万有引力定律知识点含复习资料

万有引力定律知识点含复习资料
万有引力定律知识点含复习资料

万有引力定律

一、开普勒行星运动定律

开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了

行星运动的规律。

K值只取决于中心天体的质

通常椭圆轨道近似处理为圆

轨道

也适于用卫星绕行星的运动

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小及物体

的质量m1和m2的乘积成正比、及它们之间距离r的二次方成反比.

2.表达式:,G为引力常量:G=6.67×10-11N·m2/kg2.

3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为

质点.

(2)质量分布均匀的球体可视为质点,r是两球心间的距离.

三、环绕速度

1.第一宇宙速度又叫环绕速度.

得:=7.9 km/s.

第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.

第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度.

第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度.

特别提醒:

(1)两种周期——自转周期和公转周期的不同

(2)两种速度——环绕速度及发射速度的不同,最大环绕速度等于最小发射速度

(3)两个半径——天体半径R和卫星轨道半径r的不同

四、近地卫星、赤道上物体及同步卫星的运行问题

1.近地卫星、同步卫星、赤道上的物体的比较

ω3=ω自

GM

R+h3

a3=ω23(R+h)

GM

R+h2

五、天体的追及相遇问题

两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远(如图乙所示)。

图甲图乙

当它们转过的角度之差Δθ=2π,即满足ωaΔt-ωbΔt=2π时,两卫星再次相距最近。

经过一定的时间,两星又会相距最远和最近。

1. 两星相距最远的条件:ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,…)

2. 两星相距最近的条件:ωaΔt-ωbΔt=2nπ(n=1,2,3…)

3. 常用结论:

(1n=0、1、2、……)时表明两物体相距最近。

(2n=0、1、2、……)时表明两物体相遇或相距最近。

考点一天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即(g表示天体表面的重力加速度).在行星表面重力加速度:,所以

在离地面高为h的轨道处重力加速度:,得

2.天体质量和密度的计算

(1)利用天体表面的重力加速度g和天体半径R.

由于,故天体质量

天体密度:

(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.

①由万有引力等于向心力,即,得出中心天体质量;

②若已知天体半径R,则天体的平均密度

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,则天体密度.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心天体的密度.

3.黄金代换公式:GM=gR2

例1.(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )

A.v1>v2>v3B.v1<v3<v2

C.a1>a2>a3D.a1<a3<a2

【答案】BD

例2.(多选)“嫦娥二号”探月卫星于2010年10月1日成功发射,目前正在月球上方100km 的圆形轨道上运行。已知“嫦娥二号”卫星的运行周期、月球半径、月球表面重力加速度、万有引力恒量G。根据以上信息可求出:()

A.卫星所在处的加速度 B.月球的平均密度

C .卫星线速度大小

D .卫星所需向心力 【答案】ABC

例3.(多选)2014年11月1日早上6时42分,被誉为“嫦娥5号”的“探路尖兵”载人飞行试验返回器在内蒙古四子王旗预定区域顺利着陆,标志着我国已全面突破和掌握航天器以接近第二宇宙速度的高速载人返回关键技术,为“嫦娥5号”任务顺利实施和探月工程持续推进奠定了坚实基础.已知人造航天器在月球表面上空绕月球做匀速圆周运动,经过时间t(t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器及月球的中心连线扫过角度为θ,引力常量为G ,则 : ( ) A .航天器的轨道半径为

s

θ B .航天器的环绕周期为

θ

πt

2

C .月球的质量为

D .月球的密度为 【答案】BC

例4.(多选)若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L .已知月球半径为R ,万有引力常量为G .则下列说法正确的是: ( ) A .月球表面的重力加速度 B .月球的质量 C .月球的第一宇宙速度 D .月球的平均密度 【答案】ABC 【解析】

平抛运动的时间.再根据h=

12

gt 2

得,得,故A 正确;由及,可得:.故B 正确;第一宇宙速度:,解得故C 正确;月球的平均密度,故D 错误;故选ABC.

【名师点睛】解决本题的关键知道平抛运动在水平方向上和竖直方向上的运动规律,以及掌握万有引力提供向心力以及万有引力等于重力这两个理论的运用。 考点二 卫星运行参量的比较及运算 1.卫星的动力学规律

由万有引力提供向心力,ma r mv r T m r m r

Mm G ====222

2)2(πω 2.卫星的各物理量随轨道半径变化的规律

??

????

????????

??????===

=

减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM

v ωπ

ω2

3

32 例5.据报道,2016年2月18日嫦娥三号着陆器玉兔号成功自主“醒来”,嫦娥一号卫星系统总指挥兼总设计师叶培建院士介绍说,自2013年12月14日月面软着陆以来,中国嫦娥三号月球探测器创造了全世界在月工作最长记录。假如月球车在月球表面以初速度0v 竖直上抛出一个小球,经时间t 后小球回到出发点,已知月球的半径为R ,引力常量为G ,下列说法正确的是: ( )

A 、月球表面的重力加速度为0

v t

B 、月球的质量为

C 、探测器在月球表面获得的速度就可能离开月球表面围绕月球做圆周运动

D 、探测器在月球表面附近绕月球做匀速圆周运动的绕行周期为0

Rt v 【答案】C

【名师点睛】根据竖直上抛求得月球表面的重力加速度,再根据重力及万有引力相等和万有引力提供卫星圆周运动向心力分析求解是关键.

例6.某卫星发射中心在发射卫星时,首先将该卫星发射到低空轨道1,待测试正常后通过点火加速使其进入高空轨道2,已知卫星在上述两轨道运行时均做匀速圆周运动,假设卫星的质量不变,在两轨道上稳定运行时的动能之比为1:4:21=k k E E 。如果卫星在两轨道的向心加速度分别用1a 、2a 表示,角速度分别用1ω、2ω表示,周期分别用1T 、2T 表示,轨道半径分别用、

2r 表示。则下列比例式正确的是: ( )

A .1a :2a =4∶1 B.1ω:2ω=2∶1 C .1T :2T =1∶8 D.:2r =1∶2 【答案】C

【解析】在两轨道上稳定运行时的动能之比为1:4:21=k k E E ,则根据可得12:2:1v v =,根据公式可得,所以轨道1和轨道2的半径之比为12:1:4r r =,根据公式可得,故1a :2a =16∶1,根据公式可得可得1ω:2ω=8∶1,根据公式可得1T :2T =1∶8,故C 正确; 【名师点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式

222

224Mm v r G m m r m ma r r T

πω====在做题的时候,首先明确过程中的向心力,然后弄清楚

各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算

例7.(多选)假设若干年后,由于地球的变化,地球半径变小,但地球质量不变,地球的自转周期不变,则相对于现在: ( ) A .地球表面的重力加速度变大

B .发射一颗卫星需要的最小发射速度变大

C .地球同步卫星距离地球表面的高度变大

D .地球同步卫星绕地球做圆周运动的线速度变大 【答案】ABC

【名师点睛】地球表面物体的重力在不考虑地球自转的影响时,就等于地球对物体的万有引力,由此可得,可知不同高度出的g 值关系;同步卫星的特点是在赤道所在平面,周期及地球自转周期相同,应用的模型是同步卫星绕地球做匀速圆周运动。 考点三 宇宙速度 卫星变轨问题的分析

1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.

2.第一宇宙速度的两种求法:

(1),所以

(2)

3.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:

(1)当卫星的速度突然增加时,,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由可知其运行速度比原轨道时增大.

4.处理卫星变轨问题的思路和方法

(1)要增大卫星的轨道半径,必须加速;

(2)当轨道半径增大时,卫星的机械能随之增大.

5.卫星变轨问题的判断:

(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.

(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.

(3)圆轨道及椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.

6.特别提醒:“三个不同”

(1)两种周期——自转周期和公转周期的不同

(2)两种速度——环绕速度及发射速度的不同,最大环绕速度等于最小发射速度

(3)两个半径——天体半径R和卫星轨道半径r的不同

例8.(多选)“嫦娥一号”探月卫星沿地月转移轨道到达月球附近,在距月球表面200km的p 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道Ⅰ绕月飞行,如图所示。之后,卫星在p点经过几次“刹车制动”,最终在距月球表面200km的圆形轨道Ⅲ上绕月球做匀速圆周运动。用T1、T2、T3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运动的周期,用a1、a2、a3

分别表示卫星沿三个轨道运动到p点的加速度,用v1、v2、v3分别表示卫星沿三个轨道运动到p 点的速度,用F1、F2、F3分别表示卫星沿三个轨道运动到p点时受到的万有引力,则下面关系式中正确的是:()

A. a1=a2=a3

B. v1<v2<v3

C. T1>T2>T3

D. F1=F2=F3

【答案】ACD

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力定律的应用 1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h=12 gt 2 , 解得该星球表面的重力加速度为:g=2h/t 2; (3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2 Mm G R 所以该星球的质量为:M=2 gR G = 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v , 由牛顿第二定律得: 2 2Mm v G m R R = 重力等于万有引力,即mg=2Mm G R , 解得该星球的第一宇宙速度为:v = = 2.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期. (2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?

曲线运动+万有引力定律知识点总结

曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 (3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。2.物体做曲线运动的条件 (1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3.匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 平抛运动基本规律 1.速度:0 x y v v v gt = ? ?= ? 合速度:2 2 y x v v v+ =方向: o x y v gt v v = = θ tan 2.位移 2 1 2 x v t y gt = ? ? ? = ?? 合位移:22 x x y =+ 合 方向: o v gt x y 2 1 tan= = α 3.时间由:2 2 1 gt y=得 g y t 2 =(由下落的高度y决定)

万有引力定律练习题

万有引力定律练习题 一.选择题(共8小题) 1.(2018?榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有() A.在轨道Ⅱ上经过A的速度小于经过B的速度 B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度2.(2018?江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为() A.4.2 B.3.3 C.2.4 D.1.6 3.(2018?海南)土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知() A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 4.(2018?高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示。从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得()

A.水星和金星绕太阳运动的周期之比 B.水星和金星的密度之比 C.水星和金星表面的重力加速度之比 D.水星和金星绕太阳运动的向心力大小之比 5.(2018?瓦房店市一模)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是() A.B.C.D. 6.(2018春?南岗区校级期中)如图,有关地球人造卫星轨道的正确说法有() A.a、b、c 均可能是卫星轨道B.卫星轨道只可能是a C.a、b 均可能是卫星轨道D.b 可能是同步卫星的轨道7.(2018春?武邑县校级月考)如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。则()

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

难题分析-万有引力定律

难题分析-万有引力定律 我国史记《宋会要》记载:我国古代天文学家在公元1054年就观察到超新星爆炸。这一爆炸后的超新星在公元1731年被英国一天文爱好者用望远镜观测到,是一团云雾状的东西,外形象一个螃蟹,人们称为“蟹状星云”。它是超大行星爆炸后向四周抛出的物体形成的。在1920年它对地球上的观察者张开的角度为360″。由此推断:“蟹状星云”对地球 上的观察者所张开角度每年约增大0.24″,合2.0×10-6 rad,它到地球距离约为5000光年。请你估算出此超新星爆炸发生于在公元前 年,爆炸抛射物的速度大约为 m/s 。 3946 ±10年 ,1.5×106 海洋占地球面积的7100,它接受来自太阳的辐射能比陆地要大得多。根据联合国教科文组织提供的材料,全世界海洋能的可再生量,从理论上说近800亿千瓦。其中海洋潮汐能含量巨大.海洋潮汐是由于月球和太阳引力的作用而引起的海水周期性涨落现象。 理论证明:月球对海水的引潮力成正比,与月潮月m F 与月地3r 成反比,即 地月 月潮月3r m K F = 。同理可证地日 日潮日3r m K F = 。 潮汐能的大小随潮汐差而变,潮汐差越大则潮汐能越大。加拿大的芬迪湾,法国的塞纳河口,我国的钱塘江,印度和孟加拉国的恒河口等等,都是世界上潮汐差大的地区。1980年我国建成的浙江温岭江厦潮汐电子工业站,其装机容量为3000kW ,规模居世界第二,仅 次于法国的浪斯潮汐电站。已知地球的半径为6.4×106 m.月球绕地球可近似看着圆周运动。通过估算再根据有关数据解释为什么月球对潮汐现象起主要作用? ()1050.1,1099.1,1035.783022km r kg m kg m ?=?=?=日地日月 答案: 由以下两式:地月 月潮月3r m K F = 地日 日潮日3r m K F = 不难发现月球与地球的距离月地r 未知,可以把月球绕地球的运转近似的看着圆周运动,月球的公转周期约29d. ┄┄┄①1/ 则有月地月 月地r T m r m m G 2 22 4π=┄┄┄┄②1/ 和2 地地R mm G mg =┄┄┄┄┄③1/ 得3 122 ??? ? ? ?=T gR r 地月带 ┄④1/ 代入数据得m r 81084.3?=地月┄┄┄┄┄┄┄┄┄⑤1/ 再根据所给的理论模型有: 18.23 ≈??? ? ???=月地日地日月潮日 月潮r r m m F F ┄┄┄┄⑥1/ 即月球的引力是太阳潮力的2.18倍,因此月球对潮汐起主要作用.┄┄⑦1 / 来源: 题型:计算题,难度:综合

2017年高考物理-万有引力定律(讲)-专题练习及答案解析

2017年高考物理专题练习 万有引力定律(讲) 1.(多选)【2016·海南卷】通过观测冥王星的卫星,可以推算出冥王星的质量。假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。这两个物理量可以是( ) A .卫星的速度和角速度 B .卫星的质量和轨道半径 C .卫星的质量和角速度 D .卫星的运行周期和轨道半径 2.【2015·海南·6】若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一 物体,它们在水平方向运动的距离之比为27倍,地球的半径为R ,由此可知,该行星的半径为( ) A . 1 R 2 B . 7R 2 C .2R D 3.设地球自转周期为T ,质量为M 。引力常量为G 。假设地球可视为质量均匀分布的球体,半径为R 。同一物体在南极和赤道水平面上静止时所受到的支持力之比为( ) A .2 223GMT GMT 4πR - B .2 223GMT GMT 4πR + C .223 2 GMT 4πR GMT - D .223 2 GMT 4πR GMT + 4.据报道,2016年2月18日嫦娥三号着陆器玉兔号成功自主“醒来”,嫦娥一号卫星系统总指挥兼总设计师叶培建院士介绍说,自2013年12月14日月面软着陆以来,中国嫦娥三号月球探测器创造了全世界在月工作最长记录。假如月球车在月球表面以初速度0v 竖直上抛出一个小球,经时间t 后小球回到出发点,已知月球的半径为R ,引力常量为G ,下列说法正确的是( ) A .月球表面的重力加速度为0 v t B .月球的质量为2 0v R Gt C D 5.(多选)如图所示,ABCD 为菱形的四个顶点,O 为其中心,AC 两点各固定有一个质量为M 的球体,球心分别与AC 两点重合,将一个质量为m 的小球从B 点由静止释放,只考虑M 对m 的引力作用,以下说法正确的有( )

万有引力定律难点分析

物理教师Vol.22No.2第22卷第2期 PHYSICSTEACHER(2001) 万有引力定律难点分析马志明 (江苏省南通市启秀中学,南通226001) 1重力、万有引力、向心力的联系与区别1.1 假设地球是一个质量均匀分布的球体,其质量为M,半径为R,地球表面上的物体质量为m,所处纬度为,如图1所示.根据万有引力定律可知F引=G(Mm/R),方向如图1所示?由于m物体随地球一起以角 2 G(Mm/⑵.当m静止不动时,此时万有引力作用就体现成重力形式,物体将会向地面加速运动(即自由落体运动).由于m不随地球一起自转,F引与G是同一个力.当m 在离地心r处恰好作匀速圆周运动,此时,F引全部用来充当向心力,有F引=F向.由上述分析可见,在地球上方的物体,重力G,匀速圆周运动向心力,万有引力实际上是同一个力,即万有引力.因此,在处理天体运动(如地球卫星问题)时,这三个力就本质来讲是同一种力. 地球表面上物体的三力关系 2001 年

离心现象的分析 当一质量为m,离地心距离为r的物体以某一速度v在运动时,如图2. 若F引G(Mm/R2),即v>GM/R时,物体将远离地球.直到mv2/r=G(Mm/r2)时(r 为物体离地心距离)物体将以v= GM/r绕行速度作圆周运动 (说明:严格来讲物体绕地球作椭圆运动,地心是椭圆的一个焦点,在高中阶段我们设想物体到达离地心r时,有一装置使物体速度方向变为与地平线平行,从而物体能绕地球作圆周运动)由此可知,当v> GM/R [例2]某人造卫星距地高h,地球半径为R,质量为M,地面重力加速度为g,万有 引力恒量为G,(1)试用h、R、M、G表示卫星的周期T;(2)试用h、R、g表示线速度v.解:F向=ma向, 第⑴问中,F向用GMm/(R+h)2表示, a 向=(2 /T)2(R+h),则

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

高中物理万有引力定律的应用专项训练及答案

高中物理万有引力定律的应用专项训练及答案 一、高中物理精讲专题测试万有引力定律的应用 1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R = 解得a v = b 卫星b 卫星2 2(4)4Mm v G m R R = 解得v b = 所以 2a b V V =

(3)最远的条件22a b T T πππ-= 解得87R t g π= 2.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量. (2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大? 【答案】(1)2324r M GT π=(2)22 400r g T π= 【解析】 (1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则 有:2224Mm G m r r T π=,可得23 2 4r M GT π= (2)由 21()10 Mm G mg r =,则得:222400100GM r g r T π== 3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数 3 μ= ,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11 226.6710 /kg G N m -=??.试求: (1)该星球的质量大约是多少? (2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字) 【答案】(1)24 2.410M kg =? (2)6.0km/s 【解析】 【详解】 (1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-

万有引力知识点总结

知识点一 万有引力应用 两条线索 (1)万有引力=向心力 (2)重力=向心力 G 2R Mm = mg ?GM=gR 2 (黄金代换式) 1、(中心天体质量密度)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,则这颗行星的质量为 A . GN mv 2 B. GN mv 4 C . Gm Nv 2 D. Gm Nv 4 【解析】行星对卫星的万有引力提供其做匀速圆周运动的向心力,有R v m R 22m GM '= '① 行星对处于其表面物体的万有引力等于物体重力有, mg R =2 GMm ② 根据题意有N=mg ③,解以上三式可得GN mv 4 M =,选项B 正确。 2、(多天体比较)假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A .R d - 1 B .R d +1 C .2)(R d R - D .2)( d R R - 【答案】A 【解析】在地面上质量为m 的物体根据万有引力定律有:mg R Mm G =2 ,从而得R G R R G g πρπρ34342 3 ??=??=。根据题意,球壳对其内部物体的引力为零,则矿井底部的物体m ′只受到其以下球体对它的万有引力同理有 )(34) (2 d R G d R M G g -=-'='πρ,式中3 )(34d R M -='πρ。两式相除化简R d R d R g g -=-='1。答案A 。 3、(多天体比较)火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。假设火星探测器在火星表面附近圆形轨道运行周期为T ,神州飞船在地球表面附近圆形轨道运行周期为2T ,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则T 、2T 之比为 2222222 24[8]2[9]4[10][11][12]Mm v G m m r m r r r T v mgr m m r m r r T πωπω======g g

万有引力定律及其应用完美版

万有引力定律及其应用 教学目标: 1.掌握万有引力定律的内容并能够应用万有引力定律解决天体、卫星的运动问题 2.掌握宇宙速度的概念 3.掌握用万有引力定律和牛顿运动定律解决卫星运动问题的基本方法和基本技能 教学重点:万有引力定律的应用 教学难点:宇宙速度、人造卫星的运动 教学方法:讲练结合,计算机辅助教学 教学过程: 一、万有引力定律:(1687年) 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ??=- 二、万有引力定律的应用 1.解题的相关知识: (1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r T m 22 4πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G 2R mM =mg 从而得出GM =R 2g 。 (2)圆周运动的有关公式:ω=T π2,v=ωr 。 讨论:1)由222r v m r Mm G =可得:r GM v = r 越大,v 越小。 2)由r m r Mm G 22ω=可得:3r GM =ω r 越大,ω越小。 3)由r T m r Mm G 222??? ??=π可得:GM r T 32π= r 越大,T 越大。

4)由向ma r Mm G =2可得:2 r GM a =向 r 越大,a 向越小。 点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。人造卫星及天体的运动都近似为匀速圆周运动。 2.常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222?? ? ??=π 得2324GT r M π= 又ρπ?=33 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T =30 1s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?1011-m 3/kg.s 2 ) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。 设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ33 4R M = 由以上各式得23GT π ρ= ,代入数据解得:314/1027.1m kg ?=ρ。 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。 (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴= 轨道重力加速度:()()22h R GM g mg h R GMm h h +=∴=+

(推荐下载)万有引力定律练习题

(完整word版)万有引力定律练习题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)万有引力定律练习题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)万有引力定律练习题的全部内容。

万有引力定律练习题 一.选择题(共8小题) 1.(2018?榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有() A.在轨道Ⅱ上经过A的速度小于经过B的速度 B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度 2.(2018?江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为() A.4。2 B.3.3 C.2.4 D.1.6 3.(2018?海南)土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知() A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 4.(2018?高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示.从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可

万有引力知识点总结

万有引力定律 1. 考纲要求 一 万有引力定律: 1. 开普勒行星运动定律 (1) 所有的行星围绕太阳运动的轨道是_____,太阳处在____上,这就是开普勒第一定律,又称椭圆轨道定律。 (2)对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的____.这就是开普勒第二定律,又称面积定律。 (3)所有行星轨道的半长轴的三次方跟公转周期的二次方的比值____。这就是开普勒第三定律,又称周期定律。 若用R 表示椭圆轨道的半长轴,T 表示公转周期,则k T R =2 2(k 是一个与行星无关的 量)。 2. 万有引力定律 (1) 内容:自然界中任何两个物体都相互吸引,引力的大小与物理质量的乘积成____, 与它们之间距离的平方成_______. (2) 公式:_______________________________________, G 为万有引力常量。 G = _______________________ N.2 2 /kg m . (3) 适用条件:公式适用于质点间万有引力大小的计算,当两个物体间的距离_______ 物体本身的大小时,物体可视为质点。另外,公式也适用于均匀球体间万有引力大小的计算,只不过r 应是________的距离。 (4) 两个物体之间的引力是一对作用力与反作用力,总是大小_______、方向______。 3. 应用万有引力分析天体的运动 (1) 基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由______ 提供。公式为: a )2( 2 2 2 2 m r T m r m r v m r Mm G ====πω 考纲内容 能力要求 考向定位 1.万有引力定律及其应用 2.环绕速度 3.第二宇宙速度和第三宇宙速度 1.掌握万有引力定律的内容,并 能够用万有引力定律求解相关问题。 2.理解第一宇宙速的意义。 3.了解第二宇宙速度和第三宇宙速度 万有引力定律是广东高考的必考内容,也是全国高考命题的一个热点内容。考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。 要理解环绕速度实际上是卫星在天体表面做匀速圆周运动时的线速度。 由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。

2018高考物理万有引力定律专题提升练习(带答案)

2018高考物理万有引力定律专题提升练习(带 答案) 1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为( ) A.0 B.1 C.2???????????????????????????????????????????????? ?? ? D.4 解析:选B.飞船受的万有引力等于在该处所受的重力,即G=mg,得g=,选项B正确. 2.(2015·高考山东卷)如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作 用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕

地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( ) A.a2>a3>a1 B.a2>a1>a3 C.a3>a1>a2 D.a3>a2>a1 解析:选D.空间站和月球绕地球运动的周期相同,由a=2r 知,a2>a1;对地球同步卫星和月球,由万有引力定律和牛顿第二定律得G=ma,可知a3>a2,故选项D正确. 3.“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km的圆形轨道上运行,运行周期为127分钟.已知引力常量G=6.67×10-11 N·m2/kg2,月球半径约为1.74×103 km.利用以上数据估算月球的质量约为( ) A.8.1×1010 kg B.7.4×1013 kg C.5.4×1019 kg D.7.4×1022 kg 解析:选D.设探月卫星的质量为m,月球的质量为M,根据

万有引力定律及其应用

万有引力定律及其应用 知识网络: 常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222?? ? ??=π 得2324GT r M π= 又ρπ?=33 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T =30 1s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?1011-m 3/kg.s 2) 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。 (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴=Θ 轨道重力加速度:()()2 2h R GM g mg h R GMm h h +=∴=+Θ 【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。设卫星表面的重力加速度为g ,则在卫星表

面有mg r GMm =2 …… 经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。 (3)人造卫星、宇宙速度: 人造卫星分类(略):其中重点了解同步卫星 宇宙速度:(弄清第一宇宙速度与发卫星发射速度的区别) 【例3】我国自行研制的“风云一号”、“风云二号”气象卫星运行的轨道是不同的。“一号”是极地圆形轨道卫星。其轨道平面与赤道平面垂直,周期是12h ;“二号”是地球同步卫星。两颗卫星相比 号离地面较高; 号观察范围较大; 号运行速度较大。若某天上午8点“风云一号”正好通过某城市的上空,那么下一次它通过该城市上空的时刻将是 。 【例4】可发射一颗人造卫星,使其圆轨道满足下列条件( ) A 、与地球表面上某一纬度线(非赤道)是共面的同心圆 B 、与地球表面上某一经度线是共面的同心圆 C 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的 D 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的 【例5】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。 【例6】在地球(看作质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是( ) A .它们的质量可能不同 B .它们的速度可能不同 C .它们的向心加速度可能不同 D .它们离地心的距离可能不同 点评:需要特别提出的是:地球同步卫星的有关知识必须引起高度重视,因为在高考试题中多次出现。所谓地球同步卫星,是相对地面静止的且和地球有相同周期、角速度的卫星。其运行轨道与赤道平面重合。 【例7】地球同步卫星到地心的距离r 可由2223 4πc b a r =求出,已知式中a 的单位是m ,b

万有引力定律知识点(含答案)

万有引力定律 一、开普勒行星运动定律 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的 基础上概括出的,给出了行星运动的规律。 K值只取决于中心 天体的质量 通常椭圆轨道近似 处理为圆轨道 也适于用卫星绕行 星的运动 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连 线上,引力的大小及物体的质量m1和m2的乘积成正比、及它们之间距离 r的二次方成反比.

2.表达式:,G为引力常量:G=6.67×10-11N·m2/kg2. 3.适用条件 (1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离. 三、环绕速度 1.第一宇宙速度又叫环绕速度. 得:=7.9 km/s. 第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度. 第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度. 特别提醒: (1) 两种周期——自转周期和公转周期的不同 (2)两种速度——环绕速度及发射速度的不同,最大环绕速度等于最小发射速度 (3)两个半径——天体半径R和卫星轨道半径r的不同 四、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较

ω3=ω自 = GM R+h3 a3=ω23(R+h) = GM R+h2 五、天体的追及相遇问题 两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远(如图乙所示)。 图甲图乙 当它们转过的角度之差Δθ=2π,即满足ωaΔt-ωbΔt=2π时,两卫星再次相距最近。 经过一定的时间,两星又会相距最远和最近。 1. 两星相距最远的条件:ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,…) 2. 两星相距最近的条件:ωaΔt-ωbΔt=2nπ(n=1,2,3…)

高中物理万有引力定律的应用技巧(很有用)及练习题

高中物理万有引力定律的应用技巧(很有用)及练习题 一、高中物理精讲专题测试万有引力定律的应用 1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G . (1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1; (3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由. 【答案】(1)2π=T ω;(2)2 3124GMT h R π (3)h 1= h 2 【解析】 【分析】 (1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】 (1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2 1 212π=()()()Mm G m R h R h T ++ 解得:2 312 =4π GMT h R

(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2 2 222=()()()Mm G m R h R h T π++ 解得:2 322 4GMT h R π 因此h 1= h 2. 故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π (3)h 1= h 2 【点睛】 对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量. 2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 0 32πv RGt ρ= (3)02v R v t = 【解析】 (1) 根据竖直上抛运动规律可知,小球上抛运动时间0 2v t g = 可得星球表面重力加速度:0 2v g t = . (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2 GMm mg R = 得:2 202v R gR M G Gt == 因为3 43 R V π=

相关文档
最新文档