第八章应力状态强度理论

第八章应力状态强度理论
第八章应力状态强度理论

第八章 应力状态 强度理论

1 基本概念及知识要点

1.1 基本概念

点的应力状态、 应力圆、 主平面、 主应力、 主方向、 最大剪应力。

以上概念是进行应力应变分析以及强度计算的基础,应准确掌握和理解这些基本概念。

1.2 二向应力状态的解析法与图解法

实际工程中的许多问题,可以简化成二向应力状态问题,建议熟练掌握二向应力状态解析法和图解法。在学习该知识点时,应注意以下几点:

(1) 单元体平衡,则单元体中任取出的一部分在所有力的作用下也平衡; (2) 过一点相互垂直两平面上有

y x σσσσαα+=90++ 90+ααττ-=

主应力和最大剪应力间

2

min

max min

max σστ-±

= 01045±αα=

请注意理解以上各式所代表的物理意义。

(3) 主要公式:任意斜截面应力、主应力、主平面、最大剪应力及其作用平面,详见教材。上述公式建议熟记。

(4) 应用图解法时注意以下对应关系

应力:圆上一点,体上一面;直径两端,垂直两面。 夹角:圆上半径,体上法线;转向一致,转角两倍。

1.3 三向应力状态的最大剪应力

无论是三向应力状态,还是做为特例的二向应力状态或单向应力状态,都是用如下公式计算最大剪应力

2

3

1max σστ-=

在二向应力状态下,垂直于主应力为零的主平面的那一组平面中,剪应力的最大值,称为面内最大剪应力。可用公式 2

2

min

max

2xy y

x τσστ+???

? ?

?-±=计算。 1.4 广义胡克定律

在比例极限范围内,变形非常小。线应变只与正应力有关,与剪应力无关;剪应变只与剪应力有关,与正应力无关。换言之,正应力与剪应力、线应变与剪应变,彼此间互不影响。

1.5 常用的四种强度理论及其应用

(1)当应力状态较复杂时,材料的失效,不仅与各个主应力的大小有关,而且与它们的比值有关。

实际杆件受力多种多样,其主应力比值也各不相同,若通过实验,寻找各种主应力比值下,失效时的主应力值,建立失效准则,需要进行大量的实验。这样做,不但不经济,而且,对于某些应力状态(例如:三向等拉)进行失效实验时,在技术上也是难以实现的。

对于复杂应力状态,通常的做法是:在有限的实验结果基础上,对失效现象加以总结,寻找失效规律,从而提出关于材料失效原因的假说,一般地,无论什么材料,无论何种应力状态,只要失效形式相同,便假设具有共同的失效原因。这样就可应用一些简单实验结果,预测材料在各种不同应力状态下何时失效,建立材料在复杂应力状态下的失效准则(判据)和相应的设计准则。

(2)主要公式:常用四种强度理论所对应的强度条件,详见教材。

2重点与难点及解析方法

2.1二向应力状态分析的解析法

二向应力状态分析是建立复杂应力状态下强度理论、强度条件的基础。

解析方法:(1)任意斜截面上应力:首先根据已知条件,判断单元体上已知的两相

互垂直平面上正应力及剪应力的正负、所求任意截面的方位角,然后代入斜截面应力计算公式,计算所求截面的正应力及剪应力,并根据计算结果将其标在单元体上。

(1)主应力:首先根据已知条件,判断单元体上已知的两相互垂直平面上正应力及剪应力的正负,然后代入主应力及其方位角计算公式,计算单元体的主应力及其方位角,并根据计算结果将主应力标在单元体上。

2.2广义胡克定律

在线弹性范围内,广义胡克定律是联系力和变形的重要定律。

解析方法:在线弹性范围内,当已知力求变形或已知变形求力时,常常会用到胡克

定律,在应用胡克定律时,首先需要判断所研究的问题是单向应力状态还是复杂应力状态,并据此采用单向应力状态下的胡克定律,或复杂应力状态下的胡克定律。

2.3常用的四种强度理论及应用

进行复杂应力状态下强度分析的理论依据。

解析方法:构件受力变形后,若危险点处于复杂应力状态,需用强度理论进行强度分析和计算。脆性材料采用第一、第二强度理论,塑性材料采用第三、第四强度理论。

3典型问题解析

3.1二向应力状态分析的解析法

例题8.1:梁横截面上的内力为M 、F s ,如图8-1(a )所示,试用单元体表示截面上点1、

2、3、4的应力状态。 [解]

点1 z

x W M -

=σ 所以 x σσσσ===321 0 点2 A

F s

23=

τ τσστσ-===321 0

点3 z x I My -=σ b I S F z s *=τ 2

2

3

122τσσσ+??? ??±=x x σ2=0

点4 z

x W M

=

σ 所以 x σσσσ===123 0 点1、2、3、4的单元体及主应力主平面如图8-1(b )所示。

解题指导:

一点的应力状态可用单元体描述。在取初始单元体时,应选择能够确定其应力的截面方位,如横截面。

例题8.2:单元体如图8-2(a )所示。求指定截面上的正应力和剪应力、单元体的主应力、主平面,将主应力标在主平面上。应力单位:MPa 。

[解]

图8-1(a )

图8-1(b )

1.确定已知相互垂直截面上正应力及剪应力的符号:

σx =-20 σy =30 τ

xy =20

α=300

2. 计算300斜截面上的正应力、切应力: 代入斜截面应力计算公式

MPa 8.24 60sin 2060cos 2

30

202302030-=- --++-=

σ

由上述计算结果将σα、τα标在单元体上,如图8-1(b )。

3. 确定主应力: 主应力大小:

max

min

372030272MPa MPa σ+=--

由上述计算结果,按代数值大小确定三个主应力数值:

σ1=37 σ2=0 σ3=-27 主平面方位:

30

2020

22tan 0-?-

=-α

α

0 =19.30

α

0 +900 =109.30

将主应力、主平面标在单元体上,如图图8-1(c 解题指导:

1.在实际工程中,当受力比较复杂时,强度计算中

遇到的危险点经常是处于复杂应力状态,将涉及危险点主应力计算及主平面方位的确

图8-2(a )

302030

sin 6020cos602 11.7MPa τ+=-

--=图8-2(b )

定。所以,在此提醒读者注意,熟练掌握二向应力状态时,确定主应力及主平面方位的公式和方法。

2.主应力σ1作用平面的确定:

方法一:(1)σx 、σy 中代数值最大的应力,与σ1的夹角一定小于450

; 方法二:(2)根据单元体在剪切力作用下的变形趋势确定。

例题8.3矩形截面简支梁如图8-3(a )所示,在跨中作用有集中力F P =100kN 。若L=2m,b=200mm,h=600mm 。试求:距离左支座L/4处截面上C 点在400斜截面上的应力。

[解]

1.选取初始单元体

简支梁在外载荷作用下发生弯曲变形,可首先根据弯曲时横截面上正应力、切应力表达式,计算L/4处截面上C 点的正应力、切应力:

该截面的弯矩和剪力分别为

所以,该截面C 点的正应力、切应力分别为

m

KN L

P M C ?=?=254

2KN P

F sC 502

==

(压应力)MPa 04.1106002001210150102512

333=??????=?=--Z C C I y M σMPa 469.010

2001060020012

1022520015010503

9393*=??????????=??=---b I S F Z Z sC C τ

/

图8-3 (b )

(c )

选择横截面及与之垂直的水平面、铅垂面,得C 点初始单元体如图8-3(b )所示。 2.计算指定斜截面上的应力 对于图8-3(b )所示单元体

根据上述计算结果,将斜截面上的正应力、切应力标在单元体上,如图8-3(c )所示。

解题指导:

初始单元体一般选择横截面及与之垂直的水平面、铅垂面。

3.2广义虎克定律

例题8.4:图8-4(a )所示结构,已知E 、μ,现测得K 点与轴线成450方向上的应变为ε,试确定梁上的荷重F P 。(设工字钢型号已知)

[解]

1.分析K 点的应力状态

在外载荷作用下,梁发生弯曲变形,剪力图如图图8-4(a )所示。K 点位于截面中性轴上,由弯曲时截面上应力的分布特点可知,K 点处正应力为零,只有切应力,处于纯剪切状态。K 点横截面上切应力方向,与该截面剪力方向一致,K 点初始单元体如图8-4(b )所示,而且

MPa

07.1 )

80sin(469.0)80cos(2

04.1204.1 )

80sin()80cos(2240-=--+-=--+

+=

xy y

x y

x τσσσσσMPa

431.0 )

80cos()80sin(240-=+-=

xy y

x τσστ图8-4

(a )

(b

τ

(c )

b

I S F z s *

=τ 则K 点的三个主应力分别为σ1=τ、σ2=0、σ3=-τ,如图8-4(c )所示。 2. 确定梁上的荷重F P

由图8-4(c )所示单元体可知:K 点与轴线成450方向上的应变,是最小主应变为ε3,代入广义胡克定律

()[]()μτσσμσε+=+-=

11

3213E

E 将b

I S F z s *

=τ代入上式,即可求出载荷F P ,略。

解题指导:

在线弹性范围内,当已知变形求力或已知力求变形时,都会用到胡克定律,在应用该定律时,要注意判断危险点是单向应力状态还是复杂应力状态,并应用相应的公式。

3.3常用的四种强度理论及应用

例题8.5:工字形截面梁受力如图8-5(a )所示,已知梁的[σ]=160MPa , [τ]=100MPa 。试按第三强度理论选择工字钢型号。

[解]

图8-5(a )

1. 作F s 、M 图:梁弯曲后的F s 、M 图如图8-5(a )所示,由F s 、M 图可知:梁上B 、C 截面为危险截面,F smax =20kN 、M max =84kNm 。

2. 选择工字钢型号:由弯曲时危险截面上正应力、切应力分布规律可知,危险截面上可能的危险点分别为a 、b 、c 点,见图8-5(a )。

b 点是全梁正应力最大的地方,其切应力为零。由正应力强度条件:

[] max

max σσ≤=

z

W M 可得 3cm 525 ≥z W

查型钢表,取28b 工字钢。

a 点是全梁切应力最大的地方,其正应力为零,需校核该点的剪应力强度:

[]ττ<==*

MPa 6.78max max b

I S F z s

c 点是腹板与翼缘交界处,同时存在正应力和切应力,且正应力和切应力的数值分别接近全梁正应力最大值和全梁切应力最大值,处于二向应力状态:

M P a

142=z

c I My

σ M P a

6.57==

*

b

I s

F z S c τ c 点初始单元体如图8-5(b )所示。 用第三强度理论进行强度校核:

MPa 1601734223>=+=MPa c c r τσσ 不安全

3. 选择截面尺寸更大的工字钢进一步试算,略。

解题指导:

由例题8.5可知:利用强度理论,能够对构件进行全面的强度计算。例题8.5是强度计算中较复杂的情况,涉及了强度计算中可能遇到的三类危险点:

第一类:正应力最大点,如例题8.5中B 截面上的b 点,通常切应力为零,处于单向应力状态;

第二类:剪应力最大点,如例题8.5中B 截面上的a 点,通常正应力为零,处于纯剪切状态;

第三类:正应力、剪应力都较大的点,如例题8.5中B 截面上的c 点,处于复杂应力状态,需用强度理论进行相应的强度计算。

今后,在遇到强度计算问题时,应首先根据已知条件从以上三方面考虑,判断危险点的应力状态类型,才能使问题得到正确的求解。

4 自我测试

σ

τ 图8

-5(b )

1.在下列关于单元体的说法中,正确的:

(A)单元体的形状变必须是正六面体。

(B)单元体的各个面必须包含一对横截面。

(C)单元体的各个面中必须有一对平行面。

(D)单元体的三维尺寸必须为无穷小。

正确答案是。

2.过受力构件内的任意一点,随着所取截面的方位不同,一般来说,各个面上的:(A)正应力相同,剪应力不同。(B)正应力不同,剪应力相同。

(C)正应力和剪应力均相同。(D)正应力和剪应力均不同。

正确答案是。

3.在单元体上,可以认为:

(A)每个面上的应力是均匀分布的,一对平行面上的应力相等;

(B)每个面上的应力是均匀分布的,一对平行面上的应力不等;

(C)每个面上的应力是非均匀分布的,一对平行面上的应力相等;

(D)每个面上的应力是非均匀分布的,一对平行面上的应力不等。

正确答案是。

4.在滚珠轴承中,滚珠与外圆接触点处的应力状态,正确的说法是:

(A)纯剪切;(B)单向;(C)二向;(D)三向。

正确答案是。

5.受内压作用的封闭薄圆筒,在通过其内壁任意一点的纵、横面中

(A)纵、横两截面都不是主平面;(B)横截面是主平面,纵截面不是;

(C)纵、横两截面都是主平面;(D)纵截面是主平面,横截面不是。

正确答案是。

6.厚壁玻璃杯注入沸水,其内外壁任一点处的应力壮态:

(A)分别是单向拉伸和单向压缩;(B)分别是单向压缩和单向拉伸;

(C)均是单向拉伸;(D)均是单向压缩。

正确答案是。

7.研究一点应力状态的任务是

(A)了解不同横截面的应力变化情况;

(B)了解横截面上的应力随外力的变化情况;

(C)找出同一截面上应力变化的规律;

(D)找出一点在不同方向截面上的应力变化规律。

正确答案是。

8.微元受力如图8-5所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:(A)二向应力状态;

(B)单向应力状态;

(C )三向应力状态; (D )纯切应力状态。 正确答案是 。

9.单元体斜截面应力公式σa =(σx +σy )/2+(σx -σy )cos2а/2-τxy sin2а和 τa = (σx -σy )sin2a /2 +τxy cos2а的适用范围是:

(A )材料是线弹性的; (B )平面应力状态; (C )材料是各向同性的; (D )三向应力状态。 正确答案是 。

10.在单元体的主平面上,

(A )正应力一定最大; (B )正应力一定为零; (C )剪应力一定最小; (D )剪应力一定为零。 正确答案是 。

11.任一单元体,

(A ) 在最大正应力作用面上,剪应力为零; (B ) 在最小正应力作用面上,剪应力最大; (C ) 在最大剪应力作用面上,正应力为零; (D ) 在最小剪应力作用面上,正应力最大。 正确答案是 。

12.若单元体的主应力σ1>σ 2 >σ 3 >0,则其内最大剪应力为

(A )τmax =(σ1-σ2)/2; (B )τmax =(σ2-σ3)/2; (C )τmax =(σ1-σ3)/2; (D )τmax =σ1/2。 正确答案是 。

13.对于图8-6所示的应力状态(021>>σσ),最大切应力作用面有以下四种,试选择哪一种是正确的。

(A) 平行于2σ的面,其法线与1σ夹?45角; (B) 平行于1σ的面,其法线与2σ夹?45角; (C)垂直于1σ和2σ作用线组成平面的面,其法线与

1σ夹?45角;

(D)垂直于1σ和2σ作用线组成平面的面,其法线与2σ 夹?30角。

图8-5

图8-6

正确答案是 。

14.当三向应力圆成为一个圆时,则主应力情况一定是

(A )σ1=σ2; (B )σ2=σ3; (C )σ1=σ3; (D )σ1=σ2或σ2=σ3。 正确答案是 。

15.在某单元体上叠加一个纯剪切应力状态后,下列物理量中哪个一定不变。 (A )最大正应力 ; (B )最大剪应力 ; (C )体积改变比能 ; (D )形状改变比能 。 正确答案是 。

16.低碳钢构件的危险点的应力状态有图8-7所示四种情况,图示σ、τ各数值相同。 (A )四种情况安全性相同; (B )四种情况安全性各不相同;

(C

)a 与c 相同,b 与d 相同,但a 、c 与b 、d 不同; (D )a 与b 相同,c 与d 相同,但a 、

b 与

c 、

d 不同。 正确答案是 。

17.铸铁构件的危险点的应力状态有图8-8所示四种情况:

τ

τ

τ

图8-7

图8-8

(A )四种情况安全性相同; (B )四种情况安全性各不相同;

(C )a 与b 相同,c 与d 相同,但a 、b 与c 、d 不同; (D )a 与c 相同,b 与d 相同,但a 、c 与b 、d 不同。 正确答案是 。

18.对于图8-9所示单元体(应力单位为MPa),讨论其应力状态的分类:

(A)因该单元体不为零的主应力为a MP 50±,所以是二向应力状态; (B)因实际上该单元体的应力图只有一个,所以是单向应力状态; (C)因三个互垂的面上都有不为零的应力,所以是三向应力状态; (D)该单元体为三向应力状态,且有无数个主平面。 正确答案是 。

19.比较图8-10所示四个材料相同的单元体的体积应变(V

V

?=

θ):

(A)四个θ均相同; (B)四个θ均不同;

(C)仅(a)与(b)θ相同; (D) (c)与(d )θ肯定不同。 正确答案是 。

20.通过大量工程实践和实验,总结出材料破坏的下述结论,错误的结论是: (A )不同的材料,只要应力状态相同,破坏形式就一定相同; (B )相同的材料,在不同的应力状态下,可有不同的破坏形式; (C )不同的材料,在相同的应力状态下,可有不同的破坏形式;

σ1 =σ 2 = σ3

=30MPa

3

3

3

σ1 = 45MPa σ 2 = 35MPa σ3 =10MPa

σ1 = 90MPa σ 2 = σ3 =0

σ1 =σ 2 = 45MPa σ3 = 0

图8-9

图8-10

MPa

7.133=ασMPa

637.=ατ(D )相同的材料,应力状态又相同,破坏形式必定相同。 正确答案是 。

21. 图8-11所示具有刚性端封板的薄壁圆柱体,是由长矩形板绕成圆柱形后,焊接成

形的。螺旋线和柱壳母线间的夹角为350

。圆柱壳的平均直径为40cm ,壁厚0.5cm ,内部压力4MPa 。忽略端封板的局部效应,试求作用在圆柱曲面螺旋焊缝上的正应力和剪应力。

22. 图8-12所示受扭转的圆轴,直径d=2cm, μ=0.3,材料E=200GPa, 现用变形仪测得圆轴表面与轴线450方向上的应变ε

45

0=5.2×10-4。试求:轴上的m e 。

自我测试答案

1(D ) 2(D ) 3(A ) 4(D ) 5(C ) 6(B ) 7(D ) 8(D ) 9(B ) 10(D ) 11(A ) 12(A ) 13(C ) 14(D ) 15(C ) 16(A ) 17(C ) 18(C ) 19(A ) 20(A )

21.如图8-13

图8-12

图8-11

22.解

N.m 6.125=

m

图8-13

τ

σσ==145

τ

σσ-==-345

()[]32111

σσμσε+-=

E

))

((102001

102.59

4ττ--?=

?-t

W

m =τ

《材料力学》第7章应力状态和强度理论习题解.

第七章应力状态和强度理论习题解 [习题7-1] 试从图示各构件中A点和B点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a)] 解:A点处于单向压应力状态。 2 2 4 4 1 2 d F d F F A N Aπ π σ- = - = = [习题7-1(b)] 解:A点处于纯剪切应力状态。 3 3 16 16 1d T d T W T P Aπ π τ- = = = MPa mm mm N 618 . 79 80 14 .3 10 8 16 3 3 6 = ? ? ? ? = [习题7-1(b)] 解:A点处于纯剪切应力状态。 = ∑A M 4.0 2 8.0 2.1= ? - - ? B R ) ( 333 .1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa mm mm mm N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa mm mm mm N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa mm mm N W M z A A 064.502014.332 1103.39333=????==σ MPa mm mm N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x =σ;0=y σ;0=x τ 004590cos 90sin 2 0x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/3003002 2 ==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于 060~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切 应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 , A τ B τ B σA τA σ

应力状态及强度理论

图8-1 第 8章 应力状态及强度理论 例8-1 已知应力状态如图7-1所示,试计算截 面m-m 上的正应力m σ与切应力m τ 。 解:由图可知,x 与y 截面的应力分别为 MPa x 100-=σ MPa x 60-=τ MPa y 50=σ 而截面m-m 的方位角则为 α= -30o 将上述数据分别代入式(7-1)与(7-2), 于是得 ()()()()MPa m 5.11460sin 6060cos 250100250100-=?-?+?---++-=σ()()()MPa m 0.3560cos 6060sin 2 50100=?-?-?---=τ 例8-2 试用图解法解例8-1(图8-2a )。 (a) (b) 图8-2 解:首先,在τσ-平面内,按选定的比例尺,由坐标(-100,-60)与(50,60)分别确定A 和B 点图7-2b )。然后,以AB 为直径画圆,即得相应的应力圆。 为了确定截面m-m 上的应力,将半径CA 沿顺时针方向旋转α2=60o至CD 处,所得D 点即为截面m-m 的对应点。 按选定的比例尺,量得OE =115MPa (压应力),ED =35MPa ,由此得截面 m-m 的正应力与切应力分别为

MPa m 115-=σ MPa m 35=τ 例 8-3 从构件中切取一微体,各截面的应力如图8-3a 所示,试用解析法与图解法确定主应力的大小及方位。 (a) (b) 图8-3 解:1.解析法 x 和y 截面的应力分别为 MPa x 70-=σ,MPa x 50=τ,0=y σ 将其代入式 (7-3)与 (7-5),得 }{MPa MPa 2696502070207022max min -=+?? ? ??--±+-=σσ ?-=??? ??--=?? ? ??-- =5.6202650arctan arctan max y x o σστα 由此可见, MPa 261=σ,02=σ,MPa 963-=σ 而正应力1σ 的方位角 o α则为-62.5o(图8-3a )。 2.图解法 按选定的在τσ-平面内,按选定的比例尺,由坐标(-70,50)与(0,-50)分别确定D 和E 点(图8-3b )。然后,以DE 为直径画圆即得相应的应力圆。 应力圆与坐标轴σ相交于A 和B 点,按选定的比例尺,量得OA =26MPa ,

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

第八章 应力状态和强度理论

第八章 应力状态和强度理论 8.1 图示矩形截面简支梁中的1、2、3、4、5、6点所对应的单元体。 1: ;2: ;3: ; 4: ;5: ;6: 。 图8.1 ( C ) 8.2由A3钢制成的圆杆受力如图所示。与危险截面A 上a 、b 、c 、d 点分别对应的单元体应是a : ;b : ;c : ;d : 。 ( D ) ( C ) ( B ) ( A ) 8.3分别写出与图示平面应力状态单元体上1、2、3、4斜截面对应的方位角:1α: ;2α: ;3α: ;4α: 。 8.4在图示四个切应力中,切应力为负的是( )。 图8.4 ( D ) ( C ) ( B ) ( A ) x

8.5在图示单元体中,x σ: ;y σ: ;x τ: ;y τ: 。 8.6图示平面应力状态的单元体及其应力圆如图所示。在图(b )所示的应力圆上与ab 斜截面对应的点是 ,在图(c )所示的应力圆上与ac 斜截面对应的点是 。 ( c ) ( b ) x ( a ) 图8.6 8.7单元体及其应力圆分别如图(a )、(b )所示,试在应力圆上标出与ab 、bc 斜截面所对应的点。 ( a ) 图8.7 x 8.8平面应力状态的单元体及其应力圆如图所示。ef 斜截面上的正应力和切应力应是( )。 (A )与1D α对应,15MPa ασ=-,8.66MPa ατ= (B )与2D α对应,25MPa ασ=-,8.66MPa ατ= (C )与3D α对应,25MPa ασ=-,8.66MPa ατ=- (D )与4D α对应,15MPa ασ=-,8.66MPa ατ=- 8.9作出图示单向应力状态单元体的应力圆。利用应力圆得出图示α斜截面的应力为ασ= ,ατ= ,以及max τ= ,max τ的作用面和x x

应力状态分析与强度理论

第五章应力状态分析与强度理论 1、内容提要 1.应力状态的概念 1.1一点的应力状态 通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。 1.2一点的应力状态的表示方法——单元体 研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。 1.3主平面、主应力 单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。 过受力构件内任一点总有三对相互垂直的主平面。相应的主应力用、、来表示,它们按代数值的大小顺序排列,即。是最大主应力,是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。 1.4应力状态的分类 (1)单向应力状态,只有一个主应力不为零,另两个主应力均为零;(2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。 单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。 2.平面应力状态分析的解析法 在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。可将单元体用平面图形表示,如图5-1所示。 2.1任意斜截面上的应力 当已知、、时,应用截面法,可得 (5-1) 式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;为斜截面外法线与x平面外法线即x 轴间的夹角,角从x轴量起,反时针转向为正,反之为负。 2.2主应力 (5-2) 式中,和分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。它们是三个主应力中的两个,而另一个主应力为零。三个

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

知识点应力状态理论和强度理论

知识点9:应力状态理论和强度理论 一、应力状态理论 (一)应力状态的概念 1.一般情况下,受力构件内各点的应力是不同的,且同一点的不同方位截面上应力也不相同。过构件内某一点不同方位上总的应力情况,称为该点的应力状态。 2.研究一点的应力状态,通常是围绕该点截取一个微小的正六面体(即单元体)来考虑。单元体各面上的应力假设是均匀分布的,并且每对互相平行截面上的应力,其大小和性质完全相同,三对平面上的应力代表通过该点互相垂直的三个截面上的应力。当单元体三个互相垂直截面上的应力已知时,可通过截面法确定该点任一截面上的应力。截取单元体时,应尽可能使其三个互相垂直截面的应力为已知。 3.单元体上切应力等于零的截面称为主平面,主平面上的正应力称为主应力。过受力构件内任一点,一定可以找到一个由三个相互垂直主平面组成的单元 体,称为主单元体。它的三个主应力通常用σ 1,σ 2 和σ 3 来表示,它们按代数值 大小顺序排列,即σ 1>σ 2 >σ 3 。 4.一点的应力状态常用该点的三个主应力来表示,根据三个主应力的情况可分为三类:只有一个主应力不等于零时,称为单向应力状态;有两个主应力不等于零时,称为二向应力状态(或平面应力状态);三个主应力都不等于零时,称为三向应力状态。其中二向和三向应力状态称为复杂应力状态,单向应力状态称为简单应力状态。 5.研究一点的应力状态是对构件进行强度计算的基础。 (二)平面应力状态的分析 1.分析一点的平面应力状态有解析法和图解法两种方法,应用两种方法时都必须已知过该点任意一对相互垂直截面上的应力值,从而求得任一斜截面上的应力。

2.应力圆和单元体相互对应,应力圆上的一个点对应于单元体的一个面,应力圆上点的走向和单元体上截面转向一致。应力圆一点的坐标为单元体相应截面上的应力值;单元体两截面夹角为α,应力圆上两对应点中心角为2α;应力圆与σ轴两个交点的坐标为单元体的两个主应力值;应力圆的半径为单元体的最大切应力值。 3.在平面应力状态中,过一点的所有截面中,必有一对主平面,也必有一对与主平面夹角为45?的最大(最小)切应力截面。 4.在平面应力状态中,任意两个相互垂直截面上的正应力之和等于常数。 图9-1(a )所示单元体为平面应力状态的一般情况。单元体上,与x 轴垂直的平面称为x 平面,其上有正应力σx 和切应力τxy ;与y 轴垂直的平面称为y 平面,其上有正应力σy 和切应力τyx ;与z 轴垂直的z 平面上应力等于零,该平面是主平面,其上主应力为零。平面应力状态也可用图9-1(b )所示单元体的平面图来表示。设正应力以拉应力为正,切应力以截面外法线顺时针转90?所得的方向为正,反之为负。 (a ) (b ) (c ) 图9-1 图9-1(c )所示斜截面的外法线与x 轴之间的夹角为α。规定α角从x 轴逆时针向转到截面外法线n 方向时为正。α斜截面上的正应力和切应力为: ??? ??? ? +-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 最大正应力和最小正应力 2 2 min max 22xy y x y x τσσσσσσ+??? ? ? ?-±+=

第八章 应力状态和强度理论

建 筑 力 学 刘国华 阚小妹主编 电子工业出版社

第八章应力状态和强度理论 【知识目标】 ●了解平面及空间应力状态的概念 ●熟悉平面应力状态的分析方法 ●熟悉空间应力状态最大剪应力的大小及分布 ●掌握强度理论的概念及其适用范围 【能力目标】 ●能熟练运用解析法和应力圆法求解一点处的应力状态 ●能求解空间应力状态下一点处的最大剪应力 ●能写出四个强度理论的相当应力及强度条件 ●能正确选择强度理论对构件危险点处进行强度校核 第一节平面应力状态下的应力分析 一、平面应力状态的概念 由构件的应力分析可知,在受力构件的同一截面上不同点的应力是不同的,一般都既有正应力,又有切应力(如对称弯曲中,构件横截面上距中性轴为某一距离的任一点处)。受力构件内一点处不同方位截面上应力的集合,称为一点处的应力状态。 为了研究受力构件内某一点处的应力状态,可以围绕该点取出一个单元体。例如,研究图8—1(a)所示矩形截面悬臂梁内A点处的应力状态,可用三对相互垂直的平面,围绕 图8—1 若单元体有一对平面上的应力等于零,即不等于零的应力分量均处于同一坐标平面内,则称为二向或平面应力状态。如受扭圆轴除轴线以外各点处及横力弯曲梁上下边缘以外各点

处均为平面应力状态。平面应力状态的普遍形式如图8—2(a)所示,即在其它两对平面上分别有正应力和切应力(σσxx,ττxx和σσyy,ττyy)。现研究在普遍形式的平面应力状态下,根据单元体各面上已知的应力分量来确定其任一斜截面上的未知应力分量,并从而确定该点处的最大正应力及其所在截面的方位。 二、解析法 (一)斜截面上的应力 已知一平面应力状态单元体上的应力为σσxx,ττxx和σσyy,ττyy,如图8—2(a)所示。如前所述,由于其前、后两平面上没有应力,可将该单元体用平面图形来表示(图8—2(b))。为求该单元体与前、后两平面垂直的任一斜截面上的应力,可应用截面法。设斜截面eeee的外法线nn与xx轴间的夹角(方位角)为α(图8—2(b)),简称为α截面,并规定从xx轴到外法线nn逆时针转向的方位角α为正值。截面上的应力分量用σσαα和τταα表示。 图8—2 利用截面法,沿斜截面eeee将单元体切成两部分,并取其左半部分eeeeee为研究对象。设斜截面eeee的面积为dA,则截面eeee和eeee的面积分别为ddddddddddαα和ddddddss nnαα。这样,微体eeeeee的受力如图8—2(c)所示,由该微体沿斜截面法向和切向的平衡方程,即∑FF nn=0和∑FF tt=0可得 σσααdddd+(ττxx ddddddddddαα)ddss nnαα?(σσxx ddddddddddαα)ddddddαα+ ?ττyy ddddddss nnαα?ddddddαα??σσyy ddddddss nnαα?ddss nnαα=0 ττααdddd?(ττxx ddddddddddαα)ddddddαα?(σσxx ddddddddddαα)ddss nnαα+ ?ττyy ddddddss nnαα?ddss nnαα+?σσyy ddddddss nnαα?ddddddαα=0 由切应力互等定理可知,ττxx和ττyy的数值相等(其指向已表示在图8—2(c)中)。由此可得任一斜截面(α截面)上的应力分量为 σσαα=σσxx+σσyy2+σσxx?σσyy2dddddd2αα?ττxx ddss nn2αα (8—1)

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

应力状态和强度理论习题及答案

应力状态和强度理论 一、判断题 1.若单元体某一截面上的剪应力为零,则该截面称为主平面。() 2.主平面上的剪应力称为主应力。() 3.当单元体上只有一个主应力不为零时,称作二向应力状态。() 5.图2所示单元体最大剪应力为25Mpa。() 6.图3所示单元体为单向应力状态。() 图2图3图4 7. 向应力状态如图4所示,其最大主应力σ1=3σ()。 8. 任一单元体,在最大正应力作用面上,剪应力为零。() 9. 主应力是指剪力为零的截面上的正应力。() 10.力圆上任一点的横坐标值对应单元体某一截面上的正应力。() 二、选择题 1.图1所示应力圆对应的单元体为图()。

图5 三、选择题 1.若一点的应力状态为平面应力状态,那么该点的主应力不可能为:()。 A 、σ1> 0 σ2=σ3=0 B、σ1> 0 σ2 =0 σ3 < 0 C、σ1>σ2>0 σ3=0 D、σ1>σ2>σ3>0 2.已知单元体各面上的应力如图,则其主平面方位为()。 A、B、 C、D、 四、填空题 1.图示为一平面应力状态的单元体及其应力圆,试在应力圆上表示0-1,0-2,0-3平面的位置。 图6

2.试验表明,材料受力后的破坏主要有两种形式,一种是,是由于或所引起;另一种是,是由于所引起的。 3.一单元体如图所示,则单元体的主应力为__________ ,为 __________ ,为__________ ,最大主应力与x 轴的夹角为__________ 。 五、简单计算 1.单元体上的应力如图7所示,试求其它应力和最大剪应力。 2.图8所示单元体,试求图示斜截面上的正应力和剪应力。 图7图8 3.试求图示单元体o斜截面应力。已知:。 图9

第七章应力状态和强度理论习题

第七章 应力状态和强度理论习题 一、单项选择题 1、第三强度理论和第四强度理论适合于何种材料? A 、塑性材料, B 、脆性材料 C 、金属材料, D 、非金属材料 2、第一强度理论和第二强度理论适合于何种材料? A 、塑性材料, B 、脆性材料, C 、金属材料, D 、非金属材料。 二、 填空题 1、 对于单元体,切应力等于零的平面叫做 ,该平面上的正应力叫做 。 2、第一、二强度理论适合于 材料;第三、四强度理论适合于 材料。 3、第三强度理论的相当应力为 。 4、单元体上只有一对主应力数值不等于零的应力状态称为 应力状态。 5、单元体上只有二对主应力数值不等于零的应力状态称为 应力状态。 6、单元体上三对主应力数值都不等于零的应力状态称为 应力状态。 三、填空题 1、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, σ3= Mpa, τmax = Mpa 。 2、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, 图 7.3.1 图 7.3.2

σ3= Mpa, τmax = Mpa 。 3、已知应力状态如图所示,应力单位为MPa 试求:(1)主应力大小;(2)最大切应力。 4、已知应力状态如图所示,应力单位为MPa 。 试求:(1)主应力大小;(2)最大切应力。 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3 、r313s s s =- 4、单向 5、二向 6、三向 二、填空题 1、 2、 3、解: (1)应力分量 50020x y x MPa MPa σστ===- max min 57.0507.022x y MPa MPa σσσσ+??===??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ

第八章应力状态强度理论

第八章 应力状态 强度理论 1 基本概念及知识要点 1.1 基本概念 点的应力状态、 应力圆、 主平面、 主应力、 主方向、 最大剪应力。 以上概念是进行应力应变分析以及强度计算的基础,应准确掌握和理解这些基本概念。 1.2 二向应力状态的解析法与图解法 实际工程中的许多问题,可以简化成二向应力状态问题,建议熟练掌握二向应力状态解析法和图解法。在学习该知识点时,应注意以下几点: (1) 单元体平衡,则单元体中任取出的一部分在所有力的作用下也平衡; (2) 过一点相互垂直两平面上有 y x σσσσαα+=90++ 90+ααττ-= 主应力和最大剪应力间 2 min max min max σστ-± = 01045±αα= 请注意理解以上各式所代表的物理意义。 (3) 主要公式:任意斜截面应力、主应力、主平面、最大剪应力及其作用平面,详见教材。上述公式建议熟记。 (4) 应用图解法时注意以下对应关系 应力:圆上一点,体上一面;直径两端,垂直两面。 夹角:圆上半径,体上法线;转向一致,转角两倍。 1.3 三向应力状态的最大剪应力 无论是三向应力状态,还是做为特例的二向应力状态或单向应力状态,都是用如下公式计算最大剪应力 2 3 1max σστ-= 在二向应力状态下,垂直于主应力为零的主平面的那一组平面中,剪应力的最大值,称为面内最大剪应力。可用公式 2 2 min max 2xy y x τσστ+??? ? ? ?-±=计算。 1.4 广义胡克定律 在比例极限范围内,变形非常小。线应变只与正应力有关,与剪应力无关;剪应变只与剪应力有关,与正应力无关。换言之,正应力与剪应力、线应变与剪应变,彼此间互不影响。 1.5 常用的四种强度理论及其应用

第10章应力状态与强度理论及其工程应用

第10章 应力状态与强度理论 及其工程应用 10.1 概述 10.1.1 应力状态的基本概念 轴向拉伸或压缩杆: 横截面 1 P F A σ= 1A 横截面面积 斜截面 2 cos sin 22 x x θθσσθστθ? =??= ?? 即用不同方位的截面截取,任意点A 的应力是不同的。 受扭圆轴:

横截面 x P M I τρ= 斜截面 s i n2 α στα =-c o s2 α ττα = 即, A点的应力大小和方向随截面的方位不同而不同。 应力状态:构件受力后,通过一个点的所有截面上的应力情况的总体,称为该点的应力状态。 对于受力构件有必要研究其一点的应力状态。 研究应力状态的目的:找出一点处沿不同方向应力的变化规律,确定出最大应力,从而全面考虑构件破坏的原因,建立适当的强度条件。 10.1.2 应力状态分析的基本方法 研究一点的应力状态时,往往围绕所考察的点取一微小正六面体------

单元体。 单元体:微小的立方体, dx dy dz 、、为无限小,其侧面上的应力可 看作是均匀分布的,立方体的两相对侧面的应力可看成是大小相等,方向相反。 在单元体各面上标上应力——应力单元体。 根据一点的应力状态中各应力在空间的不同位置,可以将 ?? ? 空间应力状态 应力状态平面应力状态 空间应力状态:所有面上均有应力作用的应力状态。 平面应力状态:所有应力作用线都处于同一平面内的应力状态(有一对面上总是没有应力)。

?? ? 单向应力状态 平面应力状态纯剪切应力状态 单向应力状态:只受一个方向的正应力作用的应力状态。 纯剪切应力状态:只受剪应力作用的应力状态。 对于平面应力状态,由于单元体有一对面上没有应力作用,所以三维单元体可以用一平面微元表示。

第九章应力状态与强度理论.

第九章应力状态与强度理论 教学目标:了解一点的应力状态;掌握一点应力状态主应力及主平面的计算。 重点、难点:一点应力状态主应力及主平面的计算。 学时分配:4学时。 (一) 一点的应力状态 通过受力构件内一点的所有截面上的应力情况称为一点的应力状态。 (二) 一点的应力状态的表示法一一单元体 围绕所研究的点,截取一个边长为无穷小的正六面体, 用各面上的应力分量表示周围材料对 其作用。称为应力单元体。 特点: 1单元体的尺寸无限小,每个面上的应力为均匀分布。 2?单元体表示一点处的应力,故相互平行截面上的应力相同。 (三) 主平面、主应力、主单元体 主平面单元体中剪应力等于零的平面。 主应力 主平面上的正应力。 可以证明:受力构件内任一点,均存在三个互相垂直的主平面。三个主应力用 厂、(T 2 和(T 3表示,且按代数值排列即 (T l > (T 2> b 3。 主单元体 用三对互相垂直的主平面取出的单元体。 (四)应力状态的分类 根据主单元体上三个主应力中有几个是非零的数值,可将应力状态分为三类: 只有一个主应力不等于零。 有两个主应力不等于零。 三个主应力都不等于零。 1 .单向应力状态 2 .二向应力状态 3 .三向应力状态

单向应力状态又称为简单应力状态,二向和三向应力状态统称为复杂应力状态。单向及二向应力状态又称为平面应力状态。

(三)平面应力状态分析法 平面应力状态通常用单元体中主应力为零的那个主平面的正投影表示如图所示。 (四)任意斜截面成 a 的应力 (T x 、(T y 、(T xy ,则与I 轴成。角的斜截面上的应力分量为 ~ 2 _ T Ky sin2vt + r xv cos2a 式中 正应力T 以拉应力为正;剪应力 T 以对单元体产生顺时针力矩者为正, 时针转向为正。 (五)主平面 主应力 主平面的方位角 a 0 主应力 考虑到单元体零应力面上的主应力为零,因此若已知一平面应力状态 a 角以逆

第七章应力状态和强度理论习题答案

第七章 应力状态和强度理论习题答案 一、单项选择题 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3、主平面 主应力 4 、eq313 s s s =- 5、主平面 主应力 6、单向 7、二向 8、三向 二、填空题 1、解: (1)应力分量 MPa MPa xy y x 200 50-===τσσ max min 57.0507.022x y MPa MPa σσσσ+??==±=??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ 2、解: (1)应力分量 MPa MPa MPa xy y x 253060-===τσσ max min 74.2603015.822x y MPa MPa σσσσ+??+=±= ±=???? 08 .152.74321===∴σσσMPa (2)最大剪应力 MPa 1.3720 2.742 3 1max =-= -=σστ

三、计算题 1、 解 简化力系 () ()() [] 200m m d 32 109.11025.1W T M m 25KN .12 1 5.22D F -2F M 9.5KN 522.52F F F F 3 2 62 6Z 2 Max 2Max r3P ≈≤?+?= +=?=?===++=++=解出总σπσd 2、解 由题 () ()() [] σπσ≤≈?+?= +=-=??=??=?=≤≤?-==??=??=?=∑MPa d W T M M T m m N L X X F Z r AB 12932 104.1105.1105.1150101L F M 0M 0M mm N 104.1140101L F M 3 2 52 52 2353AB Max 1A 53BC 所以符合强度 3、解: (1)外力分析,将作用在胶带轮上的胶带拉力F1、F2向轴线简化,结果如图 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图。 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核

应力状态理论

第8章 应力状态理论 §8-1 一点应力状态概念 1.凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一 截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点m的不同(方向)截面上具有不同的应力。 2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆m 件内点不同(方向)截面上的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕m点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

*平面应力状态的工程实例 1.薄壁圆筒压力容器 0D 为平均直径,δ为壁厚 由平衡条件04200=??=∑D p D X L π δπσ 得轴向应力: δ σ40pD L = (8-1a ) 图8-5c (Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为B 的横截面,H-H 为水平径向面)

2.球形贮气罐(图8-6) 由平衡条件∫=?=∑π δσαα0002sin 2 B d D pB Y H 或δσB pBD H 20= 得环向应力: δ σ20pD H = (8-1b ) 由球对称知径向应力与纬向应力相同,设为 a σ 对半球写平衡条件:p D D a ?= ?2004πδπσ

相关文档
最新文档