农业大棚物联网智能系统

农业大棚物联网智能系统
农业大棚物联网智能系统

x x 农业建设

果蔬大棚物联网

前言...................................................................... 错误!未定义书签。

一、农业物联网在现代设施农业应用的意义.................................... 错误!未定义书签。

二、果蔬大棚物联网方案概述................................................ 错误!未定义书签。

2.1 系统设计原则.................................................... 错误!未定义书签。

2.2 系统功能特点................................................... 错误!未定义书签。

2.3 系统组成....................................................... 错误!未定义书签。

3.4 系统示意图..................................................... 错误!未定义书签。

三、各子系统介绍.......................................................... 错误!未定义书签。

3.1 环境参数采集子系统............................................. 错误!未定义书签。

3.2 自动控制系统................................................... 错误!未定义书签。

3.3 视频监控子系统................................................. 错误!未定义书签。

3.4 信息发布系统................................................... 错误!未定义书签。

四、中央控制室及管理软件平台.............................................. 错误!未定义书签。

4.1系统平台功能 ..................................................... 错误!未定义书签。

4.2 数据采集功能 ..................................................... 错误!未定义书签。

4.3 设备控制 ........................................................ 错误!未定义书签。

4.4 视频植物生长态势监控功能......................................... 错误!未定义书签。

五、项目的需求............................................................ 错误!未定义书签。

、尸■、亠

前言

物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一次产业升级,是十年一次的产业机会。总体来说,物联网是指各类传感器和现有的互联网相互衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确定地址,它的各种状态、参数

可被感知。2009 年8 月xx 总理在xx 提出"感知xx" ,物联网开始在xx 受到政府的重视和政策牵引。2010 年国家发布了" 十二五" 发展规划纲要,其中第十三章“全面提高信息化水平‘第一节'构建下一代信息基础设施”中明确提到:推动物联网关键技术研发和在重点领域的应用示范。在第五章“加快发展现代农业‘第二节'推进农业结构战略性调整”中提出:加快发展设施农业,推进蔬菜、果蔬、茶叶、果蔬等园艺作物标准化生产。提升畜牧业发展水平。促进水产健康养殖。推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。推进现代农业示范区建设。第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动过程机械化、生产经营信息化。加快农业生物育种创新和推广应用,做大做强现代种业。加强高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、xx 等主要农作物病虫害专业化统防统治。加快推进农业机械化,促进农机农艺融合。发展农业信息技术,提高农业生产经营信息化水平。

2013 年国家一号文件更是着重讲述物联网技术在农业中的应用。物联网信息技术与现代农业的结合更加是国家重点推动的关键示范应用。

一、农业物联网在现代设施农业应用的意义

我国是农业XX,而非农业强国。近30年来果蔬高产量主要依靠农药化肥的大量投入,大部分化肥和水资源没有被有效利用而随地弃置,导致大量养分损失并造成环境污染。我国农业生产仍然以传统生产模式为主,传统耕种只能凭经验施肥灌溉,不仅浪费大量的人力物力,也对环境保护与水土保持构成严重威胁,对农业可持续性发展带来严峻挑战。

本项目针对上述问题,利用实时、动态的农业物联网信息采集系统,实现快速、多维、多尺度的果蔬信息实时监测,并在信息与种植专家知识系统基础上实现农田的智能灌溉、智能施肥与智能喷药等自动控制。突破果蔬信息获取困难与xx 程度低等技术发展瓶颈。

目前,我国大多数果蔬生产主要依靠人工经验尽心管理,缺乏系统的科学指导。设施栽培技术的发展,对于农业现代化进程具有深远的影响。设施栽培为解决我国城乡居民消费结构和农民增收,为推进农业结构调整发挥了重要作用,大棚种植已在农业生产中占有重要地位。要实现xx 的设施农业生产和优化设施生物环境控制,信息获取手段是最重要的关键技术之一。

物联网技术的发展,为农业大棚的产生创造了条件。基于智能传感技术、无线传输技术、智能处理技术及智能控制等农业物联网应用的智能果蔬大棚种植系统,集数据实时采集、无线传输、智能处理和预测预警信息发布、辅助决策等功能于一体,通过对大棚环境参数的准确检测、数据的可靠传输、信息的智能处理以及设备的智能控制,实现农业生产的高效管理。网络由数量众多的低能源、低功耗的智能传感器节点所组成,能够协作地实时监测、感知和采集各种环境或监测对象的信息,并对其进行处理,获得详尽而准确的信息,通过无线传输网络传送到基站

主机以及需要这些信息的用户,同时用户也可以将指令通过网络传送到目标节点使其执行特定任务。

物联网在农业领域中有着广泛的应用。我们从农产品生产不同的阶段来看,无论是从种植的培育阶段和收获阶段,都可以用物联网的技术来提高它工

作的效率和精细管理。例如:

(1)在种植准备的阶段

我们可以通过在大棚里布置很多的传感器,实时采集当前状态下土壤信息,来选择合适的农作物并提供科学的种植信息及其数据经验。

(2)在种植和培育阶段

可以用物联网的技术手段进行实时的温度、湿度、CO2 等的信息采集,且可以根据信息采集情况进行自动的现场控制,以达到高效的管理和实时监控的目标,从而应对环境的变化,保证植物育苗在最佳环境中生长。例如:通过远程温度采集,可了解实时温度情况然后手动或自动的在办公室对其进行温度调整,而不需要人工去实施现场操作,从而节省了大量的人力。

(3)在农作物生长阶段

可以利用物联网实时监测作物生长的环境信息、养分信息和作物病虫害情况。利用相关传感器准确、实时地获取土壤水分、环境温湿度、光照等情况,通过实时的数据监测和物定作物的专家经验相结合,配合

控制系统调理作物生长环境,改善作物营养状态,及时发现作物的病虫害爆发时期,维持作物最佳生长条件,对作物的生长管理及其为农业提供科学的数据信息等方面有着非常重要的作用。

(4)在农产品的收获阶段

我们也同样可以利用物联网的信息,把它传输阶段、使用阶段的各种性能

进行采集,反馈到前端,从而在种植收获阶段进行更精准的测算。总而言之,物联网农业智能测控系统能大大的提高生产管理效率,节省人工(例如:对于大型农场来说,几千亩的土地如果用人力来进行浇水施肥,手工加温,手工卷帘等工作,其工作量相当庞大且难以管理,如果应用了物联网技术,手动控制也只需点击鼠标的微小的动作,前后不过几秒,完全替代了人工操作的繁琐),而且能非常便捷的为农业各个领域研究等方面提供强大的科学数据理论支持,其作用在当今的高度自动化、XX的社会中是言而谕的。

二、果蔬大棚物联网方案概述

2.1 系统设计原则

从以上需求情况分析本系统,制订设计原则,以指导我们的方案设计:

1、先进性:采用先进的设计理念,选用先进的软硬件设备,保证项目整体在未来一定时期内的技术领先性。

2、开放性:方案的设计及选型遵从国际标准及工业标准,使项目具有高度的开放性和所提供设备在技术上的兼容性。

3、可扩展性:项目设计在充分考虑当前情况的同时,必须考虑到今后较长时期内业务发展的需要,留有充分的升级和扩充的可能性。

4、可靠性:项目的设计必须贯彻可靠性原则,使系统具有很高的可用性。

5、经济适用性:先进的设计理念、先进的技术必须考虑其信价,不要用高科技高价格吓到用户,把实际应用门槛提高,要让农户用得起的物联网技术。

2.2 系统功能特点

采集采用超低功耗,节能环保,低功耗设计,采用太阳能供电的方式完全可以满足大部分设备的需要。

网络采用现代网络——物联网新技术,采用最先进的物联网技术,具有自组网、自愈合、云端计算等全新功能。

无线技术采用Zigbee 、3G、Wlan 等无线技术,安装方便,携带方便,无基建成本、无改造成本,避免了布线带来的火灾隐患,突破了有线只能在本地计算机进行查看和浏览的劣势,用户可以突破时间和地域的限制,随时随地的了解生产现场状况。

显示方式采用LED 显示屏,液晶电视,电脑,手机等不同的显示

方式,适合在示范基地不同地方使用,充分体现现代农业与现代光电信息技术的融合。

图像与视频采用彩色XX (1080P)摄像机,通过多维信息与多层次

处理实现农作物的最佳生长环境调理及施肥管理。图像与视频的引用,

直观地反映了农作物生产的实时态势,可以侧面反映出作物生长的整体

状态及营养水平。可以从整体上给农户提供更加科学的种植决策理论依据。

三维可视化智能物联网管理平台设计

三维可视化智能物联网管理平台 技术方案 二〇一二年八月

目录 一、概述 (3) 1.1项目背景 (3) 1.2建设系统的意义 (4) 1.3设计依据和参考资料 (5) 二、系统特点 (5) 三、设计原则 (6) 3.1可靠性 (6) 3.2先进性与合理性 (6) 3.3开发性 (6) 3.4可扩展性 (6) 四、系统总体构架 (6) 4.1系统整体框图 (6) 4.2系统研究内容 (7) 五、系统组成 (8) 5.1软件组成 (8) 5.2 硬件组成 (9) 5.3 软件功能 (10) 5.4 开发环境 (14) 5.5 系统报价 (14)

一、概述 1.1项目背景 物联网是指通过信息传感设备,按照约定的协议,把需要联网的物品与网络连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪监控和管理的一种网络,它是在网络基础上的延伸和扩展应用。物联网是被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。有业内专家认为物联网一方面可以提高经济效益,大大节约成本,另一方面可以为全球经济的复苏提供技术动力。 目前,美国、加拿大、欧盟、日本、韩国等都在投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“U-Japan”、“U-Korea”、“物联网行动计划”等国家性区域战略规划。 我国把发展物联网已经提到国家的战略高度,它不但是信息技术发展到一定阶段的升级需要,同时也是实现国家产业结构调整,推动产业转型升级的一次重要契机。2010年9月,《国务院关于加快培育和发展战略性新兴产业的决定》发布,新一代信息技术、节能环保、新能源等七个产业被列为中国的战略性新兴产业,将在今后加快推进,其中物联网技术作为新一代信息技术的重要组成部分,更是在近一年里受到政府、企业和科研机构的大力支持。 当前,世界各国的物联网基本都处于技术研究与试验阶段,物联网相关技术研究还处于起步发展阶段,在物联网基础研究和技术开发等方面还面临许多挑战。物联网涉及到的关键技术领域很多,包括RFID识别技术、泛在传感技术与纳米嵌入技术、IPV6地址技术以及等。从软件的角度来看,物联网软件技术研究方面也是处于起步阶段,尤其是基础软件的研究均处于探索阶段。 面对物联网所带来的大数据量、数据时效性高、安全与隐私性要求高等挑战,人们也在不断地探索亲的解决办法。在物联网系统中,由于传感器节点及采样数据的异构性,基础软件显得尤为重要。物联网基础软件不仅屏蔽了各类传感器硬件及数据的差异,实现了物联网节点及数据的统一处理,而且实现了海量物联网节点之间的协同工作,从而大大简化了物联网应用程序的开发。我们以动态位置感知类应用为例,相关的传感器可以包括GPS传感器、RFID传感器、手机定

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

基于物联网技术的智能化综合管理系统

基于物联网技术的智能化综合 管理系统 设计方案 蓝色慧通(北京)科技集团有限公司 2020年7月6日

目录 一、项目背景 (3) 1.1项目背景 (3) 1.2设计目标 (3) 1.3设计依据 (4) 1.4设计原则 (5) 二、项目介绍 (6) 2.1、项目概述 (6) 2.2、对于安防报警数据的管理管控 (6) 2.3、对于环境数据的管理管控 (8) 2.4、针对消防报警的管理管控 (9) 2.5、对于结构体的数据监测 (9) 三、系统介绍 (10) 3.1、系统概述 (10) 3.2系统功能介绍 (11) 3.3系统拓扑图 (13) 3.4主要设备介绍 (13) 3.41、智能化综合管理平台 (13) 3.42、视频管理功能 (19) 3.43、LRRS无线专网基站 (21) 3.44、LRRS无线智能监测终端 (22) 3.45、LRRS无线手持终端 (23) 3.46、LRRS无线应急按钮 (25) 3.47、LRRS门禁开启关闭状态监测终端 (26) 3.48、LRRS无线智能控制终端 (27) 3.49、防爆型激光对射周界报警设备 (28) 3.410、温湿度传感器 (29) 3.411、烟雾报警设备 (30) 3.412、漏电传感器 (31)

3.413、高精度倾角传感器 (32) 3.414、三合一消防栓管道压力监测终端 (33)

一、项目背景 1.1项目背景 随着5G时代的到来及窄带物联网技术的出现,对于传统的智能化行业带来巨大的冲击,随着技术的不断完善及下游生态产品的不断出现,不仅改善人们的生活,还能给行业带来巨大的变革与创新,推动了经济快速发展。据市场研究机构Gartner预测,到2020年全球物联网终端数量将达到260亿,销售收入将达到3000亿美元,带动经济总量将超过1.9万亿美元。在国内,物联网也成为“中国制造2025”战略规划的重要组成部分。 而对于智能化行业而言引入最新的物联网技术,提高生产及生活安全和效率尤为重要,目前传统的智能化系统一般存在以下两个问题,第一,建设时间较长,技术较为老旧,后续维保费用持续增加,第二,系统未采用最新的架构设计,每种系统均配有大量的控制主机及辅助软件,造成集成性差,通讯回路重复建设和运维费用高等问题,而且日趋严重,急需找到一种新的方式实现一体化集中管控,从而降低投入建设成本,缓解运维人员工作强度。 随着科技的不断发展,基于窄带物联网技术智能化系统逐步成为一种新的趋势,解决了老旧系统对信号线及电源线的过度依赖性,实现了远距离低功耗的探测目的,此次物联网智能化综合管理系统,紧密融合窄带物联网技术,结合智能化行业现状,从根本上解决老旧系统存在的一些问题,实现了传统系统的一体化整合,不仅一次性投资金额减少,后期的维护维保费用也得到了降低,使用过程中更加稳定可靠,故障排查更加简便易懂。 1.2设计目标 该系统设计要求充分利用的最新的物联网技术及无线窄带数据组网技术,采用一个平台,一套通信回路,多种前端数据监测设备的模式,将智能化领域中的安防报警、智慧消防、环境监测、智能巡检、建筑安全等(传感器)融合到一个平台进行集中管理管控,针对上述系统传统的厂家均是开通系统软件平台接

物联网技术在智能农业中的应用终审稿)

物联网技术在智能农业 中的应用 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

物联网技术在智能农业中的应用 摘要本文着重分析了物联网技术在智能农业应用中存在的问题,并探索了物联网技术在智能农业中的应用策略,以促进智能农业的发展。 【关键词】物联网技术智能农业应用 随着网络技术的发展,农业的信息化已经成为当前农业发展的重要方向。但是,现有的信息技术还无法满足智能农业的发展。在这种情况下,依托于物联网的物联网技术充分体现了其在智能农业中的优势。我国加强重视物联网技术在智能农业中的作用,并积极探索物联网技术在智能农业中的具体应用。但是,由于物联网智能农业发展时间较短,缺乏丰富的经验,物联网技术在智能农业中的应用面临着行业标准问题、信息集成问题、商业规模问题等一系列问题需要我国相关部门积极解决。研究物联网技术在智能农业中的应用不仅能够为智能农业的发展提供科学的理论依据,而且能够加强物联网技术的应用,促进我国农业的发展。 1 物联网技术在智能农业应用中存在的问题 1.1 行业标准问题 智能农业的发展需要多样化的环境传感器,为网络数据平台提供作物环境信息,实现管理人员对农作物的实时监测。但是,现阶段物联网技术在信息采集、平台接口、信息传输以及人际互接等方面还存在着一定的缺陷。并且,由于厂家缺乏对技术标准的统一参照,企业无法进行大规模的产品生产,物联网终端产品价格高居不下,严重影响了物联网技术在智能农业中的应用。 1.2 信息集成问题 智能农业的发展需要对农产品的生长、收获、交工和销售即兴实施记录,了解智能农业发展各个方面的信息。这就要求物联网技术能够正确处理大量的数据信息,但是现阶段

智慧农业大棚

品名:智慧农业物联网大棚实训系统 型号:EV-SHNP-02 高校物联网实训系统 -智慧农业大棚 农业物联网是现代物联网技术的发展成果之一。它是将先进的传感、通信和数据处理等物联网技术应用于农业领域,构建智能农业系统,是解决农业发展中遇到的各种问题的有效方法之一。物联网智能农业大致分为3个层次,即感知层、网络层和应用层。感知层主要实现农业生态环境的感知、作物的状态感知和动植物的质量检测等;网络层主要实现感知层所

获得信息到应用层的传输;应用层首先通过数据清洗和融合、模式识别等手段形成最终数据,然后提供给生态环境监测系统、生长监控系统、追溯系统等使用。 智能农业做为物联网技术应用的一个重要方面,是各个高校学习和研究的重点。但是由于农业生产环境的特殊背景,并不是每一个学校都有合适的场地和产品来完成这方面的研究。为了解决这个问题,东谷软件公司设计了EV-SHNP-02型智慧农业实训系统来满足学校的教学和科研使用要求。 本方案在学校教室内或者户外,建设一套高标准,高技术的智能农业大棚系统,在此智能大棚有限的空间内集中体现了物联网智能农业的3个层次,即感知层、网络层和应用层。系统融合了多种信息技术,拥有很好的演示效果。大棚内装配有多种传感器和执行器,可支持50寸触控一体机或智能手机上的App程序和WEB应用进行统一的控制和管理。 东谷软件的智能农业大棚实训系统不仅可以作为物联网工程专业《物联网软件设计》课程的实验平台,还可以用作老师和学生对智能农业进行研究的科研平台。 物联网技术在农作物种植中的应用,具体指的是利用现代电子技术、自动化控制技术、计算机及网络技术相结合。通过部署在农作物中的的传感器节点,组建感器网络,采集农作物生长过程中最为密切相关的空气温度、空气湿度、土壤水分、土壤温度、土壤PH值、光照、风速、风向、CO2等环境参数,并通过网络实时传输至远程中心服务器,中心服务器接收存储数据,结合对应的诊断知识模型对数据解析处理,以达到分布式监测,集中式管理。农业管理员、农业专家通过手机或者手持终端就可以及时掌握农作物的生长情况,及时发现农作物的生长病症,及时采取有效的控制措施。 空气温度、空气湿度、土壤温湿度、土壤PH值等是农作物种植中至关重要的环境参数,每个条件都影响着农作物的生长状况以及品质。传统的人为判断的种植模式存在效率低,无具体量化数值作为依据。因此,在农作物种植中难免会出现一些误差,另外还需大量人工和时间来处理,往往不能及时有效地察觉生产过程中的问题。

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

物联网智能管理系统项目实施协议

玉米协同创新基地物联网智能管理系统 项目实施协议 张掖市财政资金支持项目合同书 合同号: 甲方(项目建设单位):张掖市农业科学研究院 乙方(项目实施单位): 甲乙双方通过物联网、自动控制与云计算技术,将玉米协同创新基地建设成生产灌溉自动化、智能化、可视化的先进试验研究基地。为玉米协同创新生产提供科学依据,达到科学研究、节水节肥、提高效益、增强品质的目的。以帮助生产与科研人员及时掌握田间生长环境信息,实现数据获取的精准化、自动化与智能化,及时掌握作物生长环境参数, 及时发现试验研究中存在的问题,并且准确地确定发生问题的位置。将试验生产逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息数据和软件为中心的智能化综合生产管理模式。 第一条合同标的 甲方因乙方实施玉米协同创新基地物联网智能化管理项目而给予乙方总额为40万元的项目实施费。 第二条资助项目的实施 1、甲方在乙方保证完整、正确履行本合同的情况下给予乙方本合 同第一条规定的项目实施费;

2、甲方将定期检查乙方项目实施进展情况,根据施工进度确定拨 款时间及实际拨付金额; 3、乙方按项目申报书内容进行项目实施,不得擅自变更项目内容。如确需修改项目实施内容,须另附协议经甲方签字认可后,方可变动项目施工方案。 第三条项目实施具体内容 1、田间气象自动监测系统; 2、试验基地水肥一体化自动节水灌溉控制系统; 3、田间无线墒情监测系统; 4、作物生长势监测系统; 5、田间配套土建工程。 第四条项目完成目标 1、项目的实施期为项目立项至验收完成项目完成日期年月日前,项目验 收日期年月日。 2、项目实施目标 (1)总目标:包括项目执行期间计划投资额、应用示范的目标及在国内外的水平。 (2)技术目标: 项目通过物联网、自动控制与云计算技术,将玉米协同创新基地建设成生产灌溉自动化、智能化、可视化的先进试验研究基地。 (3)实现目标:项目通过建设大量的传感器节点网络,通过各种传感器采集信息,并与田间控制设备相结合,以帮助生产与科研人员及时掌握田间生

现代农业智能温室大棚监测控制系统管理方案设计

现代农业智能温室大棚监测控制系统管理方案设计智能农业基于软件平台的温室大棚智能监控管理系统,结合当前新兴的物联网技术实现高效利用各类农业资源和改善环境这一可持续发展目标,不但可以最大限度提高农业现实生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。 一、概述 托普物联网研制的温室环境监测系统也可仪称之为温室智能控制系统。系统利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 精确农业(Precision Agriculture )是当今世界农业发展的新潮流,它最大的特点就是“精确”,利用卫星全球定位系统、遥测遥感技术、计算机自动控制技术和物联网等高新技术于农业生产,用以提高产量,降低能耗。精确农业的推广不但可以最大限度提高农业生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。 随着农业技术的不断发展,温室大棚已经相当普及,随之而来的温室大棚智能监控管理平台搭建的需求愈发强烈。传统的温室大棚多为人工通过简单的温湿度计量设备或者简单的仪器仪表获取环境状态参数,并根据经验手动控制各个调节阀。此种方式效率低下,控制效果也无法达到智能自动的要求,因此传统的监控管理方式已显示出诸多局限性。 二、系统设计原则 可扩展性——系统在设计过程中除满足当前需求外,还需为日后的系统扩展留有足够的接口,所有功能模块均为可组态化设计,可以灵活的增加或者删除。 可集成性——系统在设计过程中需具备高度集成性,满足于第三方平台的实时交互集成需求。 可控制性——系统建成后,要求对温室中的温湿度、光照强度、喷灌装

智慧农业大棚物联网智能系统

智慧农业建设果蔬大棚物联网 项 目 方 案

前言 (4) 一、农业物联网在现代设施农业应用的意义 (5) 二、果蔬大棚物联网方案概述 (7) 2.1 系统设计原则 (7) 2.2 系统功能特点 (8) 2.3 系统组成 (9) 3.4 系统示意图 (10) 三、各子系统介绍 (11) 3.1 环境参数采集子系统 (11) 3.2 自动控制系统 (12) 3.3 视频监控子系统 (16) 3.4 信息发布系统 (16) 四、中央控制室及管理软件平台 (18) 4.1系统平台功能 (18) 4.2 数据采集功能 (20)

4.3 设备控制 (22) 4.4 视频植物生长态势监控功能 (23) 五、项目的需求 (26)

前言 物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一次产业升级,是十年一次的产业机会。总体来说,物联网是指各类传感器和现有的互联网相互衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确定地址,它的各种状态、参数可被感知。2009 年8 月温家宝总理在无锡提出"感知中国",物联网开始在中国受到政府的重视和政策牵引。2010 年国家发布了"十二五"发展规划纲要,其中第十三章“全面提高信息化水平‘第一节’构建下一代信息基础设施”中明确提到:推动物联网关键技术研发和在重点领域的应用示范。在第五章“加快发展现代农业‘第二节’推进农业结构战略性调整”中提出:加快发展设施农业,推进蔬菜、果蔬、茶叶、果蔬等园艺作物标准化生产。提升畜牧业发展水平。促进水产健康养殖。推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。推进现代农业示范区建设。第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动过程机械化、生产经营信息化。加快农业生物育种创新和推广应用,做大做强现代种业。加强高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、玉米等主要农作物病虫害专业化统防统治。加快推进农业机械化,促进农机农艺融合。发展农业信息技术,提高农业生产经营信息化水平。 2013 年国家一号文件更是着重讲述物联网技术在农业中的应用。物联网信息技术与现代农业的结合更加是国家重点推动的关键示范应用。

智慧农业物联网系统设计

毕业设计(报告)课题:智慧农业物联网系统设计 学生: 夏培元系部: 物联网学院 班级: 物联网1404班学号: 2014270307 指导教师: 杨昌义 装订交卷日期: 2017年01 月日 I / 20

摘要 随着经济社会的发展,农业已经越发智能化智慧农业是农业生产的高级阶段是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 基于ZigBee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于ZigBee 技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它ZigBee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的ZigBee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。 关键词:物联网;智慧农业;云计算;物联网架构;ZigBee II / 20

物联网的智慧校园管理系统

物联网的教室管理系统 在学校,课堂教学环节是学生接受系统教育最重要的一环,做好教学互动环节,是掌握好教学环节的质量,提高教学水平的关键。现行的教学过程中,传统的签到环节、教室使用率均存在诸多问题。签到过程中,使用纸张签到,效率低且存在代签现象,结果不便于教师统计;随着高校的扩招,在校学生越来越多,而相应高校面积却没有扩建。随着高校后勤社会化改革,学生上课条件得到了很大改善,可供学生选择的余地也越来越大,但是如今学生和自习座位现行的教学楼管理系统中存在着许多问题,目前国内大部分的教学楼管理内部还处于原始的人工管理阶段,无论对自习的学生还是对教学楼的管理者都造成了极大地困扰。尤其是在高峰期形成拥挤的现象,极大的耽误了时间。传统的教学方式已经不适应现代化教学的需要,基于物联网技术集智慧教学、人员考勤、视频监控及远程控制于一体的新型现代化智慧教室系统在逐步的推广运用。智慧教室作为一种新型的教育形式和现代化教学手段,给教育行业带来了新的机遇。 目标: 1、教室课程安排。 学生可以通过手机、pad、电脑等设备对各教室使用情况进行查询,引导学生以最短的时间快速进入自己中意的教室,提高教学楼的使用率、提高学生满意度。

绿色:无课,座位使用率在50%以下。 蓝色:有课 黄色:无课,座位使用率在50%以上,70%以下 橙色:无课,座位使用率在70% 以上 学生可以通过手机、PAD 、电脑等设备对每个教室本周的课程情况进行查询。 课程安排信息与教务处课程安排同步。需要教务处提供软件借口。 每个教室需要安装传感器进行监测教室中的人数。 如下图,是教室1.2米高处的截面图。虚线位置为传感器安放位置,其中传感器①安装在门框上,传感器②安装在与传感器①成30°角的位置。

基于物联网的智能农业发展趋势

基于物联网的智能农业发展趋势 戴起伟[1] (江苏省农业科学院农业经济与信息研究所) 摘要:智能农业作为现代农业的重要标志和高级阶段,呈现出信息采集智能化、资源利用数字化、信息网络全球化、农产品电子商务分工专业化、信息应用全程化、生产管理智能化等发展趋势。物联网被视为战略新兴产业和新的经济增长点,对于智能农业未来发展具有着前所未有的应用前景,但目前在农业方面的应用还处于起步阶段,文章在分析了物联网技术对于提升农业信息化水平的重要作用后,提出了在农业方面的重点应用领域。 目前,信息技术正日益深刻地改变着世界经济格局、社会形态和人类生活方式,同时也被广泛应用于农业各个领域。智能农业或信息化农业是现代科学技术革命对农业产生巨大影响下逐步形成的一个新的农业形态,其显著特征是在农业产业链的各个关键环节,充分应用现代信息技术手段,用信息流调控农业生产与经营活动的全过程。在智能农业环境下,信息和知识成为重要投入主体,并能大幅度提高物质流与能量流的投入效率,智能农业是现代农业发展的必然趋势和高级阶段。在加快传统农业转型升级的过程中,智能农业将成为发展现代农业的重要内容,为加快发展农村经济,进一步提高农民收入提供新的经济增长极;为加快农业产业化进程,增强农业综合竞争力提供新的技术支撑。 1 智能农业是现代农业的重要标志和高级阶段 现代农业相对于传统农业,是一个新的发展阶段和渐变过程。智能农业既是现代农业的重要内容和标志,也是对现代农业的继承和发展。其基本特征是高效、集约,其核心是信息、知识和技术在农业各个环节的广泛应用。信息技术取代机械与人力,知识要素取代资本要

素和劳动要素,使得信息、知识成为驱动经济增长的主导因素,使农业增长从主要依赖自然资源转向主要依赖信息资源和知识资源。智能农业是低碳经济时代农业发展形态的必然选择,代表了农业发展的根本方向,符合人类可持续发展的愿望。 2 智能农业主要发展趋势 2.1 农作信息采集智能化、资源利用数字化 充分利用现代地球空间与地理信息技术、传感技术、手持便捷信息识别技术等获取与作物生产有关的各种生产信息和环境参数,对耕作、播种、施肥、灌溉、喷药和除草等田间作业进行数字化控制,使农业投入品的资源利用精准化,效率最大化。 2.2 农业信息网络全球化扩展 目前,信息技术已经深刻地渗透到世界的每一个角落。农业信息资源的获取和服务也正打破国界的限制,加速走向国际化和全球化。通过信息网络和各类媒体,农业信息在全世界的流量呈几何级数式扩张,流速也正以前所未有的方式进入高速时代。农业信息化深刻地影响着世界农业资源配制,助推农产品贸易的国际竞争日趋加剧。同时,农业信息资源数据库正向专业化、集成化、共享化和知识化管理方向发展,等等。 2.3 农产品电子商务分工专业化 网络和通讯技术的发展、电子商务交易的普及和成熟,使得通过网络销售农产品,可在瞬间完成信息流、资金流和实物流的交易,农产品电子商务已不再单是产品供求交易的操作,而是前延至产前订单、后续至流通配送等综合性的服务,即紧紧围绕产业链环节,在信息化管理的平台上实现信息共享、管理对接和功能配套。 2.4 农业信息传播多媒体化 视频制作与压缩技术、数字动漫技术、虚拟仿真技术、手机网络传媒技术等多媒体技术,具有传播快、覆盖广、形象生动、丰富多彩、易于操作等特点,为农业复杂问题的简化表达与传播提供了空前的便

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统 解决方案

目录 1、设计原则 (3) 2、设计依据 (3) 3、系统简介 (4) 3、系统架构 (5) 4、系统组成 (6) 4.1结构图 (6) 4.2 现场的监测设备: (7) 4.3 智慧大棚系统结构: (7) 4.4 智慧农业大棚系统介绍 (8) 4.4.1温度控制系统 (8) 4.4.2通风控制系统 (8) 4.4.3光照控制系统 (9) 4.4.4水分控制系统 (9) 4.4.5湿度控制系统 (10) 4.4.6视频监控系统 (10) 4.5 控制系统平台: (10) 4.6 应用软件平台: (11) 4.7 视频监控系统: (11) 4.8 农业溯源系统 (12) 4.91种植环节: (12) 4.9.2物流环节: (12) 4.9.3其他: (12) 4.9 室外气象观测站 (13) 5、系统特点 (14) 5.1 预测性: (14) 5.2 强大的扩展功能: (14) 5.3 完善的资料处理功能: (14) 5.4 远程监控功能: (14) 5.5 数据联网功能: (14) 6、项目定位 (14) 7、控制逻辑 (16) 7.1 温度控制 (16) 7.1.1控制要素: (16) 7.1.2控制设备: (16) 7.1.3控制方式: (16) 7.2 降温控制过程: (16) 7.2.1在软件中可以设定温度默认正常的上下限的值 (16) 7.2.2温度超过设定上限时 (16) 7.3 增温控制过程: (16) 7.4 空气湿度控制 (16) 5.4.1控制要素: (16) 5.4.2控制设备: (17) 5.4.3控制方式: (17) 7.5 增湿控制过程: (17) 5.5.1在软件可设定湿度默认正常的上下限的值; (17) 5.5.2湿度低于设定下限时: (17) 7.6 除湿控制过程: (17) 7.61在软件可设定湿度默认正常的上下限的值; (17)

lora智慧农业物联网系统

智慧农业物联网系统 解 决 方 案 北京创羿兴晟科技发展有限公司

、系统简介 “智慧绿态农业/花卉大棚环境云监测物联网系统”是一套基于 modbus/bacnet协议及lora无线通讯系统平台,实现农业生产的智能化及绿色生态管理。该系统利用多种类型的传感器、自动化控制设备、多功能采集节点,以及无线组网系列设备等组建农业智能化生产与监测专用的无线传感网,对农业生产环节的空气温湿度、光照度、二氧化碳浓度、土壤温湿度等信息进行采集,并传输到云数据管理中心,通过特定的算法建立云数据库,并为农业管理部门及农户提供生产管理依据。此外,农户可在自己的管理权限范围内,对农业生产现场(如农业大棚、大田、水产品养殖场等)进行实时监测、设备远程控制、节能管理以及化肥等化学产品的使用管理,在保证农业生产的同时,实现农业生产的智能化管理,降低农业生产对自然环境的影响,实现农业生产过程的绿色生态管理。 目前,由于人们普遍认为农业本身就是绿色的,所以绝大多数智能农业的项目普遍关注农业生产的智能化,而很少关心农业生产对生态环境的影响。事实上,虽然农业本身是绿色的,但农业生产并不是绿色的,农业生产中使用的化肥、农药以及农机设备均会对自然环境造成影响。因此,“智慧绿态农业/花卉大棚环境云监测物联网系统”在设计思想上,与现有的智能农业物联网系统不同,该系统在实现农业智能化生产的同时,还尽量降低农业生产对环境的影响。通过物联网技术、云计算技术提高我国农业生产的管理水平,推动我国绿色生态农业的发展,提高我国农业的智能化、绿色生产水平,实现农业生产的智能化及绿色生产管理。 北京创羿兴晟科技公司研发了多款lora产品,例终端节点CY-LRB-102终端节点CY-LRB-101lora控制终端CY-LRW-102 lora检测终端CY-LRW-10等产品型号,还有多款产品正在研发中,将窄带物联网技术充分应用于现代农业中,打造智能农业系统。 图1智慧绿态农业物联网系统示意图

相关文档
最新文档