高中数学 第三章 导数及其应用 阶段复习课学案 苏教版选修1-1

高中数学 第三章 导数及其应用 阶段复习课学案 苏教版选修1-1
高中数学 第三章 导数及其应用 阶段复习课学案 苏教版选修1-1

第三课 导数及其应用

[体系构建]

[题型探究]

利用导数的几何意义求曲线的切线方程

切线方程.还可以结合几何的有关知识,求解某些点的坐标、三角形面积等.导数的几何意义是近几年高考的要点和热点之一,常结合导数的运算进行考查,常以选择题、填空题的形式出现.

对于较为复杂的此类问题,一般要利用k =f ′(x 0)((x 0,f (x 0))为切点)及切点的坐标满足切线方程和曲线方程列方程组求解.

求过曲线y =x 3

-2x 上的点(1,-1)的切线方程.

[思路探究] 切线过曲线上一点(1,-1),并不代表(1,-1)就是切点,故需先设出切点,再求解.

【规范解答】 设切点为P (x 0,y 0),则y 0=x 3

0-2x 0.∵y ′=3x 2

-2,则切线的斜率k =f ′(x 0)=3x 2

0-2,∴切线方程为y -(x 3

0-2x 0)=(3x 20-2)(x -x 0).

又∵切线过点(1,-1),∴-1-(x 3

0-2x 0)=(3x 2

0-2)(1-x 0),整理,得(x 0-1)2

(2x 0

+1)=0,解得x 0=1或x 0=-12.∴切点为(1,-1)或? ??

??-12,78,相应的切线斜率为k =1或

k =-5

4

.

故所求切线方程为y -(-1)=x -1或y -78=-54·? ????

x +12,即x -y -2=0或5x +4y

-1=0.

[跟踪训练]

1.已知函数f (x )=x 3

+ax 2

+bx +c 在x =2处取得极值,并且它的图象与直线y =-3x +3在点(1,0)处相切,则函数f (x )的表达式为________.

【导学号:95902257】

【解析】 f ′(x )=3x 2+2ax +b .∵f (x )与直线y =-3x +3在点(1,0)处相切,

∴?????

f ′1=-3,f 1=0.

即?????

3+2a +b =-3,①

1+a +b +c =0.②

∵f (x )在x =2处取得极值,∴f ′(2)=12+4a +b =0.③

由①②③解得????

?

a =-3,

b =0,

c =2.

∴f (x )=x 3-3x 2

+2.

【答案】 f (x )=x 3

-3x 2

+2

利用导数研究函数的单调性

1.)>0,f ′(x )<0的解集确定单调区间,这是函数中常见问题,是考查的重点.

2.求含参数的函数的单调区间讨论时要注意的三个方面:(1)f ′(x )=0有无根,(2)f ′(x )=0根的大小,(3)f ′(x )=0的根是否在定义域内.另外当f ′(x )=0的最高次项系数含有字母时,则要讨论系数是否为0.

3.已知函数的单调性求参数的取值范围有两种思路:①转化为不等式在某区间上恒成立问题,即f ′(x )≥0(或≤0)恒成立,用分离参数求最值或函数的性质求解,注意验证使f ′(x )=0的参数是否符合题意,②构造关于参数的不等式求解,即令f ′(x )>0(或<0)求得用参数表示的单调区间,结合所给区间,利用区间端点列不等式求参数的范围.

已知函数f (x )=x 3

-ax -1. (1)讨论f (x )的单调性;

(2)若f (x )在R 上为增函数,求实数a 的取值范围.

[思路探究] (1)求出f ′(x ),讨论f ′(x )=0的根是否存在,求函数的单调区间; (2)根据题意有f ′(x )≥0在(-∞,+∞)上恒成立,分离参数后可求实数a 的取值范围.

【规范解答】 (1)f ′(x )=3x 2

-a .

①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2

-a =0得x =±

3a 3;当x >3a 3或x <-3a

3

时,f ′(x )>0;

当-

3a 3<x <3a 3

时,f ′(x )<0. 因此f (x )在? ?

???-∞,-

3a 3,? ????3a 3,+∞上为增函数,在? ?

???-3a 3

,3a 3上为减函数.

综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在? ?

???-∞,-3a 3,? ????3a 3,+∞上为增函数,在? ????-3a 3

,3a 3上为减函数.

(2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2

-a ≥0在(-∞,+∞)上恒成立,

即a ≤3x 2

对x ∈R 恒成立.因为3x 2

≥0,所以只需a ≤0.

又因为a =0时,f ′(x )=3x 2

≥0,f (x )=x 3

-1在R 上是增函数, 所以a ≤0,即a 的取值范围为(-∞,0]. [跟踪训练]

2.设函数f (x )=12x 2+e x -x e x

.

(1)求f (x )的单调区间;

(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.

【导学号:95902258】

【解】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x

). 若x <0,则1-e x

>0,所以f ′(x )<0; 若x >0,则1-e x

<0,所以f ′(x )<0; 若x =0,则f ′(x )=0.

∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴f (x )min =f (2)=2-e 2

.

∴当m <2-e 2

时,不等式f (x )>m 恒成立.即实数m 的取值范围是(-∞,2-e 2

).

利用导数研究函数的极值和最值

1.

2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;

(2)求函数在区间端点的函数值f (a ),f (b );

(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.

3.注意事项:

(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. (2)解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.

已知函数f (x )=x 3

+ax 2

+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y

+1=0,若x =2

3

时,y =f (x )有极值.

(1)求a ,b ,c 的值;

(2)求y =f (x )在[-3,1]上的最大值和最小值.

[思路探究] (1)利用f ′(1)=3、f ′? ??

??23=0、f (1)=4构建方程组求解; (2)令f ′x =0→列表→

求极值和区间

端点的函数值

→比较大小→得最大值和最小值

【规范解答】 (1)由f (x )=x 3

+ax 2

+bx +c ,得f ′(x )=3x 2

+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①

当x =23时,y =f (x )有极值,则f ′? ????23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5.

(2)由(1)可得f (x )=x 3

+2x 2

-4x +5,f ′(x )=3x 2

+4x -4.令f ′(x )=0,解得x 1=-2,x 2=2

3

.

当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:

x -3 (-3,-2) -2

? ??

??-2,23 2

3 ? ??

??23,1 1

f ′

(x )

+ 0 -

0 +

f (x ) 8

↗ 13 ↙ 9527

↗ 4

由表可知,函数y =f (x )在[-3,1]上的最大值为13,最小值为95

27.

[跟踪训练]

3.已知函数f (x )=13x 3-12x 2

+cx +d 有极值.

(1)求c 的取值范围;

(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2

+2d 恒成立,求d 的取值范

围.

【导学号:95902259】

【解】 (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2

-x +c ,要使f (x )有极值,

则方程f ′(x )=x 2

-x +c =0有两个实数解,从而Δ=1-4c >0,∴c <14

.

(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴ f (x )=13x 3-12x

2

-2x +d .

∵f ′(x )=x 2

-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,

当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值7

6

+d , ∵x <0时,f (x )<16d 2+2d 恒成立,∴ 76+d <16d 2

+2d ,即(d +7)(d -1)>0,

∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).

分类讨论思想

在含参数的问题中,无论是研究单调性,还是极值、最值,一般都需要分类讨论.

已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0. (1)求a 的值;

(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2

成立,求实数k 的最小值. [思路探究] (1)求出函数f (x )的最小值用a 表示解方程可得a 的值;

(2)构造函数g (x )=f (x )-kx 2

,分类讨论求其在[0,+∞)的最大值,使其最大值≤0可得k 的取值范围,即得其最小值.

【规范解答】 (1)f (x )的定义域为(-a ,+∞).f ′(x )=1-

1x +a =x +a -1x +a

. 由f ′(x )=0,得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:

x (-a,1-a )

1-a (1-a ,+∞)

f ′

(x )

- 0 + f (x )

极小值

因此,f (x )a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0,故k ≤0不合题意. 当k >0时,令g (x )=f (x )-kx 2

,即g (x )=x -ln(x +1)-kx 2

.

g ′(x )=x x +1-2kx =-x [2kx -1-2k ]

x +1

.

令g ′(x )=0,得x 1=0,x 2=1-2k

2k

>-1.

①当k ≥12时,1-2k

2k

≤0,g ′(x )<0在(0,+∞)上恒成立,

因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2

在[0,+∞)上恒成立.故k ≥12

符合题意.

②当0<k <12时,1-2k 2k >0,对于x ∈? ??

??0,

1-2k 2k ,g ′(x )>0,

故g (x )在? ????0,1-2k 2k 内单调递增,因此当取x 0∈? ??

??0,1-2k 2k 时,

g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12

不合题意.

综上,k 的最小值为1

2.

[跟踪训练]

4.设函数f (x )=a e x

1

a e x

+b (a >0). (1)求f (x )在[0,+∞)内的最小值;

(2)设曲线y = f (x )在点(2,f (2))处的切线方程为y =3

2

x ,求a ,b 的值.

【解】 (1)f ′(x )=a e x

1a e x

, 当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上单调递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上单调递减.

①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b;

②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上单调递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1

a

+b .

(2)依题意f ′(2)=a e 2

1a e 2=32,解得a e 2=2或a e 2

=-12(舍去),所以a =2e

2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =1

2

.

[链接高考]

1.曲线y =x 2

+1x

在点(1,2)处的切线方程是__________.

【导学号:95902260】

【解析】 因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率k =2×1-1

12=1,所

以切线方程为y -2=x -1,即y =x +1.

【答案】 y =x +1

2.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.

【解析】 ∵f ′(x )=a -1

x

,∴f ′(1)=a -1.

又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 【答案】 1 3.函数f (x )=

x

x -1

(x ≥2)的最大值为________.

【解析】 f ′(x )=

x -1-x x -12=-1

x -1

2

当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=2

2-1

=2.

【答案】 2

4.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2

)≤0,

则实数a 的取值范围是________.

【导学号:95902261】

【解析】 因为f (-x )=(-x )3

-2(-x )+e -x

-1

e

-x =-x 3+2x -e x

+1e x =-f (x ),

所以f (x )=x 3-2x +e x

-1e x 是奇函数.

因为f (a -1)+f (2a 2

)≤0,

所以f (2a 2

)≤-f (a -1),即f (2a 2

)≤f (1-a ).

因为f ′(x )=3x 2

-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2

≥0, 所以f (x )在R 上单调递增, 所以2a 2

≤1-a ,即2a 2

+a -1≤0, 所以-1≤a ≤1

2.

【答案】 ?

?????-1,12 5.已知函数f (x )=x 3

+ax 2

+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是

f (x )的零点.(极值点是指函数取极值时对应的自变量的值)

(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2

>3a .

【解】 (1)由f (x )=x 3

+ax 2

+bx +1,得

f ′(x )=3x 2

+2ax +b =3? ??

??

x +a 32

+b -a 2

3. 当x =-a 3时,f ′(x )有极小值b -a 2

3.

因为f ′(x )的极值点是f (x )的零点,

所以f ? ??

??-a 3=-a 327+a 3

9-ab 3+1=0.

又a >0,故b =2a 2

9+3

a

.

因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 2

3=19a (27-a 3

)≤0,即a ≥3.

当a =3时,f ′(x )>0(x ≠-1),

故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2

-3b 3,x 2=-a +a 2

-3b 3.

列表如下:

12从而a >3.

因此b =2a 2

9+3

a ,定义域为(3,+∞).

(2)证明:由(1)知,

b a =2a a 9+3a a

.

设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2

-27

9t 2

. 当t ∈?

??

??

362,+∞时,g ′(t )>0, 从而g (t )在?

??

??

362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即b

a

> 3. 因此b 2

>3a .

高中数学选修本(理科)几种常见函数的导数

几种常见函数的导数 ●教学目标 (一)教学知识点 1.公式1 C ′=0(C 为常数) 2.公式2 (x n )′=nx n -1(n ∈Q ) 3.公式3 (sin x )′=cos x 4.公式4 (cos x )′=-sin x 5.变化率 (二)能力训练要求 1.掌握四个公式,理解公式的证明过程. 2.学会利用公式,求一些函数的导数. 3.理解变化率的概念,解决一些物理上的简单问题. (三)德育渗透目标 1.培养学生的计算能力. 2.培养学生的应用能力. 3.培养学生自学的能力. ●教学重点 四种常见函数的导数C ′=0(C 为常数),(x n )′=nx n -1(x ∈Q ),(sin x )′=cos x ,(cos x )′=-sin x . ●教学难点 四种常见函数的导数的内容,以及证明的过程,这些公式由导数定义导出的. ●教学方法 建构主义式 让学生自己根据导数的定义来推导公式1、公式2、公式3、公式4,公式2中先证n ∈N *的情况. ●教学过程 Ⅰ.课题导入 [师]我们上一节课学习了导数的概念,导数的几何意义.我们是用极限来定义函数的导数的,我们这节课来求几种常见函数的导数.以后可以把它们当作直接的结论来用. Ⅱ.讲授新课 [师]请几位同学上来用导数的定义求函数的导数. 1.y =C (C 是常数),求y ′. [学生板演]解:y =f (x )=C ∴Δy =f (x +Δx )-f (x )=C -C =0 x y ??=0 y ′=C ′=x y x ??→?0lim =0,∴y ′=0. 2.y =x n (n ∈N *),求y ′. [学生板演]解:y =f (x )=x n ∴Δy =f (x +Δx )-f (x )=(x +Δx )n -x n

高二数学选修2-2导数12种题型归纳(中等难度)汇编

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0lim →?x x x f x x f Δ)()Δ(00-+,表示函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+?? ? ??'=π,则??? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 四、基本导数的求导公式 A . B . C . D .

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

笔记(数学选修—导数及其应用)

数学选修—导数及其应用 1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h →+-- 的值为( ) A .' 0()f x B .'02()f x C .'02()f x - D . 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 A .7米/秒 B . 6米/秒 C . 5米/秒 D . 8米/秒 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于 A .19/3 B .16/3 C .13/3 D .10/3 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 1.若3'0(),()3f x x f x ==,则0x 的值为_____;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为_____;3.函数sin x y x =的导数为_____;4.曲线x y ln =在点(,1)M e 处的切线的 斜率是____,切线的方程为______;5.函数5523--+=x x x y 的单调递增区间是________。 1.求垂直于直线2610x y -+=并且与曲线 3235y x x =+-相切的直线方程。 2.求函数()()()y x a x b x c =---的导数。 3.求函数543()551f x x x x =+++在区间[]4,1-上的最大值与最小值。 4.已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。 2.若'0()3f x =-,则000()(3)lim h f x h f x h h →+--= A .-3 B .-6 C .-9 D .-12 4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.函数x x y ln =的最大值为( )A .1-e B .e C .2e D .10/3 1.函数2cos y x x =+在区间[0,]2 π上的最大值是 。 2.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为____________。 3.函数32x x y -=的单调增区间为 ,单调减区间为___________________。 4.若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 。 5.函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为______。 已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值。 3. 已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

2021年高中数学选修本(理科)复合函数的导数(1)

2021年高中数学选修本(理科)复合函数的导数(1) 教学目的: 1.理解掌握复合函数的求导法则. 2.能够结合已学过的法则、公式,进行一些复合函数的求导 3.培养学生善于观察事物,善于发现规律,认识规律,掌握规律,利用规律. 教学重点:复合函数的求导法则的概念与应用 教学难点:复合函数的求导法则的导入与理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 复合函数的导数是导数的重点,也是导数的难点. 要弄清每一步的求导是哪个变量对哪个变量的求导.求导时对哪个变量求导要写明,可以通过具体的例子,让学生对求导法则有一个直观的了解 教学过程: 一、复习引入: 1. 常见函数的导数公式: ;;; 2.法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, 法则3 ' 2''(0)u u v uv v v v -??=≠ ??? 二、讲解新课: 1.复合函数: 由几个函数复合而成的函数,叫复合函数.由函数与复合而成的函数一般形式是,其中u 称为中间变量. 2.求函数的导数的两种方法与思路: 方法一:22[(32)](9124)1812x y x x x x '''=-=-+=-; 方法二:将函数看作是函数和函数复合函数,并分别求对应变量的导数如下: , 两个导数相乘,得 232(32)31812u x y u u x x ''==-=-, 从而有 对于一般的复合函数,结论也成立,以后我们求y ′x 时,就可以转化为求y u ′和u ′x 的

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

最新高中数学选修1-1《导数及其应用》知识点讲义

第三章 导数及其应用 1 一、变化率与导数 2 ()()()()()()()() 000000000000000 10,0lim lim lim . x x x x x y f x x x x x y y x x x x x y x x f x x f x y x x y x x f x y f x x f x f x x ?→?→=?→==??≠??+???→=+?-?=??=+?-=?'''、定义:设在处取得一个增量. 函数值也得到一个增量称 为从到的平均变化率.若当时时,有极限存在,则称此极限值为函数在处的瞬时变化率,记为,也称为函 数在处的导数,记作或, 即 3 4 ()0y f x x x ==说明:导数即为函数在处的瞬时变化率. 5 6 7 ()()00. PT x f x P PT f x k ?→='2、几何意义:时,Q 沿图像无限趋近于点时,切线的斜率.即 8 9 ()()()()003==lim lim . x x f x x f x y y f x y f x y x x ?→?→+?-?==??''''、导函数(简称为导数)称为导函数,记作,即 10 二、常见函数的导数公式 11 1若()f x c =(c 为常数),则()0f x '=; 12 2 若()f x x α=,则1()f x x αα-'=; 13 3 若()sin f x x =,则()cos f x x '= 14 4 若()cos f x x =,则()sin f x x '=-; 15 5 若()x f x a =,则()ln x f x a a '= 16 6 若()x f x e =,则()x f x e '= 17

高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln2 2 D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( ) A. ???-33f (x )d x B.??1 3f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数 y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④ 7.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P 元,销售量为Q ,则销量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元 9.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )大小关系不能确定 10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在? ? ? ??-∞,-13内

《选修11:导数的应用:单调性与极值、最值》教案

适用学科
高中数学
适用年级
适用区域 苏教版区域
课时时长(分钟)
知识点 1、函数的单调性与极值;
2、函数中含参数的单调性与极值、
高二 2 课时
教学目标 1、 能利用导数研究函数的单调性,会用导数法求函数的单调区间。
2、了解函数在某点取得极值的必要条件与充分条件、 3、 会用导数求函数的极大值与极小值
教学重点 利用导数研究函数的单调性;函数极值的概念与求法 教学难点 用导数求函数单调区间的步骤;函数极值的求法
【知识导图】
教学过程

【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状
态、 导入的方法特不多,仅举两种方法: ① 情境导入,比如讲一个与本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生
建立知识网络、 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的 快与慢以及函数的最大值或最小值等性质是特不重要的、通过研究函数的这些性质,我们能 够对数量的变化规律有一个基本的了解、函数的单调性与函数的导数一样都是反映函数变化 情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?
用考导点数1求函导数函单数调判性的断步函骤数: 的单调性
(1)明确函数的定义域,并求函数的导函数; (2)若导函数时,并求对应的解集; (3)列表,确定函数的单调性; (4)下结论,写出函数的单调递增区间与单调递减区间、 注意:导函数看正负,原函数看增减。
用导数求函数极值的步骤: (1)明确函数的定义域,并求函数的导函数; (2)求方程的根; (3)检验在方程的根的左右的符号,假如在根的左侧附近为正,右侧附近为负,那么函数在这 个根处取得极大值,这个根叫做函数的极大值点;假如在根的右侧附近为正,左侧附近为负,那 么函数在这个根处取得极小值,这个根叫做函数的极小值点。

高中数学导数讲义完整版

高中数学导数讲义完整版 第一部分 导数的背景 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? (2 2 1gt s =,其中g 是重力加速度). 2. 切线的斜率 问题2:P (1,1)是曲线2 x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2 +=q q C ,我们来研究当q =50时,产量变化q ?对成本的影响. 二、小结: 瞬时速度是平均速度 t s ??当t ?趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率x y ??当x ?趋近于0时的极限;边际成本是平均成本 q C ??当q ?趋近于0时的极限. 三、练习与作业: 1. 某物体的运动方程为2 5)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线2 2x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522 +=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2 t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线2 2 1x y = 在(1,21)处是否有切线,如果有,求出切线的方程. 6. 已知成本C 与产量q 的函数关系为742 +=q C ,求当产量q =30时的边际成本.

数学选修2-2第一章导数及其应用练习题汇编

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题1.1.2导数的概念 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于(). A.4 B.4x C.4+2Δx D.4+2(Δx)2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是(). A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为(). A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 4.已知函数y=2+1 x,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=2 x,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=1 x2+2在点x=1处的导数. 7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.44

8.设函数f(x)可导,则lim Δx→0f(1+Δx)-f(1) 3Δx等于(). A.f′(1) B.3f′(1) C.1 3f′(1) D.f′(3) 9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________. 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度. 12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.

导数的运算-高中数学知识点讲解

导数的运算1.导数的运算 【知识点的知识】 1、基本函数的导函数 ①(为常数) C=0 C ②()=() x n nx n﹣1 n R ③()= sinx cosx ④()=﹣ cosx sinx ⑤()= e e x x ⑥()=()* (>0且1) a a lna a a x x ⑦= [log x)] a 11 (log e)(a>0且a 1) ?* = ???? a lnx ⑧=1.? 2、和差积商的导数 ① [ (f x)g(x)]=f (x )g(x) ② [ (f x)﹣g(x)]=f(x)﹣g(x) ③ [ (f x)g(x)]=f(x)(g x)(f x)g(x) ?(?) ④[?(?)]′=[?′(?)?(?)― ?(?)?′(?)] . [?(?)2]

3、复合函数的导数 设,则 y=(u t),t=(v x)y(x)=u(t)v(x)=u[(v x)]v(x) 1/ 3

【典型例题分析】 题型一:和差积商的导数 典例 1:已知函数,为的导函数,则(f x)=asinx bx 3 (4a R,b R)f (x)(f x)(2014)(﹣2014)(2015)﹣(﹣2015)=() f f f f A.0 B.2014 C.2015 D.8 f (x)=acosx 3bx 2 解:, ∴f (﹣x)=aco(s ﹣x ) 3(b ﹣x) 2 ∴为偶函数; f (x) f ( 2015)﹣f (﹣2015)=0 ∴()(﹣) f 2014 f 2014 =asi(n)b asi(n﹣)(b﹣)=; 2014 ? 20143 4 2014 2014 3 4 8 (f2014)(f﹣2014)f(2015)﹣(f ﹣2015)=8 故选D. 题型二:复合函数的导数 典例 2:下列式子不正确的是() A.B.=()=﹣(lnx﹣2x ) 3x 2 cosx 6x sinx 1?―2?ln2 ????C.()=D.()′= 2sin2x 2cos2x ??????―???? ?2 解:由复合函数的求导法则 对于选项,成立,故正确; A (3x 2 cosx )=6x﹣sinx A

第一章导数及其应用第11课时导数在实际生活中的应用教案苏教版选修2_2

导数在实际生活中的应用 【教学目标】 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题. 【教学重点、难点】 解有关函数(如边际函数、边际成本)最大值、最小值的实际问题. 【教学过程】 一、复习引入: 导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决. 利用导数求函数的最值步骤: (1)求) (x f在(,) a b内的极值; (2)将) (x f的各极值与) (a f、) (b f比较得出函数) (x f在[,] a b上的最值. 二、例题分析: 例1、在边长为60cm的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少? 例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?

b 变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值? 例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?

例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比) 例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x , (1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?

人教版高中数学(理科)选修导数的概念(二)

●课题 §3.1.2 导数的概念(二)——瞬时速度 ●教学目标 (一)教学知识点 物体在时刻t的瞬时速度的概念. (二)能力训练要求 1.掌握用极限给瞬时速度下的精确的定义. 2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 3.理解足够小、足够短的含义. (三)德育渗透目标 1.培养学生解决实际问题的能力. 2.平均速度与瞬时速度是互相联系、辩证统一的,培养学生联系的、辩证统一的思想. 3.培养学生严谨的科学态度. ●教学重点 知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度. ●教学难点 理解物体的瞬时速度的定义. ●教学方法 启发式 由高中物理上给瞬时速度下的定义,以及进行直观的描述,如何利用已学过的极限知识,进行精确地刻划呢?让学生自己根据极限的定义,来定义物体的瞬时速度. ●教学过程 Ⅰ.课题导入 [师]我们物理中学习直线运动的速度时,已经学习了物体的瞬时速度的有关知识,现在我们从数学的角度重新来认识一下瞬时速度. Ⅱ.讲授新课 [师]物理课本上瞬时速度是如何定义的? [生]运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度. [师]那怎么来理解瞬时速度?物理课本上有具体的阐述吗? [生]有,要确定物体在某一点A处的瞬时速度,从A点起取一小段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表示物体经过A点的瞬时速度. [师]那一小段的位移AA1,有什么要求吗?是不是越小越好? [生]是越小越好,当位移足够小时,物体在这段时间内运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度了. [师]我们现在已经了解了一些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律用函数表示为s=s(t),也叫做物体的运动方程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是多少? [生]位移为s(t0+Δt)-s(t0) 平均速度为 t t s t t s ?- ? +) ( ) ( (一边讲一边老师板书) [师]根据对瞬时速度的直观描述,当位移足够小,现在位移由时间t来表示,也就是说时间足够短时,平均速度就等于瞬时速度.怎么来刻划时间足够短呢?现在是从t0到t0+

2019-2020学年高中数学 第一章 导数及其应用 第11课时 导数在实际生活中的应用教案 苏教版选修2-2.doc

2019-2020学年高中数学第一章导数及其应用第11课时导数在实 际生活中的应用教案苏教版选修2-2 【教学目标】 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题. 【教学重点、难点】 解有关函数(如边际函数、边际成本)最大值、最小值的实际问题. 【教学过程】 一、复习引入: 导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决. 利用导数求函数的最值步骤: (1)求) (x f在(,) a b内的极值; (2)将) (x f的各极值与) (a f、) (b f比较得出函数) (x f在[,] a b上的最值. 二、例题分析: 例1、在边长为60cm的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少? 例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?

b 变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值? 例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?

例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比) 例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x , (1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?

高中数学-导数的计算练习

高中数学-导数的计算练习 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是 A .211()1x x x '+=+ B .21 (log )ln 2 x x '= C .3(3)3log x x x '= D .2 (cos )2sin x x x x '=- 【答案】B 【解析】因为211()x x '=- ,所以A 项应为2 11x -;由1(log )ln a x x a '=知B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,2 2 (cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B . 2.已知函数3 ()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)-- B .(1,1)-- C .(2,8)--或(2,8) D .(1,1)--或(1,1) 【答案】D 3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1 D .e 【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ∴1 ()1()2f x f x '='+ ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B . 4.曲线e x y =在点2 (2,e )处的切线与坐标轴所围成的三角形的面积为 A .2e 2 B .23e C .26e D .29e 【答案】A

相关文档
最新文档