02第十一章 恒定电流的磁场(二)作业答案

02第十一章 恒定电流的磁场(二)作业答案
02第十一章 恒定电流的磁场(二)作业答案

一. 选择题

[ C ]1. (基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:

(A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4.

【提示】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为

321,,B B B ,相邻导线相距为a

,则

()()02030111231103010

22231227,

2224222I

I F I l B B I l a a a I I F I l B B I l a a a

μμμπππμμμπππ??=+=+= ????

??

=-=-= ???

式中121231, 1, I 1A, I 2A, I 3A l m l m =====,得 8/7/21=F F .

[ D ]2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)

R

r I I 22

210πμ. (B)

R

r I I 22

210μ.

(C)

r

R I I 22

210πμ. (D) 0.

【提示】大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内2R

I B 1

01μ=

;小圆电流的

磁矩为方向垂直纸面朝内,,2

22r I p m π=所以,小圆电流受到的磁力矩的大小为

2211sin 00m m M p B p B =?=?=

[ B ]3.(自测提高4) 一个动量为p 的电子,沿图示方向入射

并能穿过一个宽度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为

(A) p eBD 1

cos

-=α.(B) p

eBD 1sin -=α. F 1

F 2F 3

1 A

2 A

3 A ⅠⅡⅢ

O r R I 1 I 2

(C) ep

BD 1

sin

-=α. (D) ep BD 1cos -=α.

【提示】电子在磁场中的轨迹为一段圆弧,如图。所以有

,sin mv

D eBD eBD R eB

R mv p

α=

=

==

[ B ]4.(自测提高5)如图,在一固定的载流大平板附近有一载流小

线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电

流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动.

(C) 逆时针转动. (D) 离开大平板向外运动.

【提示】小线框的磁矩2p m

和大平板产生的磁场1B 方向如图所示。小线框受

到的磁力矩为21m M p B =?

,该力矩总是使得小线圈朝着磁矩转向外磁场

的方向转动。故小线框顺时针转动。

二. 填空题 1.(基础训练14)如图11-33,在粗糙斜面上放有一长为l 的木制圆柱,已知圆柱质量为m ,其上绕有N 匝导线,圆柱体的轴线位于导线回路平面内,整个装置处于磁感强度大小为B 、方向竖直向上的均匀磁场中.如果绕组的平面与斜面平行,则当通过回路的电流I = /(2) mg NlB 时,圆柱体可以稳定在斜面上不滚动.

【提示】(1)圆柱体所受合力为零:sin f mg θ=,式中的θ为斜面的倾角。

(2)以圆柱体的轴线为转轴,则圆柱体所受的合力矩为零。重力矩和支撑力F 的力

矩为零,所以摩擦力矩和磁力矩的矢量和=0,即sin 0m Rf p B θ-=,式中的磁矩为

(2)m p NIS NI Rl ==,联立上述三个式子求解,即得答案。

2.(基础训练16)有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?

I 1

I 2

是___n___型,

是__p__型

图11-33

【提示】霍尔效应。n 型半导体为电子导电,电子带负电荷;p 型半导体为空穴导电,空穴带正电荷。由电子或空穴所受的洛仑兹力的方向判断它们往哪个表面堆积。

3. (基础训练19)如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B

的方

向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度v 射入磁场.v

在图面内与界面P

成某一角度.那么粒子在从磁场中射出前是做半径为

mv

qB

的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成

的平面区域的面积是2

mv S qB π??

- ???

.

【提示】(1)2

v qvB m R

=,所以mv R qB =;(2)如图。

4. (基础训练20)如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的,方向 沿y 轴正向 。

【提示】因为磁场是均匀的,所以,弯曲导线的受力可以等效为直导线的受力。如图,设电流从a 沿直线流向b , 则

ab ab F F IL B ==?

弧,

2, y 2ILB I R B ??

∴==?= ? ??

?其大小方向沿正向。轴

5. (自测提高10)如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v

沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为___0____,作用在带电粒子上的力为____0___.

【提示】(1)根据0q 2

4r

qv e B r

μπ?= 可知,带电粒子在圆形回路处产生的磁场q B

的方向沿着回路的切线方向,与回路电流方向相同,故回路电流受力

F Id q l B =??

= 0

(2) 设I B 为圆电流I 在O 点的磁感应强度。I B 的方向与速度v

相同。故带电粒子受力I 0F qv B =?=

6. (自测提高12)磁场中某点处的磁感强度为)SI (20.040.0j i B

-=,一电子以速

B

图11-37

度j i

6

6

100.11050.0?+?=v (SI)通过该点,则作用于该电子上的磁场力F

14 810() k N -?

.(基本电荷e =1.6×10-19C)

【提示】)(1080

20.040.00100.1105.014

66N k k

j i e B v e F

-?=-??-=?-=

7.(自测提高14)如图11-53,半径为R 的空心载流无限长螺线管,单位长度有n 匝线圈,导线中电流为I 。今在螺线管中部以与轴成α角的方向发射一个质量为m ,电量为q 的粒子,则该粒子初速度必须小于或等于0nIqR

2msin μα

,才能保证不与螺线管壁相撞。

【提示】设粒子运动的半径为R ’, 为了保证不与螺线管壁相撞,要求R'2R

,其中()

0vsin v R'()m m qB q nI αμ⊥==,所以0nIqR v 2msin μα

≤.

三. 计算题

1.(自测提高18)如图所示线框,铜线横截面积S =

2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁

场B 中,B

的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,

当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD

段与竖直方向的夹角α =15°.求磁感强度B

的大小.

解:线圈的电流如图所示,才能保持平衡。此时,对转轴OO ’的合力矩为零。即三条边的重力矩和BC 边的安培力的力矩的矢量和为零。

重力矩大小: sin sin sin 22

a a

M mg

mg mga ααα=++重力, 其中m 为一条边的质量: as m ρ=

22sin 2sin M mga a sg αρα∴==重力

BC 边的安培力的力矩大小:αcos Fa M =安,其中安培力IBa F =

αcos 2IBa M =∴安

平衡时,合力矩为零,即 0mg M M -=安 得 )(103.92B 3T I

gstg -?==

α

ρ

2. (自测提高20)在一回旋加速器中的氘核,当它刚从盒中射出时,其运动半径是R=32.0cm ,加在D 盒上的交变电压的频率是γ=10MHz 。试求:(1)磁感应强度的大小;(2)氘

图11-53

核射出时的能量和速率(已知氘核质量m=3.35×10-27

kg)

解:氘核电量为19

1.610()e C -=?,

(1)12, 1.3()2eB m B T T m e

πγ

γπ=

=== (2)2772v 22 3.14321010 2.0110(/),R

R m s T

ππγ-===????=?

因为v<

6.7710()2

E mv J -==?

3. (自测提高23)半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆形线圈受到长直线电流I 1的磁场力.

解:如图建立坐标系Oxy ; 长直导线所产生的磁场分布为: 01

2πI B r

μ=

则在半圆线圈所在处各点产生的磁感强度大小为: θ

μsin 21

0R I B π=

, 方向垂直纸面向里,

式中θ 为场点至圆心的联线与y 轴的夹角。半圆线圈上电流元I 2d l 段所受的力为:

l B I B l I F d d d 22=?= θθ

μd sin 22

10R R I I π=,方向如图。

(註:方向要画出,提醒dF 要分解为分量)。

分解为

d d sin x F F θ=, d d cos y F F θ=

?

π

=0

x x dF F ππ

=

22

10I I μ2

2

10I I μ=

F y =0

d 0y F π

=?

∴半圆线圈受I 1的磁力的大小为:2

2

10I I F μ=

, 方向:垂直I 1向右。

4.(附录D :19)一根无限长直导线载有电流I 1=20 A ,一矩形回路载有电流I 2=10 A ,二者共面,如图所示.已知a =0.01 m ,b =0.08 m ,l =0.12 m 求 (1) 作用在矩形回路上的合力.

(2) I 2=0时,通过矩形面积的磁通量.

(3) 外力使矩形回路绕虚线对称轴转30°角,外力克服磁力所作功. [真空磁导率μ0=

4π×10-7 T ·m/A ]

I 2

I 1A

D

C

解:(1) 设合力为F ,则F

的大小 ()

401

1

22

4.271022I I F I l I l a

a b μμ-=-=?+ππ N

F

的方向垂直指向长直导线.

(2) I 2=0时,通过矩形线圈的磁通量为

0101s d ln 22a b a

I I l a b

B dS l r r a μμΦ++=?==ππ??? =1.05×10-6 Wb

(3) 外力作功为

212()A A I =-=Φ-Φ外力磁力

61011005.1ln

2-?=+π

=

a

b

a l

I μΦ Wb ; 如

示,

2

1

012d 2r S r I B dS l r r μΦ=?=??? π0121ln 2I l r

r μ=π

设转轴至长直导线的距离为d (如图),有

d = a +

2

1

b 由余弦定理 30cos 212

21b d b d r ?-??? ??+==2.52×10-2 m 30cos 212

22b d b d r ?+??

? ??+==8.70×10 -2 m

Φ2=5.95×10-7 Wb

212()A I =Φ-Φ外力=4.55×10-6 J

【附加题】

1.(自测提高21)如图所示,两根相互绝缘的无限直导线1和2绞接于O 点,两导线间夹角为θ,通有相同的电流I ,试求单位长度导线所受磁力对O 点的力矩。

解:如图,在导线1上距离O 点l 处取电流元l

Id

作为受力分析的对象。

导线2在该处产生的磁场为

0022 2 sin I I

B r l μμππθ

=

=

,方向垂直纸面朝外; 2202 ,

,2 sin Idl dF Idl B I dl

dF IdlB l μπθ

∴=?== 所受安培力:其大小方向如。

为图

2

2

I

2

0O ,

, 2sin dF dM l dF I dM dF l dl μπθ

=?=?=? 的力矩:其大小方向垂直面朝。

对点为纸内 所以,任一段单位长度导线所受磁力对O 点的力矩的方向也是垂直纸面朝内,其大小为:

??+π=

=1

2

0d sin 2d l l

l I M M θ

μθμsin 22

0π=I 同理,导线2单位长度导线所受磁力对O 点的力矩2

02sin I M μπθ

=,方向垂直纸面朝外。

2. (自测提高25)一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5 T 均匀外磁场B

,且与线圈平面成30°角

时,线圈的角加速度为β = 2 rad/s 2

,求∶

(1) 线圈对OO '轴的转动惯量J =?

(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?

解:(1) 32

510S ab m -==?, 20.01 ()m p I S A m ==?,

()3sin 60 4.3310m m M p B p B N m -=?=?=??

根据βJ M =,得-32.1610M

J β

=?=

kg ·m 2。

(2) 初始位置:线圈法向与B 的夹角为60?,磁通量为0

1cos 60m BS Φ=;

转到与B 垂直时:线圈法向与B

同方向,磁通量为2m BS Φ=;

功为 ()23

01()1c o s 602.510m m A I IBS

-=Φ=

?-Φ=- J.

O x

y

z I

30° B

O ′ a

b

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

11稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场 一 选择题 1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( ) A. J 1=J 2,E 1=E 2 B. J 1>J 2,E 1=E 2 C. J 1=J 2,E 1E 2 解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由???=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2 所以选(D ) 2. 如图所示的电路中,R L 为可变电阻,当R L 为何值时R L 将有最大功率消耗: ( ) A. 18Ω B. 6Ω C. 4Ω D. 12Ω 解:L L R R R +=1212ab , L L R R R R U 3122006ab ab ab +=+?=∴ε 22ab 31240000)R (R R U P L L L L +==,求0d d =L L R P ,可得当Ω=4L R 时将有最大功率消耗。 所以选(C ) 3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( ) A. l I μπ420 B. l I μπ20 C . l I μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应 强度由 )cos (cos π4210θθμ-=d I B ,可得 l I l I B BC π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 l I l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 L 选择题2图 选择题3图

输电线路电流微机保护实验报告

实验报告 姓名: 班级: 学号: 实验二 输电线路电流微机保护实验 一、实验目的 1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。 2.了解电磁式保护与微机型保护的区别。 二、基本原理 1.试验台一次系统原理图 试验台一次系统原理图如图3-1所示。 2.电流电压保护基本原理 1)三段式电流保护 当网络发生短路时,电源与故障点之间的电流会增大。根据这个特点可以构成电流保护。电流保护分无时限电流速断保护(简称I 段)、带时限速断保护(简称II 段)和过电流保护(简称III 段)。下面分别讨论它们的作用原理和整定计算方法。 (1) 无时限电流速断保护(I 段) 单侧电源线路上无时限电流速断保护的作用原理可用图3-2来说明。短路电流的大小I k 和短路点至电源间的总电阻R ∑及短路类型有关。三相短路和两相短路时,短路电流I k 与R ∑的关系可分别表示如下: l R R E R E I s s s k 0)3(+== ∑ 图3-1 电流、电压保护实验一次系统图

l R R E I s s k 0)2(* 23 += 式中, E s ——电源的等值计算相电势;R s —— 归算到保护安装处网络电压的系统等值电阻;R 0—— 线路单位长度的正序电阻;l —— 短路点至保护安装处的距离。 由上两式可以看到,短路点距电源愈远(l 愈长)短路电流L k 愈小;系统运行方式小(R s 愈大的运行方式)I k 亦小。I k 与l 的关系曲线如图3-2曲线1和2所示。曲线1为最大运行方式(R s 最小的运行方式)下的I K = f (l )曲线,曲线2为最小运行方式(Rs 最大的运行方式)下的I K = f (l )曲线。 线路AB 和BC 上均装有仅反应电流增大而瞬时动作的电流速断保护,则当线路AB 上发生故障时,希望保护KA 2能瞬时动作,而当线路BC 上故障时,希望保护KA 1能瞬时动作,它们的保护范围最好能达到本路线全长的100%。但是这种愿望是否能实现,需要作具体分析。 以保护KA 2为例,当本线路末端k 1点短路时,希望速断保护KA2能够瞬时动作切除故障,而当相邻线路BC 的始端(习惯上又称为出口处)k 2点短路时,按照选择性的要求,速断保护KA 2就不应该动作,因为该处的故障应由速断保护KA 1动作切除。但是实际上,k 1和k 2点短点时,从保护KA 2安装处所流过短路电流的数值几乎是一样的,因此,希望k 1点短路时速断保护KA2能动作,而k 2点短点时又不动作的要求就不可能同时得到满足。 图3-2 单侧电源线路上无时限电流速断保护的计算图 为了获得选择性,保护装置KA2的动作电流I op2必须大于被保护线路AB 外部(k 2点)短路时的最大短路电流I k max 。实际上k 2点与母线B 之间的阻抗非常小,因此,可以认为母线B 上短路时的最大短路电流I k B max =I k max 。根据这个条 件得到:max B 12op k rel I K I = 式中,1 rel K ——可靠系数,考虑到整定误差、短路电流计算误差和非周期分

磁场的研究实验报告

实验题目: 磁场的研究 实验目的: 1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔 定律的理解; 2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆 霍兹线圈产生的磁场B(a+b )进行比较, 3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较, 进一步证明磁场的叠加原理; 4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探头盒(与台面接触面 实验原理: (1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: 232220)(2x R N R I B +=μ (5-1) 式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心O A 到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为: R IN B 20μ= (5-2) 轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ????????????????????? ??-++??????????? ??++='--23222322202221z R R z R R NIR B μ(5-3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 0′为 .毫特斯拉计 .电流表 .直流电流源 .电流调节旋钮 .调零旋钮 .传感器插头 .固定架 .霍尔传感器 .大理石 .线圈 ABCD 为接线柱

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场2 32220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220?=R I B 电荷转动形成的电流:π ω ωπ22q q T q I = == 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. 解法: 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

KV线路过电流保护实验

TKDZB-1型电力自动化及继电保护实验装置交流及直流电源操作说明实验中开启及关闭交流或直流电源都在控制屏上操作。 一、开启三相交流电源的步骤为: 1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。控制屏左侧面上安装的自耦调压器必须 调在零位,即必须将调节手柄沿逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口U、V、W处可得到0~450V的线电压输出,并可由控制屏上方的三只交流电压表指示。当屏上的“电压指 示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示 切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。 4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。 二、开启单相交流电源的步骤为: 1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须 调至零位。 2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器”开关拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。 3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。实验完毕,将调 压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。 三、开启直流操作电源的步骤为: 1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220V、1.5A不可调的直流电 压输出。接通“可调直流电压输出”开关,可获得40~220V、3A可调节的直流电压输出。固定电 压及可调电压值可由控制屏下方中间的直流电压表指示。当将该表下方的“电压指示切换”开关拨 向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电 源电压值。

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

三段电流保护实验报告

BeijingJiaotongUniversity 电力系统继电保护实验报告三段电流保护实验 姓名: 学号: 班级:电气1103 实验指导老师:倪平浩

一、电力系统继电保护实验要求 ①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。 要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。不得有相同的或者复印的预习报告。如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。 ②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。 ③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。 ④保持实验室卫生,不得在实验室里乱丢弃垃圾。实验结束后,把实验桌周围的垃圾打扫干净。 二、电力系统继电保护常用继电器 1、电流继电器 电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。 结构图内部接线图 1.电磁铁2.线圈3.Z型舌片 4.弹簧5.动触点6.静触点 7.整定值调整把手8.刻度盘9.舌片行程限制杆 10.轴承 图13-1 DL-11型电流继电器结构图 动作原理: 如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。 电流继电器动作电流、返回电流、返回系数:

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

(完整word版)继电保护三段电流保护实验实验报告

北京交通大学Beijing Jiaotong University 继电保护三段电流保护实验实验报告 姓名: **** 学号: *******(1005班) 指导老师:倪** 课程老师:和*** 实验日期: 2013.5.29(8--10)

目录 一、实验预习 (1) 二、实验目的 (1) 三、实验电路 (1) 四、实验注意问题 (2) 五、保护动作参数的整定 (2) 六、模拟故障观察保护的动作情况 (2) 七、思考题 (3)

一、实验前预习: 三段电流保护包括: Ⅰ段:无时限电流速断保护 Ⅱ段:限时电流速断保护 Ⅲ段:定时限过电流保护 三段保护都是反应于电流增大而动作的保护,它们之间的区别主要在于按照不同的原则来整定动作电流。 三段式保护整定计算内容及顺序:1 动作电流:选取可靠系数,计算短路电流和继电器动作电流;2 动作时间的整定;3灵敏度校验。 对继电保护的评价,主要是从选择性、速动性、灵敏性和可靠性四个方面评价。 二、实验目的 1、熟悉三段电流保护的接线; 2、掌握三段电流保护的整定计算原则和保护的性能 三、实验电路 实验电路如下图: 其中继电器的接线法有: (1)三相三继电器的完全星形接线(2)两相两继电器的不完全星形接线

另外还有两种继电器的接法如下: (3)两相三继电器接线法(4)两相继电器接线法 对三相继电保护的评价: 由I段、II段或III段而组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下能满足快速切除故障的要求,因此在电网中特别是在35kV及以下的单侧电源辐射形电网中得到广泛的应用。其缺点是受电网的接线及电力系统运行方式变化的影响,使其灵敏性和保护范围不能满足要求。 四、实验注意问题 1、交流电流回路用允许大于5A的导线; 2、接好线后请老师检查。 五、保护动作参数的整定 1、要求整定参数如下: 保护I段动作电流为4.8A,动作时间为0秒; 保护III段动作电流为1.4A,动作时间为2秒。 2、按上述要求进行电流继电器和时间继电器的整定。 时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。 电流继电器的整定:按图接线。先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。将实际整定结果填入表13-1。 表 六、模拟故障观察保护的动作情况 1、电流I段 通入5A电流(模拟I段区内故障):先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作。

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

《电力系统继电保护》实验报告

网络高等教育《电力系统继电保护》实验报告 学习中心: 层次: 专业:电气工程及其自动化 年级:年秋季 学号: 学生姓名:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 过流继电器实验接线图 2.低压继电器实验接线图 低压继电器实验接线图

三、预习题 1.过流继电器线圈采用_串联_接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用__并联 _接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 答:1.使继电器返回的最小电压称为返回电压;使继电器动作的最大电压称为动作电压;返回电压与动作电压之比称为返回系数。 2.使继电器动作的最小电流称为动作电流;使继电器返回的最大电流称为返回电流;返回电流与动作电流之比称为返回系数。 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备

六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 答:由于摩擦力矩和剩余力矩的存在,使得返回量小于动作量。根据返回力矩的定义,返回系数恒小于1. 2.返回系数在设计继电保护装置中有何重要用途? 答:返回系数是确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系数不被切除。 3. 实验的体会和建议 电流保护的动作电流是按躲开最大负荷电流整定的,一般能保护相邻线路。在下一条相邻线路或其他线路短路时,电流继电器将启动,但当外部故障切除后,母线上的电动机自启动,有比较大的启动电流,此时要求电流继电器必须可靠返回,否则会出现误跳闸。所以过电流保护在整定计算时必须考虑返回系数和自起动系数,以保证在上述情况下,保护能在大的启动电流情况下可靠返回。电流速断的保护的动作电流是按躲开线路末端最大短路电流整定的,一般只能保护线路首端。在下一条相邻线路短路时,电流继电器不启动,当外部故障切除后,不存在大的启动电流情况下可靠返回问题

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

三段电流保护实验报告

Beijing Jiaotong University 电力系统继电保护实验报告 三段电流保护实验 姓名: 学号: 班级:电气1103 实验指导老师:倪平浩

一、电力系统继电保护实验要求 ①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。 要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。不得有相同的或者复印的预习报告。如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。 ②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。 ③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。 ④保持实验室卫生,不得在实验室里乱丢弃垃圾。实验结束后,把实验桌周围的垃圾打扫干净。 二、电力系统继电保护常用继电器 1、电流继电器 电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。 结构图内部接线图 1.电磁铁2.线圈3.Z型舌片 4.弹簧5.动触点6.静触点 8.刻度盘9.舌片行程限制杆 7.整定值调整把 手 10.轴承 图13-1 DL-11型电流继电器结构图 动作原理: 如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。

第十一章稳恒电流的磁场一作业答案

第十一章 稳恒电流的磁场(一) 一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220? =R I B 电荷转动形成的电流:π ω ωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 () 8 2,,22135cos 45cos 2 44, 2212 000201 02121ππμπμμ=== -?? ? == a a B B a I a I B a I B o o o o 得 由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法: b b a a I r dr a I r r dI dB dr a I dI a b b +===== =???+ln 222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

第11章稳恒电流与真空中的恒定磁场习题解答和分析学习资料

第11章稳恒电流与真空中的恒定磁场习题解答和分析

第十一章 电流与磁场 11-1 电源中的非静电力与静电力有什么不同? 答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。 电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q 非 F E =。当 然电源种类不同,非F 的起因也不同。 11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。 正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。 11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度d s I =??j s ,电流密度概念,电场强度概念, 欧姆定律的微分形式j E σ=。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E

相同。由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。电流强度d s I =??j s ,铜线和银层的j 不同但相差不太大,而它们的横 截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。 11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场? 答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。 11-5 三个粒子,当它们通过磁场时沿着如题图11-5所示的路径运动,对每个粒子可作出什么判断? 答:根据带电粒子在磁场中所受的洛伦兹力规律,通过观察运动轨迹的不同可以判断三种粒子是否带电和带电种类。 11-6 一长直载流导线如题11-6图所示,沿Oy 轴正向放置,在原点O 处取一电流元d I l ,求该电流元在(a ,0,0),(0,a ,0),(a ,a ,0),(a , a ,a )各点处的磁感应强度Β。 分析:根据毕奥-萨伐尔定律求解。 解:由毕奥-萨伐尔定律 03 d d .4πI r μ?=l r Β 原点O 处的电流元d I l 在(a ,0,0)点产生的Β为:000332 ()444I Idl Idlj ai dB adlk k a a a μμμπππ?==-=- d I l 在(0,a ,0)点产生的Β为:

相关文档
最新文档