皮肤衰老机制及抗衰老研究进展

皮肤衰老机制及抗衰老研究进展
皮肤衰老机制及抗衰老研究进展

皮肤衰老机制及抗衰老研究进展

发表时间:2010-8-2 16:16:16 来源:创新医学网推荐作者:赵俊超作者单位:中国地质大学,湖北武汉430074

【关键词】衰老机制;皮肤;抗衰老研究

皮肤是衰老过程中最易显露的器官,皮肤衰老主要表现为自然衰老和光老化两种形式〔1〕。近来随着各种边缘学科的飞速发展,人类对于衰老的认识已从整体水平推进到细胞分子水平〔2〕,关于衰老机制的研究已取得了很大进展,但是针对皮肤衰老机制的报道却很少。因此,本文从内源性生理衰老和外源性环境衰老两个角度出发,就当前有关皮肤衰老的主要机制和相应对策进行阐述,希望为抗衰老化妆品的开发提供参考。

1 内源性生理衰老机制及对策

内源性生理衰老机制大体上包括细胞水平的衰老理论如自由基理论、遗传理论、线粒体理论、端粒理论等和器官水平的衰老理论如免疫衰退理论、神经内分泌损伤理论等〔3〕。

1.1 自由基理论及清除过量自由基的对策

自由基理论由英国学者Harman于1956年在美国原子能委员会上首次提出,并逐渐成为衰老理论中的核心理论之一〔4〕。其内容为:①机体在正常代谢中会产生自由基,它参与机体的正常生理运行,体内的抗氧化防御系统维持着体内自由基的动态平衡。②随着增龄,体内抗氧化系统功能衰退,抗氧化酶的活性不断降低,自由基过量积聚,发生清除障碍,引发体内氧化性不可逆损伤的积累,最终导致一系列衰老损伤。③维持体内一定水平的抗氧化系统功能可延缓机体衰老〔5〕。

自由基过量积聚对皮肤的损伤主要表现在如下几个方面:①对核酸的损伤:活性氧加成到碱基的双键中或从戊糖部分抽提氢,可破坏碱基生成嘧啶、嘌呤自由基,碱自由基相互结合或被过氧化,使碱基缺失甚至主链断裂,产生遗传突变。②对蛋白质的损伤:活性氧与氨基酸或直接与蛋白质反应使多肽链断裂,促使皮肤中胶原、弹性蛋白和表皮生长因子受体蛋白受到自由基攻击产生交联变性,使皮肤变薄、起皱,弹性降低,细胞生长变缓。③对糖的损伤:皮肤中的黏多糖透明质酸极易被活性氧解聚氧化为糖醛类产物,进而与DNA、RNA、蛋白质发生进一步交联变性。

④对脂质的损伤:活性氧攻击生物膜上的不饱和脂肪酸(polyunsaturated fatty acid,PUFA)引起膜通透性和硬度增加,胞内环境改变,形成多种脂质过氧化物及其代谢产物丙二醛(MDA),MDA是强效交联剂,易与蛋白质或核酸交联形成溶酶体无法消化的脂褐质(LPF),累积在皮肤结缔组织中形成老年斑〔6〕。

开发有效的活性物质来清除体内积聚的有害自由基是抵抗衰老的有力手段,目前常用的具有抗氧化作用的活性原料有3类:①生物制剂类,如超氧化物歧化酶(SOD),谷胱甘肽过氧化酶(GSH Px),过氧化氢酶(CAT),金属硫蛋白(MT),木

瓜巯基酶,辅酶Q10等。②天然中草药制剂类,如人参、丹参、银杏叶、绞股蓝、灵芝、鹿茸等中草药的提取液。③化学合成、半合成制剂类,如人工合成的各种抗氧化酶、抗氧化剂及其衍生物(VE、VA、VC、β胡萝卜素、辅酶Q10),尿素,2 巯基乙胺(2 MEA),丁羟甲苯(BHT),硒代蛋氨酸,抗交联的各种络合剂、螯合剂,清除脂褐质的氯酯醒、氯丙嗪、姜黄素、乳清酸镁等〔7〕。

自由基理论因与其他理论有直接或间接的关系,受到众多实验的支持,得到国内外学者的公认,已成为衰老的代表理论,在抗衰老化妆品中的应用极其广泛。

1.2 遗传理论及修复对策

Hayflick在1961年提出了遗传衰老理论。该理论认为生物成年以后,基因组内特定的遗传衰老程序启动,按时激活褪变过程,逐渐展开,最终导致衰老死亡〔8〕。此理论现取得一些细胞和分子生物学的实验依据:①随着年龄增长,修饰基因逐渐丧失,如DNA甲基化的减少,端粒的缩短,自体磷酸化阻碍等。②DNA自我修复功能出现障碍。③基因调控出现异常,如Spiering在皮肤成纤维细胞的培养物中发现了DNA合成抑制因子,它通过抑制细胞DNA的合成引起细胞复制速度减慢老化〔9〕。

近来研究发现利用生物技术把活性DNA导入衰老细胞中,弥补衰老细胞遗传基因的不足,是探索修复肌肤遗传衰老的新方向。此外,许多中草药也具有一定的DNA修复功能,如枸杞子、人参、三七、刺五加、五味子等具有遗传基因修复功能的天然中草药成分。

1.3 线粒体损伤理论及修复对策

1989年Linnane等提出线粒体衰老理论,认为线粒体的氧化损伤导致基因突变是人体衰老与退行性疾病的主要原因〔10〕。线粒体是机体有氧呼吸的主要细胞器,存在于真核细胞内。吸入机体的氧气95%以上在线粒体中经呼吸链被还原成水,还有1%~4%的氧气通过另一途径生成活性氧。由于线粒体是机体内活性氧的主要来源,所以线粒体膜上的脂质、膜内的各种酶和基质中的线粒体DNA(mitochondrial DNA,mtDNA)极易受到活性氧的攻击而变性,造成膜流动性、弹性降低,导致细胞破裂。并且mtDNA没有保护蛋白,缺乏修复和校正系统,损伤不能及时修复〔11〕。

mtDNA损伤时,氧化磷酸化会被抑制,导致电子传递方向改变而进入活性氧的生成途径,氧化压力升高,形成自由基聚集及线粒体损伤的恶性循环,最后导致能量产生减少,细胞凋亡。

因此,降低机体内的活性氧水平,增强mtDNA自我修复能力是有效抵抗线粒体衰老损伤的最佳对策。如前所述的抗氧化酶及辅酶、抗氧化剂和能够修复DNA 损伤的天然产物,是可以选择的活性原料。

1.4 端粒衰老理论及延缓对策

1991年Harley提出端粒衰老假说,认为生物的遗传基因通过端粒程序决定细

胞分裂的次数,随着细胞分裂端粒逐渐缩短,短至一定程度则启动停止分裂信号,正常的体细胞即开始衰老死亡〔12〕。

端粒是位于真核生物染色体DNA3′ 末端的帽状结构,由组蛋白与2~20 kb 的核苷酸高度重复片段(TTAGGG)n构成,其功能是保证DNA结构在复制过程中的完整性和稳定性,防止核酸外切酶对DNA的降解,进而防止染色体丢失、融合和重组。正常体细胞每分裂1次,端粒会丢失50~200个碱基对(bp),当端粒缩短到2 000~4 000 bp时,正常人的双倍体细胞就不能再进行分裂,细胞开始凋亡。

把活性端粒酶导入衰老细胞中或激活衰老细胞中的端粒酶活性,是探索对抗端粒衰老的最有效途径,目前这类生物制剂仍在研究开发之中。通过促进细胞分化增殖延缓端粒衰老,是目前常用的方法,可以选择的活性原料有:①生物制剂类:表皮生长因子(EGF)、胎盘提取液、低聚多肽(如缩氨酸、肌肽、胸腺五肽)等。②天然中草药制剂类:如何首乌、罗布麻、黄精、珍珠、玉竹、银耳等。③化学合成、半合成制剂类:α、β 羟基酸、维甲酸及其衍生物、多不饱和脂肪酸(DHA、EPA)等。这类原料在化妆品中的应用广泛程度仅次于抗氧化剂〔13〕。

1.5 免疫功能减退理论及对策

免疫功能减退理论最早由Walford在20世纪60年代提出,认为免疫系统有随增龄变化的特点,从根本上参与正常脊椎动物的老化,是老化过程中的调理装置。

衰老时免疫功能逐渐衰退,主要表现在两个方面:①正常免疫功能减退:胸腺萎缩、纤维化,胸腺素分泌下降,免疫细胞减少,比例失调,免疫应答阻滞,细胞免疫功能下降。②自身免疫反应增强:体液免疫功能紊乱,机体对抗外来性抗原能力下降,而对抗自身细胞的能力提高。

给衰老机体注入胸腺素或健康机体的免疫细胞,是预防和推迟正常免疫功能衰退的一项重要途径。此外,许多中草药具有多方面多环节调节免疫功能的作用:黄芪、灵芝、香菇、银耳、党参等含有丰富的植物多糖,能增强抗体形成免疫细胞,促进吞噬细胞功能。野玫瑰根能增加外周血淋巴细胞绝对值,提高抗体生成细胞的光密度(OD)值。人参皂甙能促进老年人淋巴细胞的增殖与分化,促使IL 2受体增加。大蒜素能明显增强小鼠腹腔巨噬细胞吞噬功能,促进小鼠T细胞转化及增强自然杀伤(NK)细胞活性。眼镜蛇畜因子能使外周血管白细胞吞噬和黏附功能显著升高等〔14〕。

1.6 神经内分泌功能减退理论及对策

神经内分泌系统功能减退理论由Finch于1976年提出,认为衰老时神经元及相关激素的功能变化导致或调控着全身功能的退行性变化〔3〕。主要表现为:①激素降解率降低,通过反馈作用引起激素分泌减少。②内分泌腺分泌的激素原发性减少。③激素受体数量减少且敏感性降低。④内分泌系统在调节酶合成方面功能衰退。

利用活性原料激活神经内分泌系统的各环节功能或补充体内日益下降的激素

水平,是抵抗神经内分泌衰退的有效途径。可以选择的活性原料有:①生物制剂类:天然动植物激素,如褪黑素(Melatonin,MT)、植物雌激素等。植物雌激素是来源于植物种子中的一种弱雌激素,可以刺激表皮细胞增生及成纤维细胞产生胶原蛋白和透明质酸,避免了动物激素对人体的不良反应,近来在化妆品中应用较广,如植物激素葛根异黄酮。②天然中草药制剂类:如巴戟天、仙茅、淫羊藿、刺五加等能促进肾上腺皮质功能,使已增生或萎缩的垂体、肾上腺恢复正常;人参、何首乌、冬虫夏草、灵芝等具有兴奋垂体 肾上腺皮质轴功能;鹿茸、淫羊藿、菟丝子、海狗肾等可以调节垂体 性腺功能〔13〕。③化学合成、半合成制剂类:脱氢表雄酮、氢麦角碱、盐酸罂粟碱等。

2 外源性环境衰老机制及其对策

近来关于紫外线引起肌肤光老化的结论已被广泛接受。紫外线按波长可划分为短波紫外线(UVC,100~280 nm)、中波紫外线(UVB,280~320 nm)和长波紫外线(UVA,320~400 nm)。经过大气层时,由于臭氧层的存在,UVC和大部分UVB 几乎全部被臭氧吸收,到达地面的UVB只占3%,但是UVB波长短,能量大,对皮肤损害严重,可引起炎症浸润,诱导迟发型超敏反应(DTH)抑制和郎氏细胞佐细胞功能下降,浸润的单核巨噬细胞及中性粒细胞可导致组织溶解酶的释放,使皮肤表皮细胞内的核酸或蛋白质变性,发生急性皮炎、日光晒焦、滞后色素沉着、弹性组织变性和DNA合成异常等。而UVA占地表UV辐射的97%,且穿透力极强,其中35%~50%能够到达真皮层,照射诱导人皮肤角脘细胞Colo16 S期阻滞及细胞凋亡,并且抑制Bcl 2和Brn 3a基因的表达,使自发永生化角质形成细胞(HaCaT 细胞)凋亡,透明质酸量下降及成纤维细胞损伤,并影响Ⅰ型胶原形成,Ⅲ型胶原相对增加,最终导致成熟胶原束减少,皮肤松弛。UVA还会氧化表皮中的还原黑色素而直接晒黑皮肤。近来研究发现,UVA可扩大或协同UVB的光老化作用,而且诱发DNA损伤的程度比UVB严重。此外,过量照射UV也会损害人体抗氧化系统、免疫调节系统和保湿系统,激发体内其他多种衰老机制〔15,16〕。

防晒是预防紫外线对人体造成损害的重要措施。防晒剂是防晒化妆品中起防晒作用的关键物质,按防护作用机制可分为物理防晒剂、化学吸收剂和天然防晒剂〔7〕。物理防晒剂又叫紫外线屏蔽剂,主要是指一些矿物颗粒,包括氧化锌(ZnO)、二氧化钛(TiO2)、滑石粉、氧化钴等,以纳米级最好,其重要的特性是对可见光具有极高的穿透性,可以反射或散射紫外线,防晒谱广,耐受性好。如加入TiO2、ZnO等无机粉体减少化学防晒剂对皮肤的刺激性。而紫外线吸收剂是一类化学合成物,可吸收某一波段的UVA和UVB,其原理是利用化学结构中的双键(特别是苯环)结构吸收紫外辐射,再把这种辐射转化为对人体没有损害的热能散发出去。可以选择的原料有对氨基苯甲酸(PABA)及其衍生物、二苯甲酰甲烷及其衍生物、邻氨基苯甲酸及其衍生物、肉桂酸及其衍生物、水杨酸及其衍生物和樟脑类衍生物。目前市场上的防晒产品80%以上是采用物理和化学防晒共同作用的结果。临床还发现一些天然动植物成分如芦荟、海藻、甲壳素、沙棘、黄芪、银杏也具有吸收紫外线的功能。此外还可以采用添加抗氧剂、维甲酸类药物或物理治疗等方法来对抗光老化。

现代抗衰老对策的研究,首要目的在于加深和完善机体内原本存在的抗衰老机制,同时加强外源性抗衰老物质的投入以补充机体内抗衰老机制的不足。但是针对

某一机制所产生的一类原料只能解决衰老的某一环节问题,皮肤衰老是多种机制同时参与的一种复杂的多因素过程,不能用单一的理论来解决所有的衰老现象。因此延缓衰老是一项综合性复杂工程,今后我们要更多的从整体和平衡的角度出发,多角度多层次地研究皮肤衰老的机制,才能开发出更安全、高效的抗衰老活性物质。这也是未来抗衰老化妆品开发的主流方向。

【参考文献】

1 Fisher GJ. The pathophysiology of photoaging of the skin

〔J〕.Cutis,2005;75(2):5 8.

2 Chung JH,Hanft VN,Kang S.Aging and photoaging〔J〕.J Am Acad Dermatol, 2003;49(4):690 7.

3 Giacomoni PU,Rein G.Factor of skin aging share common mechanisms

〔J〕.Biogerontology,2001; 2(4):219 29.

4 Limoli CL,Kaplan MI,Giedzinski E,et al.Attenuation of radiation reduced genomic instability by free radical scavengers and cellular proliferation〔J〕.Free Radic Biol Med,2001;31(1):10 1.

5 Bernstein EF.Reactive oxygen species activate the human elastin promoter in a transgenic model of cutaneous photoaging〔J〕.Dermatol Surg,2002;28(2):132 5.

6 王春霖,郭芳,王永利.自由基与衰老〔J〕.河北医科大学学

报,2005;4(26):308 1.

7 刘仲荣,杨军,杨慧兰,等.抗皮肤老化化妆品活性成分的研究进展〔J〕.中国美容医学,2005;14(3):362 5.

8 Fisher GJ,Kang S,Varani J,et al.Mechanisms of photoaging and chronological skin aging〔J〕.Arch Dermatol,2002;138(11):1462 70.

9 Bohr VA.Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells〔J〕.Free Radic Biol

Med,2002;39(9):804 12.

10 Sastre J,Borras C,Garcia Sala D,et al.Mitochondrial damage in aging and apoptosis〔J〕.Ann N Y Acad Sci,2002;969(4):448 51.

11 Gerhard GS,Benko FA,Allen RG,et al.Mitochondrial DNA mutation analysis in human skin fibroblasts from fetal,young,and old donors〔J〕.Mech Ageing

Dev,2002;123(2 3):155 66.

12 Kosmadaki MG,Gilchrest BA.The role of telomeres in skin aging/photoaging

〔J〕.Micron,2004;35 (3):155 9.

13 许士凯,王晓东.天然药物抗衰老有效成分研究进展〔J〕.现代中西医结合杂志,2005;14(19):2497 30.

14 江必武.浅析中药抗衰老的免疫调节作用现状〔J〕.中西医结合杂

志,2004;13(2):219 20.

15 Uliasz A,Spencer JM.Chemoprevention of skin cancer and photoaging〔J〕.Clin Dermatol,2004; 22(3):178 82.

16 Chung JH,Seo JY,Choi HR,et al.Modulation of skin collagen metabolism in aged and photoaged human skin in vivo〔J〕.J Invest Dermatol,2001;117(5):1218 24.

1植物衰老的机理

1植物衰老的机理 1.1植物衰老和细胞的程序性死亡 植物在长期进化和适应环境的基础上有选择性地使某些细胞、组织和器官有序死亡,称之为程序性死亡(programmed celldeath, PCD)[2]。植物PCD是指整个原生质(有细胞壁或无细胞壁)在植物某个生命时期主动撤退、消化过程,它在去除不需要细胞质或整个细胞时主要通过以下机制:自溶、裂解和木质化。植物衰老是涉及PCD的生理过程,两者在发生机制和信号传导上存在较多的共性: (1)植物衰老和PCD都是由基因控制的主动的过程,它们的发生都依赖新基因的转录和蛋白质的合成。(2)PCD和植物衰老都是一程序性事件。(3)植物衰老与PCD 都可以受许多内部发育信号和外部环境信号的影响,从而调节进程的快慢。(4)植物衰老和PCD过程中都存在物质的运转,这在衰老器官中表现为维管束周围组织最后衰老[3]。植物衰老的过程不完全是PCD。完整的植物衰老过程应包括两个阶段:第一阶段为可逆衰老阶段,细胞以活体状态存在;第二阶段为不可逆衰老阶段,细胞器裂解,细胞衰退, PCD发生,其中液泡的裂解和染色质降解形成的DNA片段是PCD开始发生的标志。胞间基质相互作用,为细胞的分化、生长和死亡提供必需的信号。MMP为基质金属蛋白酶(matrix metallopro-tease)可降解基质。Delorme等[4]在黄瓜叶片衰老的后期检测到一种基质金属蛋白酶CS1-MMP,它是一种前体酶,须经过修饰才能活化,其表达早于DNA片段化的出现,但不参与衰老中营养物质的运转,可能与PCD的发生有关。由此认为:PCD可能只在衰老的末期发生,即植物衰老达到一个不可逆的点,这个点的出现标志着PCD的发生。Rao和Davis发现[5]:缺少脱落酸(SA)信号传导途径的拟南芥突变体pad4,其叶片长时间保持黄化状态,细胞死亡速度比野生型慢得多,而野生型拟南芥SA信号传导途径中被诱导表达的一个衰老特异基因SAG12只在衰老晚期的黄化组织中表达,推测植物衰老前期产生的SA信号可诱导下一步的PCD,SAG12可能在衰老后期的PCD过程中起关键作用。 1.2自由基与衰老 植物体内的自由基是指植物代谢过程中产生的O·-2、OH·等活性氧基团或分子,当它们在植物体内引发的氧化性损伤积累到一定程度,植物就出现衰老,甚至死亡。但生物在长期进化过程中在体内形成了一套抗氧化保护系统,通过减少自由基的积累与清除过多的自由基两种机制来保护细胞免受伤害。生物体内的抗氧化剂主要有两大类,一是抗氧化酶类,主要包括超氧化物歧化酶(SOD)、过氧化氢酶(CA T)、过氧化物酶(POX)等;二是非酶类抗氧化剂,主要有维生素E、维生素C、谷胱甘肽(GSH)等。许多研究表明,在缺氧条件下,生物体内SOD、CA T活性下降。对菜豆子叶超氧化物歧化酶活性研究发现,其SOD活性随组织衰老而下降,表明植物组织酶的清除能力随年龄增加而下降[6]。已有的证据显示,自由基、活性氧对植物的损害作用主要表现在生物膜损伤、呼吸链损伤、线粒体DNA损伤等。大多数研究集中在活性氧所引发的膜脂过氧化方面。膜脂过氧化即自由基(O·-2、OH·等)对类脂中不饱和脂肪酸引起的一系列自由基反应。脂氧合酶(lipoxygenase,LOX)是一种氧合酶,专门催化具有顺-1,4戊二烯结构的不饱和脂肪酸的加氧反应,其中间产物自由基和最终产物丙二醛都会严重地损伤生物膜。丙二醛具有强交联性质,能与蛋白质、核酸游离的氨基结合,形成具有荧光的Schif碱,称为类脂褐色素(1ipofuscin-like pigment, LEP),是不溶性化合物,干扰细胞内正常生命活动代谢。同时,丙二醛与生物膜中结构蛋白和酶的交联,破坏它们的结构和催化功能[7]。活性氧、自由基还能直接与核酸分子作用,使碱基羟基化,发生突变,从而改变核酸的结构。用自旋捕集技术和ESR法,通过研究紫外线辐射核黄素产生的超氧阴离子自由基(O·-2)等活性氧与嘧啶碱基及核苷的反应,发现该反应不是直接进行,而是通过羟自由基来实现的。线粒体呼吸链是细胞内自由基的主要发生器之一,它本身易被自由基损伤。在衰老的植物组织中电子传递链的失衡使得部分电子泄露给O2,呼吸链电子传递出现短路,其结果使A TP生成减少,O·-2等活性氧的产生增加,从而影响细胞的功能[8]。

衰老的机制研究进展

衰老的机制研究进展 甘肃医学院赵文俊 摘要: 衰老又称老化, 通常是指在正常状况下生物体发育成熟后, 随年龄增长机体发生的功能性和器质性衰退老化的渐进过程。现代医学对衰老机制的研究涉及到很多方面,从自由基学说看,自由基可形成脂褐素、可造成线粒体DNA(mtDNA)的突变、引起核DNA的受损等;从遗传因素看,衰老是一连串基因激活和阻抑及其通过各自产物相互作用的结果;从免疫功能改变学说看,是由于机体对外来物质免疫反应的下降以及自身免疫反应的增多引起的。 关键词:衰老;自由基;脂褐素;细胞凋亡;线粒体DNA; 遗传基因;免疫系统衰老又称老化,通常是指在正常状况下生物发育成熟后,随年龄增加,自身机能减退,内环境稳定能力与应激能力下降,结构、组分逐步退行性变,趋向死亡的不可逆转的现象。对衰老的研究一直是生命科学领域的最为基本和重要的问题之一,但细节一直知之甚少。衰老是一个持续发展的、动态的、缓慢渐进而复杂的过程。这个过程从生长期结束后逐渐开始,它的影响要到老年期通过人体系统功能失调、器官功能衰退、细胞变性及蛋白质和酶分子结构变化逐渐表现出来。主要表现为机体对环境刺激的适应能力减弱以至丧失,出现多种器官组织功能的衰退并影响健康。影响衰老的因素有很多,各种社会因素、经济、疾病、营养、遗传、生活习惯、环境及精神状态等都起着一定的作用,是很多因素共同作用的结果[1]。目前,随着分子生物学和细胞生物学的研究深入,对衰老机理的研究从整体水平发展到分子水平。有关细胞衰老的学说近年来提出了很多,如细胞损伤学说、生物大分子损伤学说、自由基学说、端粒学说等。对于生物体而言,细胞衰老受到多种因素的影响,有自身遗传因素的影响,也有环境因素的影响,根本的还是受遗传方面的影响。

中医衰老学说及抗衰老研究概况_赵蓉

[收稿日期]2006-01-06中医衰老学说及抗衰老研究概况 赵 蓉 (天津市大港区中医医院,天津300270) [中图分类号]R161.7 [文献标识码]B [文章编号]1004-2814(2006)06-384-02 衰老是指机体发育成熟后,组织器官逐步发生退行性改变,并最终走向老化的过程。目前西医和中医对衰老机制及 抗衰老都进行了大量的研究,并取得了不少成果。现就中医衰老学说的研究综述如下。1 中医衰老学说 精气神衰老学说:精、气、神为人之三宝,是生命的根本。中医认为精、气、神三者的状态标志着一个人的健康,如三者虚衰,则是衰老的征象。5太平经6提出/精、气、神0是支配着人体生命的三大元素。5素问#金匮真言论6曰:/夫精者,身之本也。05灵枢#本神篇6记载:/故生之来谓之精,两精相搏谓之神。05灵枢#决气篇6记载:/上焦开发,宣五谷味,熏肤,充身,泽毛,若雾露之溉,是谓气。0历代医家又对此进行不断充实发挥,丰富了学说内容。5黄帝内经素问集注6说:/神气血脉,皆生于精,故精乃生身之本,能藏其精,则血气内固,邪不外侵。0可见历代医家对人体的精、气、神非常重视,精充、气足、神旺即是健康的标志,如精亏、气虚、神萎则是衰老的征象,从精、气、神三方面的表现,完全可以反映出人体衰老的程度。 肾虚衰老学说:5素问#上古天真论6谓:/女子七岁,肾气盛,齿更发长。二七而天癸至,任脉通,太冲脉盛,月事以时下,固有子,,七七,任脉虚;太冲脉衰少,天癸竭,地道不通,故形坏而无子也。丈夫八岁,肾气实,发长齿更。二八,肾气盛,天癸至,精气溢泻,阴阳和,故能有子,,八八,则齿发去。肾者主水,受五脏六腑之精而藏之,故五脏盛,乃能泻,,此其天寿过度,气脉常通,而肾气有余也。0肾为先天之本,人体生长、发育、衰老以至死亡的过程就是肾气逐渐充实、 隆盛、衰少乃至衰竭的过程[1] 。 脾胃虚弱衰老学说:脾胃为后天之本,为气血生化之源。脾胃在人体活动中起着升降枢纽的作用,肾中的先天精气也依赖于脾胃化生的后天水谷精微的充养。李东垣在5脾胃论6中谓脾胃是化生元气的本源,脾胃损伤必然导致元气不足,而产生各种病变,提出/诸病从脾胃而生0,脾虚则/气促憔悴0、/血气虚弱0等观点,认为脾胃虚弱是导致衰老发生的主要原因。脾胃功能强盛则身体健康而长寿,脾胃虚衰则百病丛生而早衰。 阴阳衰老学说:5素问#阴阳应象大论6曰:/阴阳者,天地之道也,万物之纲纪,变化之父母,生杀之本始,,0中医学认为阴阳之间的变化是一切事物运动变化的根据,同时也是生命生长、发育、衰老以至死亡的根本原因。古人认为只有阴阳平衡生命活动才能正常进行,如果阴阳平衡被打破则会导致 机体发生疾病、衰老以至死亡。机体衰老的过程也就是阴阳失去平衡,出现偏盛偏衰或阴阳两虚的结果。若进一步发展,阴阳不能相互为用而分离,人的生命活动也就停止了。5素问#生气通天论6的/阴平阳秘,精神乃治;阴阳离决,精气乃绝0则是对这种学说的概括与总结 [1] 。 脏腑经络衰老学说[2] :5内经6在论述人体衰老的原因时已明确指出,随着年龄的增长五脏虚衰则会导致衰老的发生与发展,并最终引起死亡。5灵枢#天年篇6谓:/五十岁,肝气始衰,肝叶始薄,胆汁始灭,目始不明。六十岁,心气始衰,苦忧悲,血气懈惰,故好卧。七十岁,脾气虚,皮肤枯。八十岁,肺气衰,魄离,故言善谈。九十岁,肾气焦,四脏经脉空虚。百岁,五脏皆虚,神气皆去,形骸独居而终矣。0首先提出了脏腑虚衰是导致人体衰老、死亡的原因。后世医家在此基础之上,对衰老的脏腑虚衰学说又各有发挥,并形成了两种主要观点。 淤血衰老学说:5素问6谓:/使道闭塞不通,,以此养生则殃。0/使道0即血脉,明确指出血脉不通有碍养生长寿。淤血产生后,气血运行受阻,脏腑得不到正常濡养,气化功能受损;同时代谢产物不能排泻,堆积体内,毒害机体,从而形成恶性循环,加速衰老[3] 。2 中医抗衰老研究概况 中药抗衰老研究:1调节免疫功能:研究表明,活血化淤类中药丹参、川芎等能提高大鼠的淋巴细胞转化率,增强小鼠单核巨噬细胞系统的吞噬作用,提高细胞免疫和体液免疫的 功能[4] 。复方参七汤能减缓免疫器官的萎缩,提高IL-2水平,对TNF-A 异常升高有抑制作用 [5] 。钟毅 [6] 等用补肾健 脾活血化痰方药经过临床和动物实验研究显示具有增加机体免疫功能作用。o对抗自由基的研究:杨勇等用四物汤及其各单味药对小鼠自由基代谢及免疫功能影响的比较研究发现四物汤全方通过调节自由基代谢及对免疫功能的影响,而起 到延缓衰老的作用,配伍后表现出较强的药理活性[7] 。?对神经系统的研究:赵伟康 [8] 等研究发现,固真方能明显延缓老 年机体H PTT 轴的功能退化及延缓老年大鼠下丘脑)垂体) 肾上腺)胸腺(H PTQ )轴衰老的作用[9] 。?对生殖系统的研究:生殖功能是反映机体衰老的敏感的指标之一。黄精可显著升高衰老动物脑和性腺组织的端粒酶活性[10] 。杜仲具有一定的抗衰老作用,使生精过程活跃,生精细胞增多,间质细胞增多不明显,生精小管直径改变不明显 [11] 。?对调控衰老基 因的研究:王学美[12] 等观察五子衍宗丸及其拆方对老年肾虚者外周血白细胞线粒体DNA 缺失,减少有缺陷的呼吸链,增强细胞所需的能量,从而达到维持细胞正常生理,延缓衰老的作用。?改善血液流变性的研究:实验表明,人参、黄精、决明子、何首乌、徐长卿、红花均有降血脂或降低血清胆固醇作用。 # 384#

衰老机制的研究进展

衰老机制的研究进展

姓名:王芝 学号: 2010212810 专业:生物科学 任课老师:王玉凤 发育生物学

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。 关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说

细胞衰老论文

细胞衰老概括 【引言】人体衰老的实质即为细胞衰老,当前科学家无不探究着生命的奇迹意欲找出防止细胞衰老而延缓生命的方式,然而细胞衰老一方面对人体有着不可替代的作用,领一方面又不为人们所接受。 【The advantage of cell senescence】 1.细胞衰老可抑制肝脏纤维化 人类繁殖后期(post—reproductive)的生命通常与衰退、能力丧失联系在一起,细胞中称为衰老(senescence)的状态,即细胞衰老与此相似。然而近期来自美国冷泉港实验室、霍德华休斯医学院、巴西圣保罗大学研究人员发现一类特殊的衰老肝脏细胞能调控活体小鼠中一系列的生命活动,抑制纤维化(fibrosis)——这是肝脏遇到急剧伤害的时候作出的自然反应。 这一惊人的发现是由这一研究团队去年将肝脏细胞衰老与抵抗肝癌(hepatocellular carcinoma,HCC)的器官功能联系在一起的技术获得的。这一研究成果公布在8月22日的《细胞》(Cell)『1』杂志上。 这项研究成果首次证明了细胞衰老在非癌症性病理中的特殊作用,CSHL研究小组认为这有助于针对一些严重肝脏疾病的前体,譬如肝硬化提出新的治疗方法——肝硬化是美国第12种最常见的致死疾病。 在2003年Scott W.Lowe博士等人就发现细胞衰老机制会让癌细胞停止生长,并且他们成功的让癌细胞在进行治疗后处于无法复制的细胞衰老阶段,并显现出良好的效果。在那项研究中,研究人员还进一步找出了这个使细胞停止生长的分子机制,即细胞衰老是由于一些特殊的染色体区域被紧密的包裹在异染色质内所致。研究人员将这些新发现的区域命名为“衰老相关异染色质基因座”(senescence—associated heterochromatic foci,SAHF)。 去年研究小组又发现诱导衰老的细胞衰老能够有效预防自发性癌症。衰老细胞有异常染色体,上面携带机能不良的端粒和较短的末端,在肿瘤抑制子p53缺失时促进肿瘤发生,可能与老年人癌症高发性有关。研究人员认为衰老途径的活化,足够抑制原发性肿瘤,说明通过阻止细胞增殖,p53介导的衰老是抑制衰老细胞形成肿瘤的一个重要机制。 而近期Lowe研究小组的有关肝脏疾病的相关衰老研究分成了两个不同的方向:哪些伤害对于肝脏组织而言是急性,哪些则是慢性,这种对照性的实验有助于发现衰老是如何帮助抑制损伤的,以及衰老过程是如何和何时被肝脏受到的慢性伤害“打垮”的。 在针对第一项的研究中,研究人员对小鼠肝脏施用一种毒素——急性伤害,发现了与之前实验的一致的结果:在细胞纤维化增多之后,出现肝细胞死亡(纤维化是小鼠,人类中都存在的应对组织损伤的一种天然反应)。之后的研究就越来越有趣了,Low e博士说,“我们观测到肝脏星状细胞(Hepatic stellate cells,HSC)出现增殖激增之后,我们发现这些细胞为了避免更多纤维化反应,最终走向衰老,从肝脏中清除了出去。”

衰老的机制

衰老的机制 摘要 衰老(又称老化),是一种非常复杂的生物学过程,是机体在退化时期功能下降及生理紊乱的综合表现,是一个机体内在的固有特征,同时又是一个不可逆的过程。衰老是生命发展的必然。关于衰老的研究,特别是皮肤衰老,迄今已提出多种学说。本文较系统地从细胞,分子水平上阐述了皮肤衰老的内因和外因,提出基因调控是皮肤衰老的根本,自由基对皮肤细胞的损伤是皮肤衰老的原因,机体代谢紊乱是皮肤老的基础,而目光照射等许多有害因素是外因的皮肤衰老机制。与此同时对器官的衰老,主要有神经内分泌学说,免疫学说,应激学说,为探讨衰老过程及抗衰老药物的研究提供新思路。 关键字:衰老;皮肤衰老;机制;遗传;自由基 前言 抗衰老治疗,尤其是对皮肤的抗衰老治疗一直是研究焦点之一,人们希望能够通过抗衰老治疗来改善和提高生活质量。皮肤老化可影响美观,引发抑郁、自卑等心理问题,与某些疾病也有关,比如郎格汉斯细胞减少,免疫能力下降,易患感染性疾病。因此延缓皮肤衰老一直是研究热点。目前关于皮肤衰老的机理有三十几个学说。本文从内源性生理衰老和外源性环境衰老两个方面阐述皮肤衰老机制。以神经内分泌学说,免疫学说,应激学说阐述了器官衰老的机制。 正文 一.有关皮肤衰老的几种学说: 1.皮肤内源性生理衰老作用机制 1.1 皮肤衰老基因调控学说:皮肤衰老的基因调控学说是以遗传控制程序论为代表的。Ha- yflik最早的细胞体外培养发现了细胞传代规律,认为发育进程有时间顺序性,这个控制机制随着年龄增长而减弱,最终导致衰老。皮肤衰老主要是皮肤细胞染色DNA及线粒DNA 中合成抑制物基因表达增加,许多与细胞活性有关的基因受抑制,及氧化应激对DNA 的损伤而影响其复制、转录及表达的结果,故基因调控是皮肤及其它细胞衰老的根本。Spierng 等实验证实了DNA复制与皮肤衰老直接相关。Isobe 、Chung等研究证明随着年龄增长,控制 DNA 合成的抑制物增多,致使 rRNA、tRNA、 mRNA含量渐下降,蛋白合成进一步减少,胶原含量减少导致皮肤衰老。 L.2 皮肤衰老的自由基学说:体内许多物质代谢过程中都能产生过氧化的自由基,使机体内的自由基处于不平衡状态,过量的自由基就会引起机体损伤,当自由基引起的损伤积累战胜了机体的修复能力,就会导致细胞分化状态的改变、甚至丧失,从而引起皮肤衰老。Sohl 等近期在传统的自由基衰老学说基础上提出了“氧化应激( Oxidativstress ) 衰老学说”,他认为除了超氧阴离子外其他的活性氧也能引起皮肤衰老,只有当活性氧的产生和清除之间的平衡被打破时才会导致皮肤衰老,而延缓皮肤衰老不仅可以通过补充人工合成的抗氧化剂来实现,也可以通过调动体内的抗氧化酶活性来实现。 Hoo pe、Blatt等实验发现皮肤衰老与抗氧化辅酶Q1O的减少有关,实验证明辅酶“Q”可以渗透表皮的活性层,局部应用可提高表皮的抗氧化能力。Kitazawa等发现某些氨基酸如甘氨酸、丝氨酸与水杨醛缩合产物可与铁形成 2:1的复合物,通过此反应可抑制与铁有关的羟自由基产生,并能抑制脂质过氧化,预防皮肤衰老。但是一般的抗氧化剂常具有不稳定性,有些酶性抗氧化剂(如 sOD)是较为经典的自由基清除剂,它是生物大分子,长期应用可能会产生抗原问题”。 1.3 皮肤衰老的代谢失调学说:郑集于1983年提出了衰老的代谢失调学说,认为生物体的衰老虽然由遗传基因所决定,但其规律性是通过细胞代谢过程来表达的。无论内在或外

衰老机制的研究进展

发育生物学 (双语课堂) 姓名:王芝 学号:2010212810 专业:生物科学 任课老师:王玉凤

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说 自1989 年Linnane[4]等提出线粒体衰老假说以来,人们越来越关注线粒体

细胞衰老与肿瘤的发生的研究进展

细胞衰老与肿瘤的发生的研究进展 广东药科大学公共卫生学院卫生检验与检疫15 戚嘉铭 【摘要】近几年,细胞衰老成为一种针对癌细胞永久性生长的治疗肿瘤新途径,一直是细胞生物学家的研究重点。研究发现,细胞衰老可以作为阻碍癌细胞致癌的抑制机制。原因在于癌基因诱导具有双向性,癌基因的活化可以诱导细胞衰老。但研究发现,细胞衰老同样可能促使癌细胞的增值。 【关键词】细胞衰老肿瘤癌细胞 细胞衰老是生物体中普遍存在的一种永久性生长抑制现象,能够防止老化的或非正常细胞的进一步生长,对抗细胞的无限增殖能力而对机体起到保护作用。因此,死亡的细胞衰老与无限增殖的癌细胞一直都是细胞生物学家们致力研究的重点。本文主要是描述探究决定细胞走向衰老还是转为癌细胞的因素的相关研究进展。 1、细胞衰老:一种阻碍癌细胞致癌的机制 在多种衰老细胞中,某些抑癌基因的过表达会引起细胞进入衰老程序,细胞绕过衰老途径是其永生化及癌变的必要条件,因而细胞复制性衰老是抑制肿瘤的一种可能机制.这样对衰老细胞的研究将为肿瘤的预防和治疗方法提供新的策略[12]。细胞衰老是人体防癌的机制之一,研究细胞衰老对于抗肿瘤是很有意义的,同时为打开抗肿瘤药物治疗和新药的研发提供了依据。 1961年,Hayflick在体外培养成纤维细胞的研究中发现,正常二倍体细胞在体外条件下增殖分裂50~70代即进入一种衰老的状态,无法进一步传代培养,但仍然存活.正常的动物细胞无论是在体内生长还是在体外生长,其分裂次数总存在一个"极限值",此值被称为"Hayflick"极限,亦称最大分裂次数[11].研究表明,恶性肿瘤细胞系会发生自发性老化,其程度与细胞系种类有关.短期饥饿培养会明显增加老化细胞所占的比率,提示饥饿诱发细胞老化可能是抗肿瘤治疗的又一快速、简单且有效的途径[13]。 2、癌基因诱导的双向性 在人部分的肿瘤中都发现有癌基因的活化,癌基因的活化被认为是导致肿瘤发生的重要原因。然而,在野生型细胞内,癌基因的活化可以诱导细胞衰老,称为癌基因诱导的细胞衰老(oncogene-induced senescence, OIS)[1]。癌基因诱导的衰老( OIS)是指癌基因突变所产生的异常增殖信号,通过MAPK和PI3 K信号通路,使细胞处于生长停

【课外阅读】有关植物衰老的学说1

有关植物衰老的学说 关于植物衰老发生的原因,主要有以下几种学说。 1.自由基损伤学说自由基有细胞杀手之称。1955年哈曼(Harman)就提出,衰老过程是细胞和组织中不断进行着的自由基损伤反应的总和。近年来,衰老的自由基损伤学说受到重视。衰老过程往往伴随着超氧化物歧化酶(superoxide dismutase,SOD)活性的降低和脂氧合酶(lipoxygenase,LOX,催化膜脂中不饱和脂肪酸加氧,产生自由基)活性的升高,导致生物体内自由基产生与消除的平衡被破坏,以致积累过量的自由基,对细胞膜及许多生物大分子产生破坏作用,如加强酶蛋白质的降解、促进脂质过氧化反应、加速乙烯产生、引起DNA损伤、改变酶的性质等,进而引发衰老。自由基与膜伤害的关系可参照图11-4。 自由基和活性氧自由基(free radical)又称游离基,它是带有未配对电子的原子、离子、分子、基团和化合物等。生物自由基是通过生物体内自身代谢产生的一类自由基。生物自由基包括氧自由基和非含氧自由基,其中氧自由基(oxygen free radical)是最主要的,它又可分为两类:一类是无机氧自由基,如超氧自由基(O 2 ·-)、羟自由基(·OH);另一类是有机氧自由基,如过氧化物自由基(ROO·)、烷氧自由基(RO·)和多聚不饱和脂肪酸自由基(PUFA·)。多数自由基有下述特点:不稳定,寿命短;化学性质活泼,氧化能力强;能持续进行链式反应。活性氧(active oxygen)是化学性质活泼,氧化能力很强的含氧物质的总称。 生物体内的活性氧主要包括氧自由基、单线态氧(1O 2)和H 2 O 2 等,它们能氧化生 物分子,破坏细胞膜的结构与功能,其中O 2 氧化能力特强,它能迅速攻击所有生物分子,包括DNA,引起细胞死亡。 自由基和活性氧两者间的组成关系如下: 非含氧自由基,如:CH 3·(甲自由基);(C 6 H 5 ) 3 C·(三苯甲自由基) 自由基 氧自由基,如:O 2 -·;·OH;ROO· 活性氧 含氧非自由基,如:1O 2;H 2 O 2 正常情况下,由于植物体内存在着活性氧清除系统,细胞内活性氧水平很低,不会引起伤害。植物细胞中活性氧的清除主要是通过有关酶和一些抗氧化物质。细胞的保护酶主要有超氧化物歧化酶(SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)、谷胱甘肽还原酶(glutathione reductase,GR)等,其中以SOD 最为重要。对水稻、烟草、菜豆、燕麦等叶片衰老的研究表明,叶片中SOD 活性随衰老而呈下降趋势,O 2 -·等随衰老而增加,脂类过氧化产物丙二醛(MDA)迅速积累(MDA积累速率可代表组织中总的清除自由基能力的大小);而植物处于生长旺盛时期,SOD活性则是随着生长的加速保持比较稳定的水平或有所上升,因此,SOD活性的下降与植物体的衰老是呈正相关的。 增加植物体细胞内活性氧种类浓度的环境因素。 目前已发现有三种不同形式的SOD:(1)CuZn-SOD,分子量为32 000,由两个相同的亚基构成,主要分布于高等植物的细胞质和叶绿体中,是高等植物中主要的SOD;(2)Mn-SOD,主要分布于原核生物及真核生物的线粒体中,是诱导酶

皮肤衰老机制及抗衰老研究进展

皮肤衰老机制及抗衰老研究进展 发表时间:2010-8-2 16:16:16 来源:创新医学网推荐作者:赵俊超作者单位:中国地质大学,湖北武汉430074 【关键词】衰老机制;皮肤;抗衰老研究 皮肤是衰老过程中最易显露的器官,皮肤衰老主要表现为自然衰老和光老化两种形式〔1〕。近来随着各种边缘学科的飞速发展,人类对于衰老的认识已从整体水平推进到细胞分子水平〔2〕,关于衰老机制的研究已取得了很大进展,但是针对皮肤衰老机制的报道却很少。因此,本文从内源性生理衰老和外源性环境衰老两个角度出发,就当前有关皮肤衰老的主要机制和相应对策进行阐述,希望为抗衰老化妆品的开发提供参考。 1 内源性生理衰老机制及对策 内源性生理衰老机制大体上包括细胞水平的衰老理论如自由基理论、遗传理论、线粒体理论、端粒理论等和器官水平的衰老理论如免疫衰退理论、神经内分泌损伤理论等〔3〕。 1.1 自由基理论及清除过量自由基的对策 自由基理论由英国学者Harman于1956年在美国原子能委员会上首次提出,并逐渐成为衰老理论中的核心理论之一〔4〕。其内容为:①机体在正常代谢中会产生自由基,它参与机体的正常生理运行,体内的抗氧化防御系统维持着体内自由基的动态平衡。②随着增龄,体内抗氧化系统功能衰退,抗氧化酶的活性不断降低,自由基过量积聚,发生清除障碍,引发体内氧化性不可逆损伤的积累,最终导致一系列衰老损伤。③维持体内一定水平的抗氧化系统功能可延缓机体衰老〔5〕。 自由基过量积聚对皮肤的损伤主要表现在如下几个方面:①对核酸的损伤:活性氧加成到碱基的双键中或从戊糖部分抽提氢,可破坏碱基生成嘧啶、嘌呤自由基,碱自由基相互结合或被过氧化,使碱基缺失甚至主链断裂,产生遗传突变。②对蛋白质的损伤:活性氧与氨基酸或直接与蛋白质反应使多肽链断裂,促使皮肤中胶原、弹性蛋白和表皮生长因子受体蛋白受到自由基攻击产生交联变性,使皮肤变薄、起皱,弹性降低,细胞生长变缓。③对糖的损伤:皮肤中的黏多糖透明质酸极易被活性氧解聚氧化为糖醛类产物,进而与DNA、RNA、蛋白质发生进一步交联变性。 ④对脂质的损伤:活性氧攻击生物膜上的不饱和脂肪酸(polyunsaturated fatty acid,PUFA)引起膜通透性和硬度增加,胞内环境改变,形成多种脂质过氧化物及其代谢产物丙二醛(MDA),MDA是强效交联剂,易与蛋白质或核酸交联形成溶酶体无法消化的脂褐质(LPF),累积在皮肤结缔组织中形成老年斑〔6〕。 开发有效的活性物质来清除体内积聚的有害自由基是抵抗衰老的有力手段,目前常用的具有抗氧化作用的活性原料有3类:①生物制剂类,如超氧化物歧化酶(SOD),谷胱甘肽过氧化酶(GSH Px),过氧化氢酶(CAT),金属硫蛋白(MT),木

衰老学说

衰老学说 有人认为老年病正是衰老的原因;另有人反对说,老年病恰是衰老的结果。那么,究竟衰老的本质是什么呢? (一)氧自由基学说。这是世界上公认的主要衰老学说之一。它认为机体的细胞在氧化、代谢过程中,或受射线照射,服用化学药剂后,都使体内积累大量有害的自由基,这种自由基可是生物膜中多元不饱和脂肪酸发生过氧化作用,最终导致蛋白质交联物渐渐增多,导致细胞功能积累性退化衰老。自由基是使人衰老的罪魁祸首,所以设法消除这种自由基病便可延长人的寿命。美国路易斯维尔大学的生化专家即从植物中提取了一种能消除动物体内自由基的物质,用它喂蚊子,使其寿命从29天延长到45天。一旦能找到适合人服用的这类物质,人的寿命可望大大提高。 (二)细胞突变说。认为细胞分裂次数与寿命成正比。衰老即是由于细胞受损而产生突变。,从而使细胞本身及下一代细胞异常,生理功能下降,分裂次数降低。在实验中,人体细胞只能分裂50次,然后就土崩瓦解;但是在低温下,细胞分裂速度可变慢,这是延长寿命的方法之。与此相似的是生物钟学说,认为人的细胞分裂次数50次是生物钟决定的。例如寿命为30年的鸡,细胞分裂25次;寿命为3年的小白鼠,只分裂12次。有人提出一个推断:人的体温若降低2摄氏度,寿命可延长到200岁,若降低4摄氏度,可活700岁,且生命质量不变。又有人认为合理有益的饥饿,可大大提高人的寿命,这都是减缓细胞分裂速度的原理使然。程序衰老学说认为,人和动物的神经寿命是有特定的遗传程序决定的,不可更改,因此,人的衰老成为必然,这个学说也可以叫做遗传衰老学学说。 (三)免疫功能退化学说。这是为许多人接受的一种衰老学说,也是一个主要的衰老学说。它认为人的免疫功能在中老年后,随着年龄的增长而退化,而人类是处于外部病菌、病毒、内部异常细胞、毒素的包围之中,岁时又受侵害的可能,免疫功能降低就是致病且不易治愈,这就使器官、组织受损或致死。有人把幼儿内分泌腺诸如老人体内能,借此增加老人的米纳一功能,但尚未得到广泛临床应用。淋巴细胞是免疫系统的“主帅”。英国老年保健研究所公布的一项鸭牛结果表明:在一个老人死前3年终,淋巴细胞数量明显下降趋势。这是他们对05个人进行长达30年之久的考察得出的结论。 此外,北京大学大学医学部免疫学研究时发现,白细胞介素随着人的计数年龄的增长而呈明显夏季那个趋势,它在康衰老中参与机体的免疫调节。 (四)自身中毒说。人的大肠细菌等可分泌一种有毒物质,它可以使人衰老。此外,美国洛克菲勒大学的细胞生物学家尤金尼亚还从人体的结缔组织细胞中分离出一种特殊的蛋白质,是老化的、不能分裂的细胞的产物,正是它杀死了细胞。消除这种毒物,可望推迟衰老。 (五)死亡激素说。有人问为老化的关键步骤并非发生在细胞中,而是发生在大脑、神经、内分泌的活动,使机体老化的决定因素。若早期摘除大白鼠垂体腺,并喂食可的松激素,会延长大白鼠寿命。有的学者认为脑垂体腺在大脑中释放一种“死亡激素”,有的说胸线释放这种“死亡激素”但都未得到实验的证实。有人从乌贼鱼的泪腺中发现“死亡激素”。 (六)胶体化学说。捷克的汝兹卡认为衰老是滞后作用的过程,即使由于体内状态的变化。人随着年龄增长,体内进行胶体颗粒的合并过程,于是机体活性酸度下降,呈现衰老状态。

衰老机制的研究进展

姓名:王芝 学号: 2010212810 专业:生物科学 任课老师:王玉凤 发育生物学 (双语课堂)

衰老机制的研究进展 摘要:不同物种,同一个体的不同组织和细胞,它们的衰老速度并不相同。究其原因,遗传与环境都能影响衰老的进程。个体的平均寿命和物种的最高寿限可以从不同侧面反映衰老的进程。目前认为平均寿命主要与环境相关,而物种最高寿限与遗传相关。从两者的关系看,不良环境影响是通过对遗传物质或其产物的作用而影响衰老的进程。从遗传因素看, 衰老并非由单一基因或单一作用所决定, 而是一连串基因激活和阻抑及其通过各自产物相互作用的结果。DNA (特别是线粒体DNA )并不像原先设想的那样稳定, 目前业已证明, 包括基因在内的遗传控制体系可受内、外环境,特别是氧自由基等损伤因素的影响, 从而加速衰老的进程。关键词:衰老环境遗传 正文 衰老是多因素协同引起的生命渐趋弱化的过程,可引起生理功能相应减弱、适应能力和抵抗力下降等综合表现。揭示衰老的机制, 探索出高效、安全可靠的抗衰老方法,这就是衰老生物学和老年医学研究的重要领域。近几十年来, 随着各边缘学科的飞速发展, 人类对于衰老的认识也从整体动物水平推进到了细胞和分子水平, 在大量实验证据的基础上提出了许多学说, 最终归结为两大类型: 一类为环境伤害衰老研究, 另一类为遗传衰老研究。[1] 1.环境伤害理论 1.1 自由基学说 衰老的自由基学说最早是Denham H arman于1955年提出来的。这种学说认为, 体内许多物质代谢中产生过氧化的自由基, 使机体内的自由基处于不平衡状态, 过量的自由基就会引起机体损伤, 会引起不饱和脂肪酸氧化成超氧化物, 形成脂褐素, 氧自由基过多会破坏细胞膜及其他重要成份, 使蛋白质和酶变性, 当自由基引起的损伤积累战胜了机体的修复能力, 导致细胞分化状态的改变、甚至丧失, 从而导致和加速衰老。这一学说受到了很高的重视, 但随着研究的深入, 自由基学说的核心衰老学说地位已经动摇, 因为这个学说有着许多的牵强之处, 也遇到了许多实验结果造成的困惑和反驳。[2-3] 1.2线粒体学说 自1989 年Linnane[4]等提出线粒体衰老假说以来,人们越来越关注线粒体

皮肤衰老机制的研究进展

皮肤衰老机制的研究进展 发表时间:2011-05-12T14:45:44.503Z 来源:《中外健康文摘》2011年第4期供稿作者:祝司霞 [导读] 1.2 皮肤衰老的自由基学说随着增龄,体内抗氧化系统功能衰退,自由基过量积聚。 祝司霞 (攀枝花学院医学院四川攀枝花 617000) 【中图分类号】R751 【文献标识码】A 【文章编号】1672-5085 (2011)04-0032-02 【摘要】皮肤浅表外露可为研究衰老提供良好的材料,有利于在分子和细胞水平上更深入研究机体的衰老。文章阐述了皮肤衰老的机制,内源性因素是根本,外源性因素影响衰老的进程。为寻找延缓衰老的措施和开发抗衰老药物提供新思路。【关键词】皮肤衰老遗传自由基代谢 Research Progress about mechanism of skin aging Zhu si xia(Medical College of Panzhihua University,Panzhihua Sichuan 617000) 【Abstract】 Superficial skin exposed may provide a good material for the study of aging which is useful for more in-depth study of the aging body at the molecular and cellular level.This paper systematically describes the mechanisms of skin aging that endogenous factors are fundamental and exogenous factors affect the aging process.It would be a new idea of finding the measures of anti-aging and developing anti-aging drug. 【Key words】 Skin aging Genetic free radical metabolic 皮肤老化可影响美观,引发抑郁、自卑等心理问题,与某些疾病也有关,比如郎格汉斯细胞减少,免疫能力下降,易患感染性疾病。因此延缓皮肤衰老一直是研究热点。目前关于皮肤衰老的机理有三十几个学说[1]。本文从内源性生理衰老和外源性环境衰老两个方面阐述皮肤衰老机制。 1 皮肤内源性生理衰老机制 1.1 皮肤衰老遗传学说遗传因素是皮肤衰老的最主要原因[2]。随着增龄,皮肤细胞中基因合成抑制物表达增加,与细胞活力有关的基因受抑制不能表达,如Spiering[3]在皮肤成纤维细胞的培养物中发现了DNA合成抑制因子,DNA合成下降,蛋白质合成减少,尤其是胶原蛋白减少导致皮肤老化;机体对DNA损伤的修复能力越来越弱,DNA的损伤越来越严重;端粒逐渐缩短,短至一定程度体细胞开始衰老死亡。 1.2 皮肤衰老的自由基学说随着增龄,体内抗氧化系统功能衰退,自由基过量积聚。自由基可使皮肤细胞膜中的不饱和脂肪酸,形成过氧化脂质,膜结构破坏,功能受损。脂质过氧化物(LPO)的降解产物丙二醛是强效交联剂,易与蛋白质或核酸交联形成溶酶体无法消化的脂褐素(LPF),累积在皮肤结缔组织中形成老年斑[4]。 1.3 皮肤衰老的代谢失调学说年龄增长,血液循环功能下降、新陈代谢减慢,细胞和组织逐渐退化和衰老。王红丽等[5]研究表明,通过扩张血管、改善微循环、使血流加速等,可促进细胞的新陈代谢,加快衰老皮肤细胞核酸和蛋白质的合成;增加皮肤中SOD(超氧化物岐化酶)含量和活性,羟脯氨酸含量显著升高,MDA(丙二醛)含量显著降低,而发挥其抗氧化和清除自由基作用,恢复细胞正常的生理功能;或可明显刺激皮肤成纤维细胞的活性,促进胶原蛋白合成,使皮肤趋于年轻化,从而延缓皮肤衰老进程。 1.4 免疫功能退化学说[6] 衰老时免疫功能逐渐衰退,主要表现在两个方面:①正常免疫功能减退:胸腺萎缩、纤维化,胸腺素分泌下降,免疫细胞减少,比例失调,细胞免疫功能下降;②自身免疫反应增强:体液免疫功能紊乱,机体对抗外来性抗原能力下降,而对抗自身细胞的能力提高。机体免疫功能失常会使机体自由基代谢失去平衡,二者相互作用,加速机体的衰老。实验证明,提高机体免疫功能,能增强SOD活性。 1.5 神经内分泌功能减退学说[7] 衰老时下丘脑-垂体-性腺功能衰退,性激素水平降低。雌激素能促进成纤维细胞的胶原合成和成熟,抑制胶原降解,促进透明质酸的合成。因此雌激素降低,皮肤胶原含量下降,皮肤弹性降低。 2 皮肤外源性环境衰老机制 皮肤暴露于体表,最容易受外界环境因素的影响。日光可使皮肤小血管减少,汗腺减少,分泌汗液能力下降,皮脂分泌减少,皮肤干燥,产生皱纹,甚至皮革样改变[8]。大气中的污染物,如汽车排出的尾气,可加速皮肤氧化,促进皮肤衰老。寒冷、干燥可使皮肤角质层失水过多,促进皱纹的生成。 本文综述了皮肤衰老的机制,内源性因素是根本,外源性因素影响衰老的进程,抗衰老研究应注重内源性因素,同时兼顾外源性因素,找到预防和延缓衰老的措施,并作为开发抗衰老药物的突破方向。 参考文献 [1]来吉祥,何聪芬,董银卯,等.皮肤衰老机理和抗衰老化妆品的研究进展[J]. 北京日化,2009,3:11-17. [2]王红丽,吴铁.皮肤衰老分子生物学机制的研究进展[J]. 国外医学皮肤性病学分册,2003,29(2):114-116. [3]Spiering AL,Pereira—Smith QM ,Smith JR.Correlation between complementation group for immortality and DNA synthesis inhibitors[J].Exp Cell Res,1991;195(2):541—545. [4]李素云,王立芹,郑稼琳.自由基与衰老的研究进展[J].中国老年学杂志,2007,27(20):2046-2047. [5]王红丽,吴铁,吴志华.人参皂苷、丹参酮和川芎嗪抗小鼠皮肤衰老作用研究[J].第二军医大学学报,2006,27(5):525-527. [6]陈飞飞,蔡东联.活性多糖延缓衰老的研究进展[J].中西医结合学报,2009,7(7):674. [7]王坤,张洁,于文会.针灸抗衰老作用研究进展[J].中兽医医药杂志,2009,28(3):24-25. [8]姚春丽,刘姝.皮肤光老化与骨髓间充质干细胞移植[J].中国美容医学,2008,17(4):601-602.

细胞衰老研究进展

细胞衰老研究进展 吴其俊 (安徽建筑工业学院,土木学院地质专业,11地质①班)[摘要]细胞衰老的机理不详。综观至目前的各种研究,主要与以下三方面因素有关: (1)基因损伤的积累效应。自由基不断作用导致基因积累的错误信息超出了机体的修复能力,引起细胞衰竭死亡。(2) 生命钟基因控制着细胞程序衰老。生物体细胞内存在一系列基因,它们控制着细胞的生长、分化、老化和死亡。(3) 染色体端粒的缩短。端粒的长度随细胞的不断分裂而缩短,当DNA 丢失到一定程度,细胞随之发生衰老和死亡。端粒酶能延长被缩短的端粒,延迟细胞的衰老,端粒酶的活性受到许多因素影响,其中包括与衰老有关的基因。 [关键词]细胞衰老; 自由基; 生命钟基因; 端粒 衰老是生物界的普遍现象,对多细胞有机体来说,由受精卵开始,通过分裂分化出执行不同功能的细胞,这些细胞从产生时始,就处在衰老的过程中,直至死亡。多细胞有机体的体细胞大致可分为两类, (1) 干细胞:是已发生了分化但仍可产生同类型子细胞的细胞,在个体一生中,保持有丝分裂能力,能不断补充被消耗的细胞,如表皮生发层细胞、造血干细胞、消化道的隐窝上皮生发细胞等,这类细胞衰老缓慢。(2) 功能细胞:是不能分裂的高度特化细胞,常执行一定细胞的功能后死亡,这些细胞一般不再分裂,但在受到某种刺激或再生时,可恢复分裂能力,如上皮细胞、红细胞等,这类细胞在执行功能过程中可明显地表现出衰老的征象。影响细胞衰老的因素很多,涉及到细胞内基因及细胞外因素

的影响,本文就目前细胞衰老的研究进展从分子水平上进行综述。 细胞衰老是细胞结构和功能的改变积累至一定程度的后果。功能上,表现氧化磷酸化减少,呼吸速率减慢,酶活性及受体蛋白降低,导致细胞功能降低,细胞的增殖出现抑制,其生长停滞在细胞G1 期,不能进入S期[1 ] ,或停滞在有丝分裂后期[2 ] 。形态上,不规则的和不正常分叶的核、多形性空泡状线粒体、内质网减少,高尔基体变形,色素、钙、各种惰性物质沉积,常有细胞膜性结构改变,如膜脂过氧化[3 ] 。近年的研究发现,某些衰老的细胞,有异常染色体、染色体端粒缩短及基因组的改变[4 ,5 ] ,细胞早衰现象也可见一些遗传性疾病[6 ] ,表明细胞衰老是基因变化的后果。目前发现很多与细胞衰老有关的基因,如 P53 、P16ARF 、P16INK4a 、P19ARF 、P18INK4a 、Cip/ k family、cdk2、cdk4、cyclins D、cyclins D3 、cyclones E 等[6 ,7 ] 。细胞衰老是多因素的,关于细胞衰老的机制方面的学说,主要体现在三方面。 1 基因损伤的积累效应 一些学者认为,细胞衰老是由物种的遗传因素所决定的,由于基因中的遗传密码逐渐积累了一些错误信息或基因的丢失,造成蛋白质合成错误。开始,染色体中存在着密码复制错误的修复系统,不断地纠正复制错误,但这种修复能力随着分裂次数的增多而降低,同时修复系统本身的编码也可发生错误,导致编码出错误的修复酶,这方面最有代表性的是自由基导致细胞的衰老[8 ,9 ] 。衰老的自由基理论是Harman 于1995 年在美国的原子能委员会提出的,他认为衰老是自由基(主要是

相关文档
最新文档