 遇中点旋 1800,造中心对称 (2)共旋转(典型的手拉手模型) 例 1、在直线 ABC 的同一侧作两个等边三角形△ABD和△ BCE,连接 AE与 CD,证明: ( 1)△ ABE≌△ DBC D ( 2)AE=DC ( 3)AE 与 DC的夹角为 60。E ( 4)△ AGB≌△ DFB H F ( 5)△ EGB≌△ CFB G (6) BH平分∠ AHC (7)GF∥AC A B C 变式练习 1、如果两个等边三角形△ABD和△ BCE,连接 AE 与 CD,证明: ( 1)△ ABE≌△ DBC D ( 2)AE=DC C ( 3)AE 与 DC的夹角为 60。 E ( 4)AE 与 DC的交点设为 H,BH平分∠ AHC A B

变式练习 2、如果两个等边三角形△ABD 和△ BCE,连接 AE 与 CD,证明: D (1) △ ABE≌△ DBC (2)AE=DC (3)AE 与 DC的夹角为 60。 ( 4) AE与 DC的交点设为 H,BH 平分∠ AHC B A H E C (1)如图 1,点 C 是线段 AB 上一点,分别以 AC ,BC 为边在 AB 的同侧作等边△ ACM 和△ CBN ,连接 AN ,BM .分别取BM , AN 的中点 E, F,连接 CE, CF, EF.观察并猜想△ CEF 的形状,并说明理由. (2)若将( 1)中的“以 AC ,BC 为边作等边△ ACM 和△ CBN”改为“以 AC ,BC 为腰在 AB 的同侧作等腰△ ACM 和△CBN ,”如图 2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例 4、例题讲解: 1.已知△ ABC 为等边三角形,点 D 为直线 BC 上的一动点(点 D 不与 B,C 重合),以 AD 为边作菱形 ADEF( 按 A,D,E,F 逆时针排列),使∠ DAF=60° ,连接 CF. (1) 如图 1,当点 D 在边 BC 上时,求证:①BD=CF ?② AC=CF+CD. (2)如图 2,当点 D 在边 BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、 CF、CD 之间存在的数量关系,并说明理由; (3)如图 3,当点 D 在边 BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF、CD 之间存在的数量关系。

初中数学九大几何模型

初中数学九大几何模型 Prepared on 24 November 2020

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A B C D E 图 2 O A B C D E O C D E 图 1图 2O C O C D E O B C D E O C D

③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43 S S S =+= 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。 (3)全等型-任意角ɑ 【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE ; 【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③α cos αsin OC S S S 2△OCE △OCD △DCE ??=+= ※当∠DCE 的一边交AO 的延长线于D 时(如右下图): 原结论变成:①; ②; ③。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4 A

相关文档
最新文档