单二极管混频器的电路包络仿真

单二极管混频器的电路包络仿真
单二极管混频器的电路包络仿真

单二极管混频器的电路包络仿真

姓名:

指导老师:

学号:

目录

单二极管混频器的电路包络仿真 (3)

引言 (3)

1混频器的混频原理 (3)

2电路包络仿真方法的原理 (6)

3单二极管混频器的电路包络仿真 (9)

3.1外环分析 (10)

3.2内环分析 (10)

3.2.1线性电路分析 (11)

3.2.2非线性电路分析 (12)

3.3对时变频谱的进一步处理 (15)

4小结 (17)

参考文献 (17)

附录......................................................................................................... 错误!未定义书签。

单二极管混频器的电路包络仿真

摘要:介绍了单二极管混频器的混频原理,电路包络仿真方法的原理和过程,并针对单二极管混频器在本振和带通射频信号激励的情况下进行了电路包络仿真分析,并给出了matlab 仿真的结果。

关键词:单二极管混频器;电路包络仿真;matlab ;ADS

引言

目前对混频电路的机辅分析主要是频域法和谐波法,频域法主要适合频率较低的场合,而只适用于对周期和准周期稳态进行分析。电路包络法是谐波平衡法的一种改进,它分为两个层次,在内层使用谐波平衡法对载波进行分析,同时在外层对调制包络进行分析。通过频域方法和时域方法的内外结合,克服了它们各自存在的困难,可用来对复杂调制信号激励的射频微波电路进行分析。本文针对单二极管混频器在本振和带通射频信号激励的情况下进行电路包络仿真分析。

1混频器的混频原理

混频器的作用是把接收到的射频信号经过频率变换转变为易于进一步处理的中频信号,单二极管混频器的电路结构如图1所示。

图1 单二极管混频器电路结构图

但二极管混频器的等效原理图如图2所示,假定二极管的伏安特性公式为:

)1()(-==?u

S e

I u f i (1)

图2 单二极管混频器的等效原理图

在二极管上加直流偏压V d ,本振电压u L (t)=V L cosw L t ,以及带通射频调幅信号电压u S (t)=V S (1+cosw m t)cosw S t ,如图3所示。其中,w L ,w S 分别表示本振频率和信号频率,w m 表示调幅信号的包络的频率,且w m <

图3 本振和调幅信号激励下的波形图

通常信号电压是接收机接收的微弱信号,电压幅度很小,为了获得良好的混频性能,本振功率应取较大的数值,因此有V L >> V S 。可以认为二极管的工作点随本振电压而变化,将各工作点上i(t)展开为台劳级数为:

(2)

上式等号右边的第一项表示直流和本振以及谐波电流;第三项以及以后的各项由于V S 很小,可以忽略不计;把第二项分出来讨论,设二极管的电导为:

(3)

+2

S

m

S L

L d '

'S

m

S L

L d '

L

L d S

m

S L

L d t)t)cosw cosw +(1(V t)cosw V +(V f 2!

1+t

t)cosw

cosw

+(1V t)cosw V +(V f +t)cosw V +f(V =t)

t)cosw

cosw

+(1V +t cosw V +f(V =f(u)=i |

t

cosw

V +V u

i L

L d '

L L d d d t)cosw

V +(V f ==

=u g

将式(1)代入式(3)可得:

(4)

由式(4)可以得出本振信号随时间做周期变化时,瞬时电导也随着时间做周期变化,而且是偶函数,称为时变电导。将它展开成傅里叶级数:

(5)

其中,

(6)

(7)

g0为二极管的平均混频电导;gn 为对应于本振第n 次谐波的混频电导,将式(5)代入式 (2)中,略去高次项,得到混频电流为:

(8) 在上式中,令n=1,2,3,…,可以得到二极管混频电流包含多个频率分量。图4标明了向下混频时输入、输出信号的频谱变化关系。我们所关注的是中频信号是一次混频电导和信号电压相乘的结果,可以通过滤波得到,即

w I =w L -w S (w L >w S )

w I =w S -w L (w S >w L )

图4 混频时的频率变换过程(w L >w S )

)

t cosw V +V (L L d )(??=e

I t g S ∑∞=+=10cos 2)(g n L n t

nw g g t ()()t w d t g L ?=π

π20

021

g ()()t w td nw t g L L cos 21g 20n ?=ππ)t

w t)cos(nw

cosw

+(1V t t)cosw

cosw

+(1V +t)cosw

V +f(V t

t)cosw

cosw

+(1]V cos 2[ +t)cosw

V +f(V

=i S L

m

1

S S

m

S 0L

L d S

m

S 1

0L

L d

±+

=+∑

∑∞

=∞

=n n n L n g g t nw g

g

2电路包络仿真方法的原理

电路包络法把任意调制信号看成是一个低频动态(包络或调制)和高频动态(载波)的结合。对低频动态的响应在时域进行分析,对高频动态用单频激励下的谐波平衡法进行分析。这样,极大地减少了时域取样点数(仅对信息信号进行取样),同时,电路包络法仅在每个取样点处对射频载波进行谐波平衡仿真,降低了仿真的复杂度,从而克服了时域瞬态分析和谐波平衡分析各自独立应用时的局限性,可以胜任对任意调制信号激励的微波通信系统的分析。

在谐波平衡技术中,激励信号一般为单频正弦信号,各个电路变量可以表示为激励频率及其各次谐波的叠加,形式如下:

??

? ??=∑-=N

N

k t

j k k e

V real t v ω)( 其中,

k

V 是恒定值。当复杂调制信号激励电路时,实际上在直流、载波的

基频及各次谐波频率上都包含了调制信息,所以k V 不再是恒定值,而是一个随时间变化的函数,反映了调制包络的变化情况。因此,用电路包络法对电路进行求解时,各个电路变量应表示成如下形式:

??

? ??=∑-=N N

k t

k j k e t V real t v ω)()( 其中,

)

(t V k 代表每个输出谐波

k

ω处的任意调制频谱。这一频谱既可以表示

瞬态信号或伪随机信号的连续谱,也可用来表示周期信号的离散谱线,如多频正弦信号激励的混频器或放大器的交调产物。

用电路包络法执行仿真时,需要进行两个层次的分析:在外环对调制信号进行包络取样,取样间隔只需小到足以捕捉调制包络的带宽而不是射频载波的带宽,即包络取样间隔为:

(BW

为调制信号的带宽)

在内环执行谐波平衡分析,这时对非线性电路仿真的时间步长需能捕捉射频载波的带宽,与调制信息无关。即根据外环分析得到的各个离散包络取样值,在每个取样点上进行以载波为基波的谐波平衡分析,得到该取样点处直流、载波及其各次谐波的复振幅序列。完成整个调制信息周期的谐波平衡分析之后,就得到

BW

t 21

≤?

了一个完整的反映调制包络各个取样时刻的直流、载波及其各次谐波的复振幅序列。我们称这一序列为调制信号激励下的电路变量的时变频谱,这里所说的“频谱”是指直流、载波及其各次谐波的幅度和相位(复振幅),而“时变”则是指该复振幅的值是随着激励信号的包络的变化而变化的(因而是随时间变化的)。图5反映了电路包络法的基本求解思想。

1t 2

t 3

t 4

t 1

t 载波

调制信号

)

2ex p ()(ft j t V 波平衡

图5 电路包络法的基本算法思路

如果要得到各电路变量的真正频谱(在载波及其各次谐波上存在着相同结构的调制信息频谱)和时间波形,必须对上述时变频谱进行进一步的处理。沿着外环分析时的时间顺序,从而得到的时变频谱中将同一阶次的谐波谱线依次取出构成一个新的时间序列,该序列就是在该次谐波处的调制包络的时间序列。对该序列进行离散傅立叶变换,就可得到以该次谐波频率为中心的调制频谱。对时变频谱进行处理得到输出信号频谱的过程如图6所示。按照这种思路,最终就可以得到复杂调制信号激励下的微波电路输出信号在基波和各此谐波处的幅度频谱和相位频谱。

1

t

图6 由时变频谱得到输出信号真实频谱的过程

从上述算法描述可见,虽然电路包络法使用谐波平衡法作为其解法的一部分,但由于只对载波进行单频分析,故矩阵的大小在微机上仍是可以接受的。当电路规模比较大时,可以引入稀疏矩阵方法以提高求解谐波平衡方程的效率。如图7所示为电路包络仿真法的流程图。

图7 电路包络法的流程图

3单二极管混频器的电路包络仿真

采用电路包络仿真方法分析混频器这样的多输入端口电路时,复杂调制信号施加于混频器射频输入端口,而单频本振施加于混频器本振端口。外环分析仍然是对调制信号的包络取样,而内环分析则是对本振和调制载波双频激励下的谐波平衡分析,这两个激励信号的幅度分别为本振幅度和外环包络取样值,可采用基于多维傅立叶变换的谐波平衡法(MDFT-HB)法完成内环分析。得到的时变频谱包含射频和本振的基波及其各次谐波以及它们的各阶交调频率上的复振幅。对这种时变频谱的进一步处理,可以得到各个频率下的调制频谱(幅度谱和相位谱)。

图8为单二极管混频器的等效电路图,其参量设置如下: 直流偏压V d =1V;

本振电压u L (t)=10cos(6п×104t);

射频调幅电压u S (t)=0.5(1+cos20пt)cos(3п×103t); 串联电阻R S =10Ω; 纯阻抗Z C =50Ω; 引线电感Ls=0.25nH ; 管壳电容Cs=0.2pF ; 结电阻的伏安特性为()1

10

53710

-?=-v

g e

I ;

势垒电容

现对该单二极管混频器进行电路包络仿真分析。

图8 单二极管混频器等效电路图

5

.082.0105.0-?

?? ?

?

+=

v pF C j

V d V

3.1外环分析

在外环对调制信号u S(t)=0.5(1+cos20пt)cos(3п×103t)进行包络取样,此时的调制包络带宽为BW=10Hz,因而包络取样的取样频率必须满足fs≥20Hz,在仿真过程中取fs=21Hz,得到的包络取样结果如图9所示。

包络采样信号

05101520253035404550

图9 调制信号包络取样信号

3.2内环分析

在内环进行本振u L(t)和调制载波u c(t)双频激励下的谐波平衡分析,这两个激励信号的幅度分别为本振幅度和外环包络取样值,采用MDFT-HB法得到包含射频和本振的基波及其各次谐波以及它们的各阶交调频率上的复振幅的时变频谱。

首先将非线性网络分解为线性子网络和非线性子网络两部分,如图8所示。其中,线性子网络包含二极管的串联电容、所有的源和无源的负载导纳,非线性子网络包括二极管的结电阻和势垒电容。现分别对两个子网络进行分析。

3.2.1线性电路分析

由图8可知,单二极管混频器等效电路中的线性子网络由纯阻抗Zc 和串联电阻Rs 组成,如图10所示,下面推导该线性子网络的导纳矩阵的表达式。

图10 线性子网络

以端口电压V 2和V 1为自变量,端口电流I 1和I 2为因变量,则有:

2121111V Y V Y I += 2221212V Y V Y I +=

写成矩阵形式为:

(9)

[][][]V Y I = (10)

其中,[I]和[V]分别为端口电流列矩阵和端口电压列矩阵,[Y]为导纳矩阵,其元素称为导纳参量,各导纳参量的物理意义为:

(11)

根据式(11),分别令V 2=0和V 1=0,得到导纳矩阵的各个参量为

(12)

(13) ?

??

?????????=??????212221121121V V Y Y Y Y I I 0

1

1112

|==

V

V I Y 0

1

2212

|==

V

V I Y 0

2

1121|==

V V I Y 0

2

2

221

|==

V

V I Y

()()[]

1

1

1s

11

j ---+++

=C

S

S

Z jwL wC R Y ()11

s s 12)j R 1()1(---?

????

????? ??++++=C S S S Z jwL wC R jwC Y

(14)

(15)

可见,各导纳参量均是w 的函数,与交调波w k 相关,即与激励的两个频率均有关系。

3.2.2非线性电路分析

由图8所示可知,非线性子网络由二极管的结电阻Rg 和势垒电容Cj 组成,如图11所示。

图11 非线性子网络

下面推导上图电路的电流误差向量。电路由双频激励源Vt= u L (t)+u c (t)和直流偏置Vd 来共同激励,则

[]00

d

2

C

L

V V V V =

(16)

线性子电路由其导纳矩阵表示,其端口电压和电流满足:

1111V Y I I S +=

(17)

Is 为右边端口上的诺顿等效电流源,其值为:

212S V Y I =

(18)

结电阻上的电流为()1

10

53710

-?=-v

g

e

I ,取其傅立叶变换为I G 。

势垒电容上的电荷可以表示为电压的函数,即

V d

V []1

s

21))(1))((-(-++++=jwLs Zc jwC

jwL

Z Rs Y S

C ()1

1

s 22

)

j R

1(--??

?

??????? ?

?++

+=C

S

S

Z jwL

wC

Y

))

(()(1t v f t q = (19)

取其傅立叶变换为

[]K

Q Q Q Q Q

2

1

= (20)

又非线性电容上的电流为电荷的时间微分,即

(21)

则其傅立叶变换为

Q

I C Ω=j (22)

其中,

(23)

则可以得到谐波平衡方程

()0j 111=+Ω++=

G S I Q V Y I V

F

(24)

F(V)称为电流误差向量。本文采用牛顿迭代法来求解该方程,其迭代公式为:

(

)P

P

1

-F

P

1

P V F V

V J V

V

=-=+ (25)

式中,1P P V ,V +是第p 次和第p+1次解向量的迭代值,()V

V F J F ??=是Jacobian 矩

阵,由式(24)可得

(26)

写成矩阵形式为

(27)

其中K 为考虑的最大交调波次数。J F 的通项为

(28)

()()dt

t dq t i c =???????

?

????

???

?=Ωk w w w

2

1

1

1

11jw V I V Q

Y J G

F ??+??+=???

?????

?

????????

?????????????????????=K K K K

K K F

V F V F V F

V F V F V

F V F V F V

F J 1111

110

111111

11

10

1111011

1010

10

()l

k G l k l k V I

V Q jw l k Y V F

11111111,??+??+=??

其中k 和l 分别为交调波的标号,当k=l 时,Y 11(k,l)=Y 11(wk);当k ≠l 时,Y 11(k,l)=0。而上式中的第二项和第三项分别为

(29)

(30)

式中T 为双频激励信号的准周期。式(29) 和(30)中的偏微分可以分别解释为二极管的势垒电容和结电阻,即

(31)

(32)

取δ=0.028,()1

10

53710

-?=-v

g

e

I

分别对C j 和R g 取准周期傅立叶变换得到频率分量C k 和G k ,k=-K ,…,0,…,K ,由式(27)和(28)得

(33)

综上所述,采用谐波平衡法的步骤如下:

a.设定频域内电压V 1的初始估计值V 10,包含各次交调波分量的值;

b.由式(31)和(32)分别得到势垒电容和结电阻的波形,并对它们做准周期傅立叶变换;

c.由式(33)和(24)建立J F 和F(V 0) ;

d.解式(25),得到电压向量新的估计值V 11;

e.对二极管电量和电流(由步骤b 求得)做准周期傅立叶变换,并建立向量I C 和I G ;

f.由式(24)得到F(V 1) ;

g.若F(V 1)的幅度值已经足够小,则解已经找到;否则,对其做傅立叶逆变

()??????

Φ-=

??=

/1)

(01v v C dv d t v t q C

j j

g

g

g I v I R δ≈??=

1

()

()()()dt t w w j t v t q T

V Q l k T

l k

--??=???exp 1

0111()

()()()dt t w w j t v t I T V I l

k

T

l

k

G --??=

???exp 1

1

g 11()()()()??

?

???

?

?

??

????

?

?++++++++++++++=---

-+-+-+-+------00112

212

220

022111

122

221

111

110

0111111

1k

2

1

0110G C jw w Y G C jw G C jw G

C jw G C jw G C jw w Y G C jw G C jw G C jw G C jw G C jw w Y G C jw G G G G Y J k k k k k k k k k k k k k k k F

换得到v 1(t),然后从步骤b 开始重复来得到V 12,重复这一过程,知道迭代收敛。

3.3对时变频谱的进一步处理

要得到各电路变量的真正频谱(在载波及其各次谐波上存在着相同结构的调制信息频谱)和时间波形,必须对上述时变频谱进行进一步的处理。沿着外环分析时的时间顺序,从而得到的时变频谱中将同一阶次的谐波谱线依次取出构成一个新的时间序列,该序列就是在该次谐波处的调制包络的时间序列。对该序列进行离散傅立叶变换,就可得到以该次谐波频率为中心的调制频谱。按照这种思路,最终就可以得到复杂调制信号激励下的微波电路输出信号在基波和各此谐波处的幅度频谱和相位频谱。

在仿真过程中,取最高交调波的次数为3,如图12所示为按谐波提取后的时域幅度谱。

图12 按谐波提取后的时变频谱(幅度普)

分别对直流、基波、二次交调波和三次交调波的时变频谱做傅立叶变换,得到各自的幅度频谱和相位频谱,如图13-16所示。

020406080

100

120140160180200

0.5

1

1.5

22.5

3

m

幅度

图13 直流处的幅度频谱图和相位频谱图

图14 基波处的幅度频谱图和相位频谱图

图15 二次交调波处的幅度频谱图和相位频谱图

频率 (MHz)

功率 (d B )

频率 (MHz)

功率 (d B )

频率 (MHz)

功率 (d B )

图16 三次交调波处的幅度频谱图和相位频谱图

4小结

本文简要的介绍了单二极管混频器的混频原理,以及电路包络仿真方法的原理和过程,并针对单二极管混频器在本振和带通射频信号激励的情况下进行了电路包络仿真分析,给出了matlab 仿真的结果。此文的不足之处在于没有与ADS 的仿真结果进行对比,无法肯定matlab 仿真结果的正确性。

参考文献

[1] 蒋石磊.微波、毫米波混频器研究[J].硕士论文.2009.6.

[2] 王慧功.非线性微波毫米波电路分析与设计[M].北京:邮电科学出版社.1991.

频率 (MHz)

功率 (d B )

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

20151060042-贾炜光-混频器仿真实验报告

混频器仿真实验 姓名:贾炜光 学号:20151060042 学院:信息学院 专业:通信工程 指导教师:谢汝生

一、实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理 混频器将天线上接收到的射频信号与本振产生的信号相乘,cosαcosβ=[cos(α+ β)+cos(α-β)]/2 可以这样理解,α为射频信号频率量,β为本振频率量,产生和差频。当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。 混频是指将信号从一个频率变换到另外一个频率的过程 ,其实质是频谱线性搬移的过程。在超外差接收机中 ,混频的目的是保证接收机获得较高的灵敏度 ,足够的放大量和适当的通频带 ,同时又能稳定地工作。混频电路包括三个组成部分 : 本机振荡器、非线性器件、带通滤波器。[1] 由于非线性元件( 如二极管、三极管、场效应管等) 的作用,混频过程中会产生很多的组合频率分量 : p f L ±qf S 。一般来讲 ,其中满足需要的仅仅是 f I =f L -f S 或者是f I =f S -f L 。前者产生中频的方式称为高差式混频 , 后者称为低差式混频。在这里 ,混频过程中产生的一系列组合频率分量经过带通滤波器即可以选择输出相应的中频 ,而其他的频率分量会得到抑制。

二极管包络检波器和同步检波器仿真实验报告

二极管包络检波器和同步检波器仿真实验报告 姓名: 学号: 班级:09电信二班

一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.了解二极管包络检波的主要指标,检波效率及波形失真。 3.掌握用集成电路实现同步检波的方法。 二、实验内容及步骤 (1)二极管包络检波电路 1.利用EWB软件绘制出如图 1.15的二极管包络检波电路。 2.按图设置各个元件参数,其中调幅信号源的调幅度M为0.8。打开仿真开关,从示波器上观察波形。画出波形图。 3.分别将Rp调到最大或最小,从示波器上可以观察到惰性失真和负峰切割失真,画出波形图。 附图1.15二极管包络检波器仿真实验电路 (2)同步检波电路 1.利用EWB软件绘制出如图 1.19的双边带调幅实验电路。 2. 按图设置各个元件参数,打开仿真开关,从示波器上观察同步检波器输入的双边带信号及输出信号。画出波形图。 3.改变同步检波器参考信号相位,观察输出波形的变化,画出波形图。

附图1.19 双边带调制及其同步检波的仿真实验电路 三.实验报告要求 1.画出二极管包络检波器的波形。画出二极管包络检波器的惰性失真和负峰切割失真波形。RP1=0% RP2=100% RP=0% RP2=0%负峰切割失真

RP1=100% RP2=0%负峰切割失真 R1=R2=100%惰性失真

2.对比画出同步检波电路的正常波形和改变参考信号相位波形。 同步检波电路的正常波形 Uc=3.5344V

参考信号相位30度波形Uc=3.0668V 参考信号相位45度波形Uc=2.5082V

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

包络检波器的设计与实现

目录 前言 (1) 1 设计目的及原理 (2) 1.1设计目的和要求 (2) 1.1设计原理 (2) 2包络检波器指标参数的计算 (6) 2.1电压传输系数的计算 (6) 2.2参数的选择设置 (6) 3 包络检波器电路的仿真 (9) 3.1 Multisim的简单介绍 (10) 3.2 包络检波电路的仿真原理图及实现 (10) 4总结 (13) 5参考文献 (14)

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

混频仿真

通信电子线路实验 实验名称:混频器仿真 混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。 一、晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析”

选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。 分析:图中最高频谱点在465KHZ的中频信号成分,同时电路中还有较弱的其他谐波成分。 二、模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。 与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 1、混频输入输出波形测试 在仿真软件中构建如下模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

实验6 二极管包络检波器

实验6 二极管包络检波器 —、实验准备 1.做本实验时应具备的知识点: ●振幅解调 ●二极管包络检波 2.做本实验时所用到的仪器: ●晶体二极管检波器模块 ●高频信号源 ●双踪示波器 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握用包络检波器实现AM波解调的方法。了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念; 4.了解输出端的低通滤波器对AM波解调的影响; 三、实验内容 1.用示波器观察包络检波器解调AM波时的性能; 2.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。 四、基本原理 振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。通常,振幅解调的方法有包络检波和同步检波两种。 1.二极管包络检波 二极管包络检波器是包络检波器中最简单、最常用的一种电路。它适合于解调信号

电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。它具有电路简单,检波线性好,易于实现等优点。本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。 图中,10D01为检波管,10C02、10R08、10C07构成低通滤波器,10R01、10W01为二极管检波直流负载,10W01用来调节直流负载大小,10R02与10W02相串构成二极管检波交流负载,10W02用来调节交流负载大小。开关10K01是为二极管检波交流负载的接入与断开而设置的,10K01置“on ”为接入交流负载,10K01置“off ”为断开交流负载。10K02开关控制着检波器是接入交流负载还是接入后级低放。开关10K02拨至左侧时接交流负载,拨至右侧时接后级低放。当检波器构成系统时,需与后级低放接通。10BG01、10BG02对检波后的音频进行放大,放大后音频信号由10P02输出,因此10K02可控制音频信号是否输出,调节10W03可调整输出幅度。图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波,所以RC 时间常数的选择很重要。RC 时间常数过大,则会产生对角切割失真(又称惰性失真)。RC 常数太小,高频分量会滤不干净。综合考虑要求满足下式: a a m m RC 2 1-<< Ω 其中:a m 为调幅系数,Ω为调制信号角频率。 当检波器的直流负载电阻R 与交流音频负载电阻ΩR 不相等,而且调幅度a m 又相当大时会产生底边切割失真(又称负峰切割失真),为了保证不产生底边切割失真应满足 R R m a Ω < 。

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

电子仿真实验报告之晶体管混频

大连理工大学 本科实验报告 课程名称:电子系统仿真实验 学院(系):信息与通信工程学院 专业:电子与信息工程 班级: 学号: 学生姓名: 2014年月日

一、 实验目的和要求 使用电路分析软件,运用所学知识,设计一个晶体管混频器。要求输入频率为10MHz ,本振频率为16.485MHz 左右,输出频率为6.485MHz 。本振电路为LC 振荡电路。 二、实验原理和内容 混频电路是一种频率变换电路,是时变参量线性电路的一种典型应用。如一个振幅较大的振荡电压(使器件跨导随此频率的电压作周期变化)与幅度较小的差频或和频,完成变频作用。它是一个线性频率谱搬电路。图2.1是其组成模型框图。 中频 图2.1 本地振荡器产生稳定的振荡信号(设其频率为L f )通过晶体管混频电路和输入的高频调幅波信号(设其频率为s f ),由于晶体管的非线性特性,两个信号混合后会产生L f +s f L f -s f 频率的信号,然后通过中频滤波网络,取出L f -s f 频率的信号,调节好L f -s f 的大 小使其差为中频频率,即所需要的中频输出信号。图 2.2调幅前后的频谱图。 图2.2 本次试验本振电路采用LC 振荡电路。其等效原理图为西勒振荡电路,如图2.3所示。 本振电路 非线性器件 输入 中频滤波 输出

图2.3 混频器采用晶体混频电路,其等效电路图如图2.4。 图2.4 三、主要仪器设备 名称型号主要性能参数 电子计算机宏碁V-531,Windows 7 AMD A10-4600M 2.3GHz,2GB 内存 电路分析软件 Multisim.12 多种电路元件,多种虚拟仪 器多种分析方法 表3.1

实验六 二极管包络检波电路资料

实验六 二极管包络检波电路 一、 实验目的 1. 掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。 2. 了解电路参数对普通调幅波(AM )解调影响。 二、实验使用仪器 1.集成乘法调幅实验板、二极管包络检波实验板 2.高频信号源、100MHz 双踪示波器、万用表。 图6-1是二极管大信号包络检波电路,图6-2表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时, 二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充 电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,充电较快, )(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻L R 比D r 大得多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降

低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2.二极管大信号包络检波器的电压传输系数 电压传输系数是检波器的主要性能指标之一,用d η表示, cm a m cm a m d U m U U m U ΩΩ== )()(调幅波包线变化的幅度检出的音频电压幅度η 对于二极管包络检波器,当C R L 很大而D r 很小时,输出低频电压振幅只略小于调幅波包络振幅,故d η略小于1,实际上d η在80%左右。并且L R 足够大时,d η为常数,即检波器输出电压的平均值与输入高频电压的振幅成线性关系,所以又把二极管峰值包络检波称为线性检波。电压传输系数与电路参数L R 、C 、0r 以及信号大小有关,很难用一个简单关系式表达,所以d η常用实测估算得到。 3.二极管大信号包络检波器输入电阻 输入电阻是检波器的另一个重要的性能指标。对于高频输入信号源来说,检波器相当于一个负载,此负载就是检波器的等效输入电阻in R 。 d L in R R η2~ - 上式说明,大信号输入电阻in R 等于负载电阻的一半再除以d η。例如Ω=k R L 1.5,当d η=0.8,时,则Ω=?= k R in 2.38 .021 .5。 由此数据可知,一般大信号检波比小信号检波输入电阻大。 3.二极管大信号包络检波器检波失真 检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。 (1) 惰性失真。如图6-3电路所示。

包络检波电路分析

四、振幅调制的解调 基本特性及实现模型 振幅检波电路 (一)、振幅调制的解调电路的基本特性及实现模型 ?定义:振幅调制波的解调电路称振幅检波电路,简称检波电路。检波是从振幅调制波中不失真的检出调制信号的过程。(它是振幅调制的逆过程)?功能:在频域上,该作用就是将已调幅波的调制信号频谱不失真地搬到零频率附近。检波乃是实现频谱线性搬移。 ?类型:同步检波,包络检波。 1、同步检波(主要解调DSB,SSB波,也可解调AM波) ①乘积型 A)实现模型 同步检波的关键在于取参考信号U r必须与输入原载波信号严格同步(同频,同相),因而实现电路较复杂些。 B)原理:振幅检波电路也是一种频谱搬移电路,可以用乘法器来实现。 以双边带调制信号的解调为例: (按此仿真) U S=V m cosΩt cosωC t为已调波 U r=V rm cosωC t为本地引入参考电压,称同步电压,要求与输入载波信号同频同相。

第一项与cosΩt成正比,是反应调制信号变化规律的有用分量,后两项为2ωC的双边 带调制信号,为无用的寄生分量,通过低通滤波将高频分量滤除,即可实现检波。 若任意多频信号可画出下列频谱示意图: 采用同样的工作原理,以上模型也可实现AM波和SSB波的解调。 ②叠加型(按此仿真) A)实现模型 B)原理 a) 若U s=U DSB=V m cosΩt cosωC t ,U r=V rm cosωC t

当V rm≥V sm 时, 合成信号为不失真的普通(标准)调幅波,可通过包络检波器检出所需要的调制信号。 b) 若U s=U SSB=V m cos(ωC+Ω)t ,U r=V rm cosωC t ,V rm>>V sm U= (用矢量叠加法) 经包络检波后U AV=ηd V rm(1+D cosΩt) 再经隔直电容后得U av=ηd DV rm cosΩt实现了不失真的解调。 2、包络检波 因U AM经由非线性器件后输出电流中含有能线性反映输入信号包络变化规律的音频信号分量(即反映调制信号变化规律)。所以包络检波仅适用于标准调制波的解调。此电路不需要加同步信号,电路显得较简单。

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

实验四二极管包络检波实验

高频实验报告 实验名称:二极管包络检波实验 南京理工大学紫金学院电光系 一、实验目的 1、加深对二极管大信号包络检波工作原理的理解。 2、掌握用二极管大信号包络检波器实现普通调幅波(AM)解调的方法。了 解滤波电容数值对AM波解调影响。 3、了解电路参数对普通调幅波(AM)解调影响。

图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和1R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,充电较快,)(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻L R 比D r 大的多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,则)(0t u 是大小为0U 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。当输入信号 )(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或 降低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2.二极管大信号包络检波效率 检波效率又称电压传输系数,用d η表示。它是检波器的主要性能指标之一,

包络检波器的设计与实现

包络检波器的设计与实 现 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

目录 前言 (1) 4总结 5参考文献

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。 1设计目的及原理 设计目的和要求 通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。 要求:掌握串、并联谐振回路及耦合回路、高频小信号调谐放大器、高频功率放大器、混频器、幅度调制与解调、角度调制与解调的基本原理,实际电路设计及仿真。 设计要求及主要指标:用检波二极管设计一AM信号包络检波器,并且能够实现以下指标。 输入AM信号:载波频率200kHz正弦波。

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

混频器实验

实验二混频器仿真实验 一.无源混频器仿真实验 二极管环形混频电路 载频是f L=1kHz,调制频率为f R=100Hz,因此混频后会出现f L f R f L- f R==900Hz ,f L+ f R=1100Hz,如图所示前两个峰值。由于二级管的开关作用,还会产生组合频率,不过幅度会随次数的增加而减小,如图所示后两个峰值。 二.有源混频器仿真实验 1.三极管单平衡混频电路 直流分析 傅里叶分析 差模输出将直流分量抵消,组合频率分量也被抵消了,本振不会馈通。但是由于射频信号是非平衡的,所以射频信号带入的直流分量与本振信号相乘后产生了较大幅值的本振频率分量,并且在频谱中还是会出现少量本振信号的奇次谐波与射频相混频的频率分量,单平衡混频电路有效地抑制了高频率分量,单节点输出存在低频分量过大的问题,但使用差分放大器的双点输出能够很好地解决这个缺陷。但与无源混频器相比,出现了大量的杂波。 2.加入有源滤波器后

混频后得到上下变频分量,通过一个带通滤波器,滤除上变频以及本振频率分量,只剩下下变频。 3.吉尔伯特单元混频电路 由于射频信号差分输入,因此在输出的时候射频直流分量被抵消,本振不会馈通。由于是双差分输入,频谱较为纯净。但是由于吉尔伯特电路也是通过本振大信号作为开断信号对输出信号采样,因此也产生了本振信号的奇次谐波的分量与射频信号相混频产生的组合频率分量。

加入有源滤波器后 本电路将作为接收机电路的前端。与单平衡电路的频谱比较起来更加纯净,无用的频率分量更少,幅值更小。 思考题: 1. 吉尔伯特电路是双平衡电路,而三极管是单平衡电路,它们的区别体现在射频信号是否是平衡的,吉尔 伯特电路射频信号是平衡的,射频信号中蕴含的直流分量在输出时被抵消,因此不会产生本振信号馈通。而三极管单平衡电路产生馈通和许多组合频率分量。 当频率增加后会更加明显,因为各个频点上的幅值都会降低,区别显得更加突出。 2.如图,该二阶带通有源滤波器的截止频率在1k 与1.4k 附近正好可以滤去不需要的分量。 二阶带通有源滤波器的BW : 要想BW 变为原来的80%。只能改变 。即 变为1.92 。R8变为76.8kohm 或R7变为40.625Kohm 。 或者比值保持1.92。 01 222F F f f R R BW f R R RC π????=-?=-? ? ? ? ???? ?F f R R F f R R

包络检波器

包络检波器 一、 实验目的 1、进一步理解调幅信号的解调原理和实现方法 2、掌握包络检波器的基本电路及低通滤波器RC 参数对检波器输出的影响 3、进一步理解包络检波器中产生失真的机理及预防措施 二、实验仪器 双踪示波器 数字频率计 直流稳压电源 字万用表 三、实验原理与实验电路 二极管包络检波器分为峰值包络检波和平均包络检波。二极管峰值包络检波需要输入信号电压幅度大于0.5V ,检波器输出、输入之间是线性关系,故又称为线性检波。 输入回路提供调幅信号源。检波二极管通常选用导通电压小、导通电阻和结电容小的点接触型锗管。RC 电路有两个作用:一是作为检波器的负载,在两端产生解调输出的原调制信号电压;二是滤除检波电流中的高频分量。为此,RC 网络必须满足R C c <<ω1且 R C >>Ω1。式中,c ω为载波角频率,Ω为调制角频率。 检波过程实质上是信号源通过二级管向负载电容C 充电和负载电容C 对负载电阻R 放电的过程,充电时间常数为R d C ,R d 为二极管正向导通电阻。 放电时间常数为RC ,通常R>R d ,因此对C 而言充电快、放电慢。经过若干个周期后,检波器的输出电压V 0在充放电过程中逐步建立起来,该电压对二极管VD 形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流导通角很小。当C 的充放电达到动态平衡后,V 0按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM 信号的解调。 实验电路

四、实验步骤 按照电路图搭建实验电路,检查无误后接通电源,完成如下操作: 1、改变低通滤波器的滤波电容C L的大小(分别为0.02μF、0.2μF、2μF),用示波器观察输出信号的波形并记录。 2、改变低通滤波器的负载电阻R L的大小(分别为4kΩ、40kΩ、400kΩ),用示波器观察输出信号的波形并记录。 3、改变输出耦合电容C C的大小(分别为0.1μF、10μF、100μF),用示波器观察输出信号的波形并记录 4、

包络检波及同步检波实验

实验十二包络检波及同步检波实验 学院:光电与信息工程学院专业:电子信息工程姓名:学号: 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 4. 掌握用集成电路实现同步检波的方法。 二、实验内容 1.完成普通调幅波的解调。 2.观察抑制载波的双边带调幅波的解调。 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。 三、实验仪器

1.高频实验箱 1台 2.双踪示波器 1台 3.频率特性测试仪(可选)1台 四、实验原理及实验电路说明 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。 从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1 所示(此图为单音频Ω调制的情况)。检波过程也是应用非线性器

件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 图12-1 检波器检波前后的频谱

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

相关文档
最新文档