交换机评定测试方案

交换机评定测试方案
交换机评定测试方案

目录

一、物理特性 (2)

二、功能特性 (2)

三、路由协议测试 (3)

四、交换性能 (3)

五、可管理性 (3)

六、可靠性 (3)

七、测试平台组成 (4)

八、测试标准 (5)

九、测试平台介绍 (12)

交换机测试方案

我们共同来商讨制定专门针对二/三层交换机的评定测试方案,其中包含了物理特性、功能特性、路由协议、交换性能、可管理性以及可靠性在内的六大方面,同时对交换机的每端口价格也进行了考虑,从而实现集成成本的最优化。

一、物理特性

这项测试主要从六个方面来进行,包括:机型外观、端口配置、模块化设计、堆叠特性、底座类型、热插拔特性。

第一是机型外观,考察对象包括指示灯设置是否合理;是否设有故障指示灯和流量指示灯;是否具有电源开关;是否提供机架安装的附件以及说明书编写是否明了、详尽,语言是否为中文。

第二是端口配置,包含端口数目、端口类型、是否有WAN/MAN端口、是否支持10/100M自适应、FDX/HDX自适应、有无可选的MDI/MDI-X端口,端口设置是否合理。

第三为模块化设计,涉及到支持何种模块,接口类型以及扩展能力。

第四为堆叠特性,考察交换机是否支持堆叠及堆叠能力。

第五底座类型,分为固定、模块和混合三种情况。

第六是热插拔特性:包括连接模块、上行模块、风扇、电源等部件。

二、功能特性

功能特性重点考察以下几点:

1. 转发类型:交换机转发类型分成存储转发(store-and-forward)和快速转发(cut-through)两类。通过向交换机发送一定数量的不同大小的连续帧,测试其转发延迟,从延迟的变化上确认其转发方式。

2. 过滤:交换机设置过滤策略,通过向交换机发送一定数量的相应类型的数据帧,从转发结果上确认交换机是否支持基于端口和MAC地址的过滤以及非法帧过滤。

3. 广播抑制:交换机上的广播风暴会消耗大量带宽,降低正常的网络流量,给网络性能带来很大影响。广播抑制的目的是有效地消除或减少网络上的广播风暴。通过向交换机发送一定数量的广播帧,从转发结果上验证交换机是否支持广

播抑制。除了广播风暴还有其他类型的风暴,如多点传送风暴和不明目的MAC 地址(单点传送)风暴。

4. 端口干路:是否支持port trunking或其它端口速率提升技术,可以提供高速上行链路。

5. 802.1d协议支持:绝大多数交换机支持802.1d跨越树(Spanning Tree)。跨越树技术能够检测并且消除网络中出现的逻辑环路。人为构造环路,测试环路的消除。

6. VLAN功能:是否支持VLAN,VLAN的实现标准,VLAN的设置方式,VLAN 的跨设备能力。

7. 流量控制:是否支持HDX、FDX的流量控制标准。

8. 三层交换能力:通过向交换机发送一定数量的IP包,从转发结果上确认交换机是否支持三层交换。

9. 协议支持:是否支持IP协议或是否支持IPX协议

10、802.1x协议支持: 绝大多数交换机支持802.1x终端准入方案。

11、mpls vpn支持。

12、组播功能支持:三层支持组播路由,二层支持组播侦听等功能。

三、路由协议测试

测试交换机对目前局域网中普遍采用的两种动态选路协议RIP和OSPF协议的支持情况以及测试路由地址表的大小。

四、交换性能

交换性能主要包括了对吞吐量、延迟、丢帧率、背对背这四项公认指标的测试(结果见表)。另外我们还对地址表深度、线端阻塞和交换机的多对一端口传输能力进行了考察。

五、可管理性

目前交换机普遍采用的管理方式包括通过控制台进行的软件管理、Telnet 方式的远程管理、人性化较强的Web管理以及智能型的网络管理(SNMP、RMON),主要测试交换机对它们的支持能力以及是否易于实施。另外用户访问控制是否有安全措施以及安全策略如何也在测试之列。

六、可靠性

主要测试交换机在如何避免发生故障以及发生故障后如何解决问题方面的能力,其中包括交换机是否具备一定的冗余能力,厂家是否提供相关的技术支持(网站、热线电话、现场支持等),产品是否通过了国家强制性标准如电磁辐射标准、各种安全标准以及对交换机散热问题的考虑和采取的措施等。

七、测试平台组成

此次我们对博达交换机全系统全性能测试,建议采用业界标准测量仪表--Spirent 公司的SmartBits6000,控制台为一台LENOVO笔记本,采用酷睿双核处理器,内存2GB,操作系统为WindowsXP,通过串行口COM1与SmartBits6000相连,SmartBits6000配置的接口与交换机所有接口一对一相连。在控制台上运行Spirent公司相应业务测试软件,可控制SmartBits6000完成交换机相应的测试。

测试设备由一台SmartBits6000和我们所要关注交换机某业务的性能测试软件组成,SmartBits6000上可安装48块不同类型的测试卡(针对被测试的交换机所有端口),要求安装有24块GX-1405B测试卡,其中GX-1405B为千兆以太网测试卡,GX-1405B为千兆以太网测试卡支持10M/100M/1000M端口测试,可以实现对百兆交换机和千兆交换机的性能测试,如果需要对上行的SFP光纤口测试,另配千兆光纤接口测试卡.

测试软件要求有(包含以下,但不局限下列组件):

●S martWindows 6.52(SmartBits虚拟控制面板)

●SmartApplication 2.21(RFC 2544/1242自动化测试软件)

●Smartlib(SmartBits 测试软件开发工具包)

●Smart connect(Tcl/Tk可视化测试脚本开发工具)

●SAI(SmartBits 自动化接口软件)

●AST II(二层交换测试软件,支持RFC 2889/2285)

●Smartlib multicastIP(IP 组播网络性能分析测试软件)

●SmartFLOW(全线速率QOS性能测试软件)

●SmartxDSL(宽带xDSL网络性能测试软件开发工具包)

●Smartcablemodem test(线缆调制解调器性能测试)

●SmartVOIPQos(VoIP 网络设备测试软件)

●DOCSIS(DOCSIS 验收测试软件)

●Tum Up Connect (城域网和以太网链路质量测试软件)

八、测试标准

由于测试方法涉及到知识产权的保护,因此不在这里进行介绍,相关方面的资料可以参考RFC 2544(网络互连设备的基准测试方法)以及RFC 2889(局域网交换设备的基准测试方法)。在这里我们只讨论RFC 1242和RFC 2285中涉及的一些基本术语,由于篇幅较长,下面只对其中一些重要概念有选择地进行介绍。

网络互连设备的基准测试术语(RFC 1242 Benchmarking terminology for network interconnection devices)

●背对背帧(Back-to-back)

对于给定的媒体,从空闲状态开始,以最小的合法帧间隔连续发送固定长度的帧。

随着网络设备的逐渐增加,网络中会产生大量的背对背帧。比如使用NFS 协议的远程磁盘服务器,比如RDUMP这样的远程磁盘备份系统,以及像远程磁带访问系统那样配置成一个请求就可以引发一批大小为64K字节的数据被返回。对于穿越像以太网这样MTU(最大传输单元)相对较小的的网络来说,由此会导致许多数据分片在网络中传输。由于只有当所有的数据分片都被收到时才会将它们重组,因此即使只有一个分片因网络中的某些网络设备没能对连续帧进行充分处理而丢失,都将会使发送方陷入无限循环中,不断地尝试着发送大量数据段来使接收方完整地收到这些数据分片。

随着Internet的规模不断扩大,使得路由更新会产生许多帧,因此要求现代路由器的传送速度必须非常快。由于路由信息数据帧的丢失将会产生网络不可达的错误信息,那么对这个参数的测试目的主要就是来确定网络设备的数据缓存的大小。

测量单位—产生脉冲时以N字节为一个帧的帧数。

●数据链路帧的大小

帧字节的数目是从帧的第一个字节开始计算直到出现FCS(帧检验序列)标志为止,如果没有FCS标志则以最后一个字节作为结束点。

在测试网络设备或进行网络评估过程中,帧大小的报告很容易会让人产生混淆。有些人会加上帧尾的校验和,而有些人则不加。在本文档和它的后续文档中,我们将上面的定义作为一个明确定义来使用。

测量单位—字节。

●丢帧率

在稳定状态负载下,由于缺乏资源而没有被网络设备转发出去的帧占所有应该被转发的帧数的百分比。

这项测量指标可以用来报告网络设备在超载状态下的性能。该指标的高低能够有力地显示出一台网络设备在恶劣网络环境中的运行效能,特别是在受到广播风暴冲击的情况下。

测量单位—被丢弃的帧占所有应该转发的帧的百分比(以字节为单位计数),一般使用负载量-丢帧率这种形式的图表进行报告。

●帧间隔(IFG)

按照 3.5节定义的一个数据链路帧的结尾到接下来的下一个数据链路帧的开始之间的时间间隔。

在测试网络设备时,对于报告帧间隙通常会产生很多混淆的理解。本文档及后续文档作为一个指定定义来使用。

测量单位—精确到足以区分开两个帧的时间单位。

●延迟

对于存储转发设备来说:输入帧的最后一位到达输入端口和输出帧的第一位出现在输出端口的时间间隔。对于按位转发设备来说:输入帧的第一位已到达输入端口和输出帧的第一位出现在输出端口的时间间隔。

延迟的可变性会引发一些问题。许多协议是与时间紧密相关的(如:LAT和IPX协议)。未来的应用很可能对网络延迟更加敏感。设备延迟的增加将会缩小网络的有效直径。消除数据速率对延迟测试的影响是希望所在。这项测试应当仅仅反映真实的设备延迟。测试应该在不改变设备配置的情况下,对大小不同的帧进行。

从概念上来说,对于所有设备的测试都应该从帧的第一个实际位开始,不包括帧的导言部分。理论上厂商们通常应该将他们的网络设备设计为存储转发的设

备,比如一个网桥,它能够在完全接收一帧的所有数据前就转发该数据帧。这种类型的设备通常称之为“直通(cut through)型”设备。假定直通型设备在接收输入帧的剩余部分时出现了某种不可恢复的传输错误,例如:接收到一个错误校验和。在这种情况下,设备仍然被看成一种存储转发设备,设备的延迟仍然从输入的最后一位开始计算,直到输出第一位结,即使这个计算结果是负值。其目的就是要将设备作为一个整体来看待,而不考虑设备的内部结构。

测量单位—精确到足以区分开两个事件的时间单位。

●基于过滤策略

过滤就是根据管理策略将本应该在普通操作中转发出去的帧丢弃的操作方式。

多数网络设备都具备按照一定标准将某些帧丢弃的能力。这些标准既可以是简单的源或目的地址,也可以通过检查数据帧中的某些特定域值来制定。配置多个网络设备使它们具有过滤功能的操作将会影响网络设备的吞吐量。

测量单位—n/a.

●重启动方式

因为系统重新初始化而引起的数据丢失。

在系统电源启动或重启的这段时间内,网络设备不能接收和转发帧。这段不可用时间的长短对于评估设备的优劣十分重要。此外,许多网络设备当它们的初始化变量改变后都需要进行某种形式的重启。如果重启时间太长,就会抵消网络管理员修改这些变量的积极性。

测量单位—在各种重启动条件下,对设备行为的描述。

●单个帧操作方式

一个设备在输入端口上只收到单个帧时,设备的操作方式。

由单个帧构成的数据“流”能够要求网络设备进行许多处理工作。比如:发现路由,执行ARP地址转换,检查访问权限等等。总之就是需要为数据建立缓存项目。与处理固定数据流中同样内容的帧相比,设备通常需要花更多的时间来处理分隔开的单个帧。通常都会有这样一种担心:假设这个单独帧是许多需接收转发帧中的第一帧时,某些设备也许会在缓存建立并初始化的时候将它丢弃掉。

测量单位—对于设备操作方式的描述。

●吞吐量

设备在不丢失任何一个帧的情况下的最大转发速率。

吞吐量指标允许设备厂商只需报告这一项值就可以在市场竞争中让客户辩明优劣。因为即使丢失数据流中的一个帧便能引发较长的延时,使更高层协议因为等待而超时。它对于了解设备所能支持的最大数据速率是很有帮助的。考察时应对大小不同的帧进行多组测试。对于同时支持路由和网桥功能的设备要分别测试路由和网桥功能的数据。如果接收帧中包含校验和的话,那么所有的校验和处理都应该被执行。

测量单位—每秒接收的以N字节为长度的帧的数目。

每秒接收的输入比特位。

局域网交换设备的基准测试术语(RFC 2285 Benchmarking terminology for LAN switching devices)

●设备

这组定义适用于所有类型的网络设备。

●被测设备(DUT)

施加负载并测试其响应时间的网络转发设备。

一台单独的固定底座或模块单元从它的一个或多个端口接收数据帧后根据包含在其中的地址信息再把它们转发到一个或多个网络端口。

●被测系统(SUT)

将一组网络设备看成是一个单一实体对其施加负载并测量响应情况。

被测系统可以由多种不同的网络设备组成。一些设备可能会主动进行转发决策处理,例如路由器和交换机;而另一些设备则可能采取被动方式,比如信道服务单元/数据服务单元。不管有多少组成单元,它们都被当成一个单一系统测量其在给定负载下的响应情况。

●单向传输

当所有数据帧出现在DUT/SUT输入端口时,它们指向的输出端口没有接收帧。

●双向传输

当帧到达DUT/SUT时,每个端口在进行接收的同时也在进行发送。

此项定义遵照RFC 1944文档第14部分的讨论。

当测试仪测试DUT/SUT双向传输能力时,所有那些从测试仪接收帧的端口也在向测试仪发送帧。当测量交换设备全双工端口的吞吐量或转发速率时,必须采用双向传输方式。

●突发传输

这组定义用于描述DUT/SUT的单个帧之间或一组帧之间的间隔。

●突发传输

以合法的最小帧间隔传输的一组帧。

此项定义遵循RFC 1242 3.16部分和RFC 1944 第21部分中关于孤立帧的讨论。

●突发量

一次突发传输的帧数。

突发量可以从1变化到无穷大。在单向传输、双向传输或网状传输发生在全双工端口上时,突发长度在理论上没有限制。而当双向传输或网状传输出现在半双工端口上时该值则是有限的,因为端口会间歇地中断传送从而进行帧的接收。

在实际的网络环境中,突发量在正常情况下会随着接收窗口的增加而增加。这使得测试设备的最大最小突发量十分必要。

●突发间隔(IBG)

两次突发传输的时间间隔。

此项定义遵照RFC 1944文档第20部分关于突发传输的讨论。

双向传输和网状传输本身就具有突发的特性,因为端口共享接收和发送的时间片。外部来源对于某个给定的帧大小提供了突发传输并且释放量必须能够调整突发间隔来达到一个指定的帧传输平均速率。

测量单位—纳秒/微妙/毫秒/秒

●负载

这组定义适用于在某一速率下施加到DUT/SUT的流量。

●期盼负载Intended load(Iload)

一个外部信息源企图让DUT/SUT每秒向指定输出端口转发的帧数。

●提交负载Offered load(Oload)

一个外部信息源能够观察或测量到DUT/SUT每秒向指定输出端口转发的帧数。

●最大提交负载(MOL)

一个外部信息源每秒能够传送给DUT/SUT并让其向指定输出端口转发的最大帧数。

●过载

试图以超过媒介允许的最大传输速率向DUT/SUT施加负载。

●转发速率

这组定义适用于任意一台DUT/SUT在响应请求时转发数据的速率。

●转发

速率(FR)一台设备能被观测到的每秒成功向正确目的端口传送的帧数。和RFC 1242中3.17部分定义的吞吐量不同,转发速率没有明确地涉及到丢帧。转发速率引用的是在输出端口所观测到的与负载相关的每秒帧数。转速发率能够用不同的传输方向和流量分布来测量。

值得注意的是,一台DUT/SUT的转发速率与它所采用的拥塞控制机制是密切相关的。

●最大提交负载下的转发速率(FRMOL)

一台设备能被观测到的每秒成功向正确目的端口传送的帧数。

最大提交负载下的转发速率可能低于一台设备被观测到的成功转发信息的最大速率。这种情况一般发生在提交流量处于最大负载时所导致的设备转发能力下降时。

当报告最大提交负载下的转发速率时最大提交负载必须同时被标注。

●最大转发速率(MFR)

一台DUT/SUT的最高转发速率必须经过反复的转发率测试来得出。

一台设备的转发速率可能会在最大负载到来之前下降。这台设备的相应负载情况必须在报告最大转发速率时被引用。

●拥塞控制

这组定义用于描述一台DUT/SUT当拥塞或争抢发生时的表现行为。

交换机实验实验报告

交换机实验II 实验目的 1.理解掌握环路对网络造成的影响,掌握环路的自检测的配置; 2.理解路由的原理,掌握三层交换设备路由的配置方法 3.掌握DHCP的原理以及其配置方法 实验步骤 配置交换机的IP地址,及基本的线路连接等; 实验1: ①.用独立网线连接同一台交换机的任意两个端口时期形成自环 ②. 对交换机的两个端口进行配置,开启所有端口的环路检测功能、设置检测周期等属性 实验2: ①.按图1方式对三层交换机的VLAN、端口进行配置 ②. 在交换机中分别对VLAN的IP地址进行配置 ③. 启动三层交换机的IP路由 ④. 设置PC-A、PC-B的IP地址,分别将它们的网关设置为所属三层交换机VLAN的IP地址 ⑤. 通过Ping验证主机A、B之间的互通状况 实验3: 三层交换机作为DHCP服务器,两台PC-A和PC-B,分别从交换机上获取IP地址。PC-C 手动配置IP地址。 ①.按图2方式建立主机A、B、C与三层交换机间的连接,配置交换机的IP地址 ②. 配置三层交换机的DHCP地址池属性 ③. 启动DHCP服务 ④. (1)查看主机A、B能否正确的获取到给定范围内IP地址,通过Ping查看网关、交 换机之间的互通情况;(2)拔掉主机B的网线,将主机C的IP地址设置为主机B所 获取的到的IP地址,然后再插上B机网线,查看其是否能获取到不同的IP地址;(3) 分别重启主机A、B及交换机,查看A、B获取到的IP地址是否和前一次相同。 图1. 三层路由连接图图连接图

实验结果 实验1:环路测试 交换机出现环路的自检测结果: 实验2:路由配置: 主机A连接交换机端口2,划分为vlan10,端口IP地址为。主机IP地址; 主机B连接交换机端口10,划分为vlan20,端口IP地址为。主机IP地址; 在未设置IP routing之前主机A、B分属于不同网段,因此它们不能互通,设置后通过路由则可相互联通:

了解千兆接入交换机测试方法

千兆接入交换机有很多值得学习的地方,这里我们主要介绍千兆接入交换机测试方法。此次评估的目的是为了对各厂商的千兆以太网产品进行一次客观的比较。这种比较的主要目的是为IS管理员和其他IT专业人员提供有助于他们做出设备采购决策的信息。 因此,我们的测试不仅仅局限在千兆接入交换机的性能测试上,而是一个全面的考量,既使用定量衡量标准(如吞吐量、包丢失、延迟、每千兆位成本),又使用定性衡量标准(如安装和管理是否简单、可靠性)。 我们主要的测试项目为:配置测试——考量千兆接入交换机配置的灵活性、端口密度、可扩展性等。安装和易用性测试——安装的时间和难易程度、支持文档和在线帮助的有效性等。特性测试——包括端口链路聚合,流量控制,MAC地址表的容量,端口镜像,VLAN,支持第三层交换,冗余特性,基于MAC的安全性,QoS,生成树,组播控制等。管理测试考察控制台及命令行界面的能力,对Web、SNMP、RMON的支持等。还有重要的性能测试。我们在性能测试方面使用了业界知名的网络性能测试仪IXIA 1600。IXIA 1600最多可以插16个模块,我们的测试环境包括5个10/100M自适应模块,每个模块有4个10/100Base-TX 端口;6个10/100/1000Base-T自适应的LM1000T模块,每个模块有2个10/100/1000M的RJ-45端口;5个GBIC模块,每个模块可插2个1000Base-SX/LX端口。如此完备的测试环境使得我们能够同时测试12个1000Base-T端口、10个1000Base-SX端口、32个10/100Base-TX端口。因此我们能够对参测产品中的高密度千兆接入交换机,进行满负载测试,考察出其在最严格情况下的真实性能。测试时,我们使用5类跳线和光纤跳线连接被测千兆接入交换机和测试仪。 完备的测试环境使得我们能够同时测试12个1000Base-T端口、10个1000Base-SX端口、32个10/100Base-T端口。能够对参测产品中高密度千兆接入交换机,进行满负荷测试,考察出其在最严格情况下的真实性能。 我们此次千兆接入交换机测试主要使用IXIA1600测试仪的ScripMate软件配置和运行各项指标测试,ScriptMate专门为RFC 2544和RFC 2285设计了标准自动化脚本,我们根据自己的需求可以轻松地定义各种参数,同时能够产生详细的日志文件和描述结果的文件。 我们依据RFC2544、RFC 2285以及中国通信行业千兆以太网测试规范制定了9项测试指标,它们是吞吐量、帧丢失率、背对背、延迟、部分网状、全网状、背压、线端阻塞、错误帧过滤,基本上涵盖了用户选择千兆以太网交换机时需要考虑的主要性能指标。 在测试时,IXIA 1600所有端口在默认状态下都允许自适应并关闭流控,此次所有测试都考虑了64字节、512字节、1518字节三种典型长度的帧,除非特别指明,测试都在全双工状态下进行。为了确保测试条件的可靠性和准确性,每项测试均重复了三次。最后的结果是取三次测试的平均值。 在吞吐量测试中,端口配置为1对1映射,在满负载情况下测试吞吐量。在帧丢失率测试中,我们将最初速度设定为100%线速,通过端口1对1映射测试帧丢失率。在延迟测试方面,由于千兆接入交换机包括百兆端口和千兆端口,而百兆端口之间的延迟和千兆端口之间的延迟有较大区别,所以我们进行了百兆端口同模块、跨模块以及千兆端口之间三项测试,每项测试选择了其中的一对端口双向发送数据,对于在100%线速时延迟异常大的千兆接入交换机,我们将速度调整的稍微低一些进行测试。在网状测试中,对于千兆骨干交换机,进行全网状测试,对于千兆接入交换机,则采用部分网状测试方法,将每个千兆端口对应10个百兆端口,剩余的百兆端口实现全网状测试。 在Back-to-Back测试中,满负载下端口配置为1对1映射,初始速度设置为100%线速。背压测试采用两种方法,在半双工和全双工状态下,通过3个端口向一个端口发送数据检测是否支持背压和IEEE802.3x流控。线端阻塞则采用端口A和B向端口C发送数据形成拥塞端口,而A也向端口D发送数据形成非拥塞端口。错误帧过滤则通过1对多映射实现了对过

智能化系统方案之光纤收发器参数

光纤收发器使用说明 一. 概述以太网光纤收发器以太网光纤收发器在网络中可以完成以太网数据从铜线到光纤或从光纤到铜线传输介质的转换。在网络中,电信号在铜线的极限传输距离(一次中继)仅为100 米,而光信号在光纤中可传输达百公里,因而光纤收发器使以太网无限延伸。在光纤到楼这一运用领域中,他可作为楼道交换机光纤uplink, 也可作为宽带小区中汇接交换机的每个端口的光电转换器(机架式)。光纤收发器广泛应用于城域网、大型企业网、校园网、宽带小区等网络的组建。以太网光纤收发器功能特点 采用优质光电一体化模块,提供良好的光特性和电气特性,保证数据传输的可靠性,MTBF>10 5小时,符合电信运营标准。 支持外置、内置、2U 机架、3U 机架,方便用户选择。全双工/ 半双工自适应,直连线/ 交叉线自适应。 支持10/100/100Base-Fx 光纤传输标准,可与其他网络产品相通。支持IEEE802.1Q 及ISL 可选骨干连接。 支持SPANNING TREE 构造容错网络。 支持热插拔。

二.以太网10/100M 自适应收发器以太网光纤收发器可以将10/100Base-Tx 双绞线电信号和100Basw-Fx 的光信号进行相互转化。他将网络的传输距离极限从铜线的100 米扩展到100 公里(单模光纤)。光纤收发器的典型应用是以太网长距离互联,由于具有自适应的功能,在与交接机相连时,交换机不需要任何设置。 状态指示灯说明 PWR(POW): 电源指示灯 FDX: 光纤连接指示及全双工与半双工状态指示灯 FX: 光纤连接动态指示灯 TX: 双绞线连接动态指示灯 10/100 :速率10/100Mbps 指示灯 Tx: 双绞线连接指示灯双电口百兆收发器LINK亮光纤连接正常,闪烁光纤链路在传输数据 SPD1-2 亮双绞线连接正常,闪烁双绞线链路在传输数据 FDX1-2 全双工 PWR 电源 技术标准支持IEEE802.3Ethernet 、IEEE802.3u100Base-Tx/10Base-Tx 和IEEE802.3u100Base-Fx 三.以太网千兆光纤收发器 内置高频交换核心芯片,数据速率达1000Mbps ,大大提高网络运行速度,满足用户宽带需要。 支持可选的光路故障检测功能、进行流量控制、容错检测、上报交换机网管。工作速率1000Mbps 。 自动适应10/100Mbps 。 产品兼容性 状态灯说明 1000M: 以太网速率为1000 兆时,指示灯亮;速率为10 兆或100 兆时灭。 Fx: 当光模块故障或光纤没有接上时指示灯亮,反之灭。 POW: 电源指示灯,有电源输入亮,反之灭。 TXD: 数据发送指示。 RXD: 数据接收指示。 FDX/HDX: 全双工和半双工指示,工作状态为全双工时会亮,否则会灭。 外置百兆双纤收发器 产品简介:10/100M 自适应快速以太网光纤收发器是完成10、100Base-TX 到 100Base-FX 之间的光电转换。该收发器同时支持IEEE802.3 10Base-T、IEEE802.3u 100Base-TX、100Base-FX 标准,能够有效的支持全双工或半双工模式,是校园和骨干网或交换共享以太网布线环境中的理想设备。可用于连接服务器、工作站,HUB 、交换机;该收发器有单模和多模两种光纤传输模式,有多种传输距离(最远可达120KM)可供选择的光纤接口和RJ-45 接口。为了适应我国供电网络的现有状况,用户除了可以选择外置直流供电方式外,还可以根据自已电网状况选择内置开关电源供电方式或48V 供电方式。

等保测评整改-汇聚层交换机安全策略检查及加固报告

密级:秘密 文档编号: 项目代号: XXX网站系统 汇聚层交换机安全策略检查及加固报告 XXX 2012年 10月12日

目录 一.安全检查概述 (4) 1.1检查目标 (4) 1.2检查范围 (4) 1.3检查流程 (5) 二.设备信息 (5) 三.检查内容记录 (6) 四.安全加固项 (7) 4.1关闭未使用的端口 (7) 4.2设置Telnet访问ACL限制 (7) 4.3设置系统登录信息警告 (8) 4.4设置syslog日志服务器(可选) (8)

文档信息表

一.安全检查概述 为了保障XXX网站系统的网络安全、通畅和高效的运营,XXX针对XXX 数据中心汇聚层交换机的安全策略进行安全检查,并根据检查结果给出相应的加固建议。 1.1检查目标 本次汇聚层交换机安全策略检查服务,主要通过完整详细的采集交换机设备的基本信息与运行状态数据,再对本次交换机安全策略检查采集的数据进行系统的整理与分析,然后对XXX网络安全提出相关建议报告。对现有网络存在的问题记录;及时的反馈。 ?采集汇聚层交换机设备的运行参数,通过系统整理与分析,判断设备的运行状态。 ?检查汇聚层交换机的运行环境,分析和判断交换机设备运行环境是否满足当前安全运行的必要条件。 ?检查安全设备、配置的冗余性,确保网络系统具有抵御设备故障的能力和高可用性。 ?检查交换机的log日志记录,调查前期交换机设备运行状态情况,寻找故障隐患。 1.2检查范围 本次XXX网站系统汇聚层交换机安全策略检查的范围主要包括: ?设备运行状况及账户安全策略设置; ?检查日志记录情况和存储设置; ?检查路由协议安全状况; ?检查设备冗余情况及设备配置备份策略; ?检查访问控制安全策略设置和各种服务运行状况。

光纤收发器测试方案

北京瑞斯康达科技发展有限公司RC系列光纤收发器设备 测试方案建议书 日期:2005年 4 月 26日 北京瑞斯康达科技发展有限公司

RC系列光纤收发器测试报告 此测试报告是关于10/100M自适应收发器的性能、功能测试以及对网管软件平台的功能。其中RC513/514-FE-XX具有N*32kbps带宽可控,支持远端网管功能单纤收发器。测试分四部分。 一、常规性能测试 二、收发器与交换机、路由器配合实现交换机、路由器链路备份功能 三、带宽限制与FTP测试 四、结合网管功能的测试 一、常规性能测试 1、测试内容及目的 本测试方案的主要目的是测试10/100M自适应以太网光纤收发器的稳定性、灵活性及恶劣环境下的传输能力。 ◆稳定性测试:在标准传输环境及恶劣传输环境下系统运行的稳定性。实现 方式是在系统测试时,100Base-T 的RJ-45接口使用60米~100米长的标准五类双绞线,100Base-FX的光接口在光路上模拟15dB~20dB的衰减,在此环境下测试系统运行效果。 ◆灵活性测试:测试系统对各种不同应用环境及不同网络设备联接的互联能 力。实现方式是测试时将网络设备的端口模拟成100Mbps全双工、自适应等各种模式,在此环境下测试系统的运行效果。 ◆传输能力:测试系统的有效传输能力。实现方式是在光纤收发器两端设备上模拟80% 的双向数据流量,在此负载下测试系统的丢包率。 2、测试环境

测试设备连接图: 3、测试过程 固定流程: ?PC机A:向B最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机B:向A最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机A:进入DOS环境,ping B的IP地址,64K字节,500次,统计丢包率。 ?PC机B:进入DOS环境,ping A的IP地址,64K字节,500次,统计丢包率。 ?填写测试记录表,如表1 1)、将PC机A的网卡配置为100Mbps,全双工;将PC机B的网卡配置为100Mbps,

交换机性能参数测试操作手册

交换机性能参数测试操作手册 文档编号: 版本:1.1 日期:2005-8-7

一、目的 为了便于以后用SMB来测试交换机的相关性能的操作,特地撰写了该测试操作手册,给大家提供参考。 二、测试范围 该手册可用于用SMB对二层、三层交换机的性能测试。性能具体分为rfc 2544提及的吞吐量(Throughput)、延迟(Latency)、丢包率(Packet Loss)、背靠背(Back-to-back)四个主要指标和rfc 2889涉及到的转发能力(Forwarding)、拥塞控制(Congestion Control)包括线头阻塞(HOLB)和背压(Backpressure)、地址深度(Address Caching)、地址学习(Address Learning)、错误帧处理能力(Error Filting)、广播转发能力(Broadcast forwarding)、广播延迟(Broadcast Latency)以及Forward Pressure 能力的八个性能指标。 Rfc2544性能指标是利用Smartbits Application软件来测试的,rfc2889涉及的性能指标是用AST软件来测试的。 下面将以自研产品S3448型交换机(48口)为例,分别对上面列的性能指标的测试进行操作说明。 三、性能测试 3.1 测试硬件设备 1. S3448交换机一台; 2. SMB6000B一台; 3. PC机一台,并安装Smartbits Application和AST软件。 4. 线缆若干。 3.2 软件设备 Smartbits Application软件; AST软件。

网络测试方案完整版

网络测试方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

青岛武船网络测试方案

目录 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。

避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返延时和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机 测试内容:

光纤收发器常见问题分析

1、首先看光纤收发器或光模块的指示灯和双绞线端口指示灯是否已亮? a、如收发器的光口(FX)指示灯不亮,请确定光纤链路是否交叉链接?光纤跳线一头是平行方式连接;另一头是交叉方式连接。 b、如A收发器的光口(FX)指示灯亮、B收发器的光口(FX)指示灯不亮,则故障在A收发器端:一种可能是:A收发器(TX)光发送口已坏,因为B收发器的光口(RX)接收不到光信号;另一种可能是:A收发器(TX)光发送口的这条光纤链路有问题(光缆或光线跳线可能断了)。 c、双绞线(TP)指示灯不亮,请确定双绞线连线是否有错或连接有误?请用通断测试仪检测(不过有些收发器的双绞线指示灯须等光纤链路接通后才亮)。 d、有的收发器有两个RJ45端口:(To HUB)表示连接交换机的连接线是直通线;(To Node)表示连接交换机的连接线是交叉线。 e、有的发器侧面有MPR开关:表示连接交换机的连接线是直通线方式;DTE 开关:连接交换机的连接线是交叉线方式。 2、光缆、光纤跳线是否已断? a、光缆通断检测:用激光手电、太阳光、发光体对着光缆接头或偶合器的一头照光;在另一头看是否有可见光?如有可见光则表明光缆没有断。 b、光纤连线通断检测:用激光手电、太阳光等对着光纤跳线的一头照光;在另一头看是否有可见光?如有可见光则表明光纤跳线没有断。 3、半/全双工方式是否有误? 有的收发器侧面有FDX开关:表示全双工;HDX开关:表示半双工。 4、用光功率计仪表检测 光纤收发器或光模块在正常情况下的发光功率:多模:-10db--18db之间;单模20公里:-8db--15db之间;单模60公里:-5db--12db之间;如果在光纤收发器的发光功率在:-30db--45db之间,那么可以判断这个收发器有问题 二、收发器常见故障判断方法 光收发器种类繁多,但故障判断方法基本是一样的,总结起来光收发器所会出现的故障如下: 1. Power灯不亮 电源故障 2. Link灯不亮 故障可能有如下情况: (a)检查光纤线路是否断路 (b)检查光纤线路是否损耗过大,超过设备接收范围 (c)检查光纤接口是否连接正确,本地的TX 与远方的RX 连接,远方的TX 与本地的RX连接。 (d)检查光纤连接器是否完好插入设备接口,跳线类型是否与设备接口匹配,设备类型是否与光纤匹配,设备传输长度是否与距离匹配。 3.电路Link灯不亮 故障可能有如下情况: (a)检查网线是否断路 (b)检查连接类型是否匹配:网卡与路由器等设备使用交叉线,交换机,集线器等设备使用直通线。 (a)检查设备传输速率是否匹配

交换机的安装调试实验报告

实验报告 课程名称网络工程设计与系统集成实验项目交换机的安装与调试 专业班级指导教师 姓名学号 成绩日期 一、实验目的 本实验主要用来练习交换机上VLAN、VTP配置,交换机间TRUNK配置,验证VLAN、VTP、TRUNK的工作原理。 二、实验设备 2台交换机、4台PC机,5条直连线 三、实验拓扑 四、实验步骤 (1)交换机A的基本配置 Switch>enable Switch#conf t Switch(config)#host SW1 SW1(config)#ena se c1 SW1(config)#line vty 0 15 SW1(config-line)#pass c2 SW1(config-line)#int fe 0/1 SW1(config-if)#switchport mode access SW1(config-if)#int fe 0/2 SW1(config-if)#switchport mode access SW1(config-if)#int vlan 1 SW1(config-if)#ip add 192.168.0.1 255.255.255.0 SW1(config-if)#no shut

SW1(config-if)#end SW1#copy run start (3)交换机B的基本配置 Switch>enable Switch#conf t Switch(config)#host SW2 SW2(config)#ena se c1 SW2(config)#line vty 0 15 SW2(config-line)#pass c2 SW2(config-line)#int fe 0/1 SW2(config-if)#switchport mode access SW2(config-if)#int fe 0/2 SW2(config-if)#switchport mode access SW2(config-if)#int vlan 1 SW2(config-if)#ip add 192.168.0.2 255.255.255.0 SW2(config-if)#no shut SW2(config-if)#end SW2#copy run start (4)配置测试pc机的基本参数 通过Boson NetSim中的工具栏按钮“eStations”选择“Host 1”并按照下面 的步骤配置Host 1的相关参数: 键入“回车键”继续。 在Host 1的命令提示符下键入ipconfig /ip 192.168.0.11为Host 1设置IP地址、子网掩码。 在Host 2的命令提示符下键入ipconfig /ip 192.168.0.22为Host 2设置IP地址、子网掩码。 在Host 3的命令提示符下键入ipconfig /ip 192.168.0.33为Host 3设置IP地址、子网掩码。 在Host 4的命令提示符下键入ipconfig /ip 192.168.0.44为Host 4设置IP地址、子网掩码。 在Host 1的命令提示符下键入ping 192.168.0.1测试到交换机SW1的管理IP的连通性。 在Host 1的命令提示符下键入ping 192.168.0.2测试到交换机SW2的管理IP的连通性。 在Host 1的命令提示符下键入ping 192.168.0.22测试到PC机Host 2的连通性。 在Host 1的命令提示符下键入ping 192.168.0.33测试到PC机Host 3的连通性。 在Host 1的命令提示符下键入ping 192.168.0.44测试到PC机Host 4的连通性。

交换机与配线架的测试方法

交换机与配线架端口对应快速查找法 在组建局域网时,按照综合布线的一般规范,施工中应使用带有“米标”的网线或在两侧水晶头处套专用“异型号码管”,并在机柜处做与“米标”或“号码管”相对应的计算机标识记录。 许多单位原来计算机的数量很少,后来逐步添加了一些计算机,组成具有一定规模的局域网,而原来组网时并没有给连接计算机的网线做标识,或只加了1234、ABCD这样的纸制标签,容易出现雷同,时间久了有些标识还会模糊不清,这给以后的网络维护工作带来了不便。在给局域网进行标准化改造过程中,给交换机与计算机相连接的网线配对是一项烦琐的工作,下面介绍四种常见的配对方法: 1.使用网线测线器:这也是人们常用的方法,把所有的网线从交换机(或Hub)上拔下,把测线器的发射端连接在计算机一端的网线上,然后用接收端逐一测试交换机端的网线,找出有信号连通指示的一端,套上号码管,插入交换机相应位置,并做好记录,完成一组网线的配对工作,然后进行下一组网线的配对工作。这种方法适合于计算机数量较少的局域网中。 2.逐一开启计算机:在网络连接正常的情况下,计算机网卡的电源指示灯、数据指示灯与交换机端对应端口位置的电源指示灯和数据灯会亮起来,根据这一特点,我们可以逐一开启计算机,观察交换机哪个位置的指示灯会亮起来,相应端口的网线即是与刚开启计算机相连的那根了。某些网卡,只要网卡接入局域网,开机与否指示灯都是亮的,不适合用这种方法。 3.网线“热插拔”:在开启计算机的情况下,拔下与网卡相连的网线,观察交换机上哪个位置的指示灯熄灭,从而确定与计算机相连的网线。道理与方法2是一样的,不过,热插拔对计算机存在一定的危害性。 上述方法需要断开局域网的连接,由两个人配合才能完成,计算机与交换机距离较远时还得通过对讲机、手机进行联络。如果由一个人来完成这项工作,劳动强度是很大的。某些重要的局域网不能随便断开网络连接,那么有没有比较简单的方法呢?当然有了! 4、大数据拷贝法:我们知道,交换机和网卡的数据指示灯在进行数据传输时会快速闪烁,根据这个特点,我们可以从指定的计算机拷贝数据,通过观察交换机快速闪烁的数据指示灯来确定相连的计算机。 首先借用一台计算机放于交换机旁,做一根较短的网线插入交换机指定的端口,确认这台计算机能连接到局域网(假设这台计算机名为test,接入交换机的端口1),然后检查局域网中的每一台计算机是否能接入局域网,可以打开“网上邻居”看能否找到用于测试的那台计算机:test,同时把计算机上的某个大数据文件夹设为共享(如共享C盘)。在网线上套上“号码管”,记下本台计算机的相关数据,如计算机的位置、计算机名称、IP地址、“号码管”编号等。 下面就可以进行快速配对工作了。在test计算机上打开“网上邻居”,双击某一台计算机,找到其共享文件夹,复制大数据文件到test计算机上,此时观察交换机的数据指示灯,应该有两个位置的指示灯快速、持续地闪烁,一个就是连接test计算机的端口1,另一个端口位置连接的就是进行数据复制的那台计算机了,套上“号码管”,记下端口位置,完成了一组网线的配对工作。 在test计算机上打开“网上邻居”,找到另一台计算机的共享文件夹,再复制大数据文件,从而确定其在交换机上的端口位置。逐一完成局域网中的网线配对工作。

网络测试方案

xx武船网络测试方案 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。 避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返xx和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试

测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHX-1交换机 2. QW-FLHX-2交换机 汇聚交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHJ-1交换机 2. QW-FLHJ-2交换机 S5120接入交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FL6-4

光纤收发器基本连接方式

光纤收发器基本连接方式 光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的以太网传输媒体转换单元,在很多地方也被称之为光电转换器。产品一般应用在以太网电缆无法覆盖、必须使用光纤来延长传输距离的实际网络环境中,且通常定位于宽带城域网的接入层应用。 在传统的以太网中起连接作用的介质主要是双绞线。双绞线传输距离的极限大约为200米左右,如此短的传输距离制约了网络的发展,同时双绞线受电磁干扰的影响较大,这也无疑使数据通讯质量受到较大的影响。光纤收发器的运用,将以太网中的连接介质换为光纤。光纤的低损耗、高抗电磁干扰性,在使网络传输距离从200米扩展到2公里甚至几十公里,乃至于上百公里的同时,也使数据通讯质量有了较大提高。他使服务器、中继器、集线器、终端机与终端机之间的互联更加简捷。 在实际的应用中,光纤收发器主要有下面三种基本连接方式: 一、环形骨干网 环形骨干网是利用SPANNING TREE特性构建城域范围内的骨干,这种结构可以变形为网状结构,适合于城域网上高密度的中心小区,形成容错的核心骨干网络。环形骨干网对IEEE.1Q 及ISL网络特性的支持,可以保证兼容于绝大多数主流的骨干网络,如跨交换机的VLAN、TRUNK等功能。环形骨干网可为金融、政府、教育等行业组建宽带虚拟专网。

二、链形骨干网 链形骨干网利用链形的联接可以节省大量的骨干光线数量,适合于在城市的边缘及所属郊县地区构造高带宽低价位的骨干网络,该模式同时可用于高速公路、输油、输电线路等环境。链形骨干网对IEEE802.1Q及ISL网络特性的支持,可以保证兼容于绝大多数的骨干网络,可为金融、政府、教育等行业组建宽带虚拟专网。链形骨干网是可以提供图像、语音、数据及实时监控综合传输的多媒体网络。 三、用户接入系统 用户接入系统利用10Mbps/100Mbps自适应及10Mbps/100Mbps自动转换功能,可以联接任意的用户端设备,无需准备多种光纤收发器,可为网络提供平滑的升级方案。同时利用半双工/全双工自适应及半双工/全双工自动转换功能,可以在用户端配置廉价的半双工HUB,几十倍的降低用户端的组网成本,提高网络运营商的竞争力。同时,设备内置的交换核心提高接入设备的传输效率,减少网络广播、控制流量、检测传输故障。

交换机EMC测试报告

工业交换机EMC测试报告 1.静电放电抗扰度试验(ESD) 技术要求:受试设备在试验期间应该能正常工作,不应发生损坏和死机现象; 允许出现短暂的显示错误,在干扰结束后能自动恢复不需要人为 干预; 试验等级:3级 试验值:空气放电:±8kv; 接触放电:±6kv。(试验设备为3ctest-EDS20H)试验方法:受试设备处在正常工作状态。对受试设备面板人手容易接触的非金属部分和金属部分分别施加±8kv和±6kv的放电电压,每试验 点正负极放电次数准应大于10次,观察受试设备工作状态。 (本次试验施加电压点为网口、机壳螺丝、机壳、接地螺丝)试验布置图:(各型号布置图不一一列举,图中型号FIS5000-8T-S-DH(AC200))

2.电快速瞬变脉冲群抗扰度试验(EFT) 技术要求:受试设备在试验期间应该能正常工作,不应发生损坏和死机现象; 允许出现短暂的显示错误,在干扰结束后能自动恢复不需要人为 干预; 试验等级:3级 试验值:试验电平:±2kv(电源);±2Kv(通信) 干扰信号重复频率:2.5KHz(电源);5KHz(通信) 干扰信号持续时间:正负极性各60s。(试验设备3ctestCCS600) 试验方法:受试设备处于正常工作状态。按试验等级规定的试验要求,将干扰信号分别施加在电源回路和以太网口,观察设备工作状态。 试验布置图:(各型号布置图不一一列举,图中型号FIS5000-5T-S-DH(AC220)电源±2200kv、FIS5000-5T-S-DH(DC12~53)通信±2200kv)

3.浪涌冲击抗扰度试验(Surge) 技术要求:受试设备在试验期间应该能正常工作,不应发生损坏和死机现象。 试验等级:3级 试验值:试验电平:共模±2200,差模±1100 试验脉冲次数:正负极各5次; 脉冲间隔时间:30s。(试验设备3ctestCCS600) 试验方法:受试设备处于正常工作状态。按试验等级规定的试验要求,将干扰信号分别施加在电源回路和以太网口,观察设备工作状态。 试验布置图:(各型号布置图不一一列举,图中型号FIS5000-8T-S-DH(AC200)电源试验、FIS5000-5T-S-DH(AC220)通信试验)

物联网平台测试方案汇总

XXXX无线项目测试方案 XXX)公司 2015年6月

1测试品牌 本次测试的设备厂家为业界主流产品,各品牌参与测试的设备应为第一轮测试同档次产品或者相同档次的产品。测试的无线产品主要有:(1)无线控制器 AC; (2)无线接入点AP 2测试环境 2.1主要设备 、设备要求 22辅助工具

4 测试干扰设备微波炉 测试非WiFi 的抗干扰能 力 5 干扰AP 作为干扰AP,测试WiFi 信号的抗干扰能力 H3C AP 1台或提供其 它品牌AP 6 各相关测试服务器 模拟各应用服务器 最好曾经测试使用过 2.3测试要求 1、 所有产品必须在同一测试环境条件下进行,以院实际环境为标准。 2、 所测试主要产品AC ffi AP 必须是各厂商相近档次设备。 3、 测试位置:XXX 现场,AC 及AP 勺安装位置均相同。 4、 测试顺序:不同厂家产品同时参与测试。 2.4组网要求 1、要求 (1) AP M 试时放置位置有较大空间(两个 AR 距离为15米或以上); (2) ACC 能接通模拟测试服务器(如AD 域服务器)或其它模拟测试设备,并 提供正常网 络连接; (3) 测试点时需经过玻璃墙、砖墙等环境,以实际环境为准。 2、组网示意图:根据具体实际测试内容调整结构。 测试PC 2 2.5参与人员 现场参与测试人员有: XXXX 工作人员、产品厂家工程师、代理商或集成商 工程师、临时访问人员 测试PC 1 AC POE 交换机 1< AP 2 AP 1

3测试内容和安排 各厂家在相同的场景和条件下进行测试,具体安排与各厂家技术人员协调后进行。主要测试内容根据我院要求而定,重点对关键技术指标进行全面测试及横向比较,普通技术指标视情况而测试。 3.1关键内容 本次主要测试或对比如下关键技术内容: ■无线吞吐量 ■抗干扰能力 ■终端的识别率及BYO功能 ■视频压力承载能力 ■漫游语音通话质量 3.2 AP吞吐量测试 测试内容AP吞吐量测试(2X2MIMO 在同一个位置和环境下,横向对比各品牌AP的吞吐量,分别选择可视点2个,距离AP分别是10米及20米,分别选择3个不可视的测试点, 测试方法 分别是隔一堵墙,隔一堵玻璃,一个承重柱的阻档,测试终端距离 AP控制大25米以内,合计选取5个测试点 il til 测试组网 VI 2 1. AP通过交换机与AC连接;配置AP与AC正常工作。 2 .使PC1关联到无线网络。 测试步骤 3. 使用性能测试软件工具Chariot测试PC1与PC2之间的吞吐量 4. 不同变换位置重复第3点,记录下行吞吐量的测试结果。

光纤测试方案

1.Power灯不亮 电源故障 2.LOS灯亮必有以下故障: (a)从机房到用户端的光缆已经断了; (b) SC尾纤与光纤收发器的插槽没有插好或者已经断开。 3.Link灯不亮可能有如下情况: (a)检查光纤线路是否断路 (b) 检查光纤线路是否损耗过大,超过设备接收范围 (c) 检查光纤接口是否连接正确,本地的TX 与远方的RX 连接,远方的TX 与本地的RX连接。 (d)检查光纤连接器是否完好插入设备接口,跳线类型是否与设备接口匹配,设备类型是否与光纤匹配,设备传输长度是否与距离匹配。 4.电路Link灯不亮故障可能有如下情况: (a)检查网线是否断路 (b) 检查连接类型是否匹配:网卡与路由器等设备使用交叉线,交换机,集线器等设备使用直通线。 (c) 检查设备传输速率是否匹配 5.网络丢包严重可能故障如下: (a)收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。 (b)双绞线与RJ-45头有问题,进行检测 (c)光纤连接问题,跳线是否对准设备接口,尾纤与跳线及耦合器类型是否匹配等。 6. 光纤收发器连接后两端不能通信 (a)光纤接反了,TX和RX所接光纤对调 (b)RJ45接口与外接设备连接不正确(注意直通与绞接)光纤接口(陶瓷插芯)不匹配,此故障主要体现在100M带光电互控功能的收发器上,如APC插芯的尾纤接到PC插芯的收发器上将不能正常通信,但接非光电互控收发器没有影响。 7. 时通时断现象 (a)可能为光路衰减太大,此时可用光功率计测量接收端的光功率,如果在接收灵敏度范围附近,1-2dB范围之内可基本判断为光路故障 (b)可能为与收发器连接的交换机故障,此时把交换机换成PC,即两台收发器直接与PC连接,两端对PING,如未出现时通时断现象可基本判断为交换机故障

网络测试报告方案

网络测试方案XX项目 测试方案 XX工程有限公司 2020年11月

目录 第1章测试设备清单 (2) 第2章网络以及安全设备单机测试 (3) 2.1H3C LS-7506(2台) (3) 2.2H3C LS-5130S-28S-HI(5台) (4) 2.3H3C LS-5130S-28S-EI(1台) (6) 2.4D PTECH FW1000-GC-N(1台) (8) 2.5D ELL P OWER E DGE R730(1台) (8) 2.6ATEN CL5708M(1台) (9) 第3章网络设备连通性测试 (10) 3.1H3C LS-7506(2台) (10) 3.2H3C LS-5130S-28S-HI(5台) (10) 3.3H3C LS-5130S-28S-EI(1台) (11) 3.4D PTECH FW1000-GC-N(1台) (12) 3.5D ELL P OWER E DGE R730(1台) (13) 第4章冗余测试 (14) 4.1设备冗余测试 (14) 4.1.1H3C LS-7506(2台) (14) 4.1.2Dptech FW1000-GC-N(2台) (15) 4.1.3Dell PowerEdge R730(1台) (16) 4.2线路冗余测试 (16)

第1章测试设备清单

第2章网络以及安全设备单机测试 2.1H3C LS-7506(2台) 1.模块状态指示灯检测 2.设备电源工作状态及工作模式检测 3.软件版本检测 4.设备模块工作状态检测

2.2H3C LS-5130S-28S-HI(5台) 1.模块状态指示灯检测 2.设备电源工作状态及工作模式检测 3.软件版本检测 4.设备模块工作状态检测

697f交换机功能性能测试方法

交换机功能性能测试方法 注:本文档没有描述,但应当包括的其它测试如下,这些测试仅需简单配置,测试时若需使用以太网电口,可依次选择标识为100Base-Tx 1、2、……16的端口(管理配置使用名称ethernet 1、ethernet 2、……ethernet 16),若需使用以太网光口,依次选择标识为1000Base-X 25、26的端口(管理配置使用名称gigabitethernet 1、gigabitethernet 2),以实际所需数量为准。测试时若需使交换机不接地,只需连接电源+、-端口,电源PE悬空,接地端子悬空;若需使交换机接地,需连接电源+、-端口,电源PE接地,接地端子接地,电源能适应交流和直流220V电压,正负极可以互换,为可靠起见,使用直流电压测试时,正极接电源+端口,负极接电源-端口。 “6.2电源影响性测试” “6.3温度影响” “6.5.1交换机吞吐量测试” “6.5.2转发速率” “6.5.5时延” “6.5.6帧丢失” “6.5.7背靠背帧” “以太网光接口测试” “6.6功耗消耗测试” “6.7绝缘性能测试” “6.8耐湿热性能测试”

“6.9机械性能测试” “6.10电磁兼容测试” 按“6.4功能检查”要求,本文档包括的测试项目包括“网络风暴抑制”(测试标准5.3.4,本文档第1章)、“镜像”(测试标准5.3.7,本文档第2章)。 按“6.5性能测试”要求,本文档包括的测试项目包括“地址缓存能力”(测试标准6.5.3,本文档第3章)、“地址学习能力”(测试标准6.5.4,本文档第4章)、虚拟局域网(测试标准6.5.8,本文档第5章)、环网恢复时间(测试标准6.5.9本文档第6章)、队列优先级(测试标准,本文档第7章)。 第1章广播风暴、组播风暴、未知单播风暴抑制测试(参考ADESA_PIRL_RateLimit.tcc配置文件) 1.1测试接线 使用测试仪器的端口为P1、P2;使用交换机的端口为ethernet 1、ethernet 2。测试仪器的P1口接交换机ethernet 1 端口,测试仪器的P2口接交换机ethernet 2端口。 1.2 建流 建立主机:P1口建立1个主机为Host 1。 添加数据流: 建立广播数据流,命名为BC,帧长64字节,目标MAC地址FF:FF:FF:FF:FF:FF,源MAC地址为Host 1的MAC地址,Rx Port设为P2; 建立组播数据流,命名为MC,帧长64字节,目标MAC地址为任意组播MAC地址,源MAC地址为Host 1的MAC地址,Rx Port设为P2;

6097F交换机功能性能测试方法

实用标准文档 交换机功能性能测试方法 注:本文档没有描述,但应当包括的其它测试如下,这些测试仅需简单配置,测试时若需使用以太网电口,可 依次选择标识为100Base-Tx 1 、2、.......... 16 的端口(管理配置使用名称ethernet 1 、ethernet 2 、ethernet 16 ), 若需使用以太网光口,依次选择标识为1000Base-X 25、26 的端口(管理配置使用名称gigabitethernet 1、gigabitethernet 2 ),以实际所需数量为准。测试时若需使交换机不接地,只需连接电源+、-端口,电源PE悬空, 接地端子悬空;若需使交换机接地,需连接电源+、-端口,电源PE接地,接地端子接地,电源能适应交流和直流 220V 电压,正负极可以互换,为可靠起见,使用直流电压测试时,正极接电源+端口,负极接电源-端口。 “ 6.2 电源影响性测试” “6.3 温度影响” “ 6.5.1 交换机吞吐量测试” “ 6.5.2 转发速率” “ 6.5.5 时延” “ 6.5.6 帧丢失” “ 6.5.7 背靠背帧” “ 6.5.11 以太网光接口测试” “ 6.6 功耗消耗测试” “6.7 绝缘性能测试” “6.8 耐湿热性能测试” “6.9 机械性能测试” “ 6.10 电磁兼容测试” 按“6.4 功能检查”要求,本文档包括的测试项目包括“网络风暴抑制” (测试标准5.3.4 ,本文档第1 章)、“镜文案大全 按“ 6.5 性能测试”要求,本文档包括的测试项目包括“地址缓存能力” (测试标准6.5.3 ,本文档第3 章)、“地址学习能力”(测

相关文档
最新文档