基于CAN总线的车载静中通卫星天线系统设计

基于CAN总线的车载静中通卫星天线系统设计
基于CAN总线的车载静中通卫星天线系统设计

动中通卫星宽带应急通信系统解决方案

动中通卫星宽带应急通信系统解决方案 北京航天福道高技术股份有限公司 2009年4月24日

第一章公司概况 航天科工集团二院创建于五十年代,是国家重点军工科研院所,下属二十五所创立于1965年10月,是我国专业从事精确制导通信设备研制的骨干研究所,二十五所在雷达技术、红外光学测量技术、遥测、遥控、遥感和通信技术等领域具有雄厚的技术实力,在国内精确制导通信领域处于绝对领先地位。主要专业范围包括:无线电系统工程总体技术及红外光学系统工程总体技术、无线电接收与发射技术、信号与信息处理技术、自动控制技术、天馈系统与天线罩技术、通信工程技术、特种器件与微带组装技术等,是国家学位委员会通信与信息系统的硕士学位授权点。 作为二十五所民用产业及横向军品任务的对外唯一窗口,1993年6月由二十五所发起创立了北京航天福道高技术股份有限公司(简称福道公司),北京市高新技术企业。福道公司注册资本1700万元,其中二十五所及所职工持有99%的股份。福道公司的成立与发展继承了航天四十多年的科技成果和经验,并以院所的强大技术后盾为依托,拥有雄厚的技术实力和人才优势。多年来,在通信技术、电子产品、探测技术及系统集成方面不断创新,开发了系列高科技产品,并承接了多项国家级、省部级重点工程,在公司成立的十四年里,公司先后为邮电部、中国联通、公安部建设了全国及省市级寻呼联网系统、短信增值系统,其中 仅寻呼全国联网 系统3年实现销 售收入2.3亿,国 内市场占有率高 达75%;另外还 为所内各型号任 务测试与批生产 研制生产多批次 配套调试与标定 设备,如多频点多 通道接收机、多种

型号的导引头通信综合测试设备、接收应答机单元通信测试设备、目标仿真计算机测控台等;公司还多次中标并承建了海军基地光纤通信系统、多媒体指挥调度系统、HD-255经纬仪改造项目、机动供靶系统指挥通信分系统等多个靶场建设项目;为总装提供了江河工程侦察车、河床断面测绘仪、便携式流速仪、布雷车布控装置等优质的装备产品,赢得了广大用户的信任;公司的电装生产中心承担了所军品批生产任务的无线电装,同时还承接了大量民品生产任务。 另外,福道公司还自筹资金在上地信息产业基地兴建了1万多平米的写字楼。除出租外,楼内还设有公司的电装生产中心、天线罩生产中心、IT实训中心。 第二章 动中通应急通信系统概述 2.1系统概述 卫星移动通信是指利用卫星作为中继,实现移动用户之间或移动用户与固定用户之间的相互通信。车载动中通卫星通信系统具有不受时间、地域、距离的限制、实现动态和静态条件下的实时双向传输等特点,并具有现场指挥、远程移动指挥、车顶摄像视频信息采集、无线摄像视频信息采集、移动电话电台调度、移动视频会议、实时图像切换、智能保护等多项功能。其创新的天线系统自动搜索捕获指定的卫星信号。并且在车辆运动过程中通过自动控制方位、仰角和极化角。自动跟踪保持指向,并支持车辆在时速300公里行驶条件下的双向2M传输速率。隐形动中通卫星天线是由安装于车顶的低轮廓相控阵天线和安装在车内的天线控制器等组成。天线控制器为天线提供动

卫星及电视系统方案

卫星及电视系统方案

卫星电视系统及公共天线系统方案 本工程安装卫星电视接收天线4面,接收并传送卫星电视节目32套。 1. 设计依据 本设计是遵照国家有关规范及标准作出的。 卫星电视接收、电视系统在规划、设计、设备和器材的选用、安装调试的工艺要求等方面,都严格按下列标准和规范执行: l 《有线电视系统工程技术规范》GB50200-94 l 《30MHZ-1GHZ声音和电视信号的电缆分配系统》GB6510-86 l 《有线电视广播系统技术规范》GY/T106-92 l 《有线电视加解扰系统通用技术要求》GY/T114-94 l 《建筑智能化系统工程设计标准》DBJ13-32-2000 l 《卫星广播电视地球站设计规范》GYJ41-89 2.系统容量和频道配置 2.1系统容量 本系统可利用电视频道数有89个,本期工程容量共设计32个电视频道,剩余的频道预留给今后扩充使用。

具体接收电视内容见下表: 节目源类型接收或传送方式接收内容 卫星接收亚洲3S卫星:(24套) 中央一台、东方卫视、安徽卫视、江苏卫视、福建卫视、江西卫视、湖南卫视、湖北卫视、四川卫视、广东卫视、广西卫视、河南卫视、内蒙卫视、陕西卫视、青海卫视、辽宁卫视、吉林卫视、黑龙卫视、 凤凰卫视、凤凰资讯、音乐卫视、体育卫视、 香港美亚电影台卫视、香港星空电影台娱乐卫视、 卫星接收亚太2R卫星(1套) 美国好莱坞电影台 卫星接收国际704卫星(1套) 香港卫视电影台 公共天线上海电视节目:(4套) 新闻综合、生活时尚、新闻娱乐、东方文艺 酒店自播视频节目(2套) DVD、DVD

2.2 频道配置原则 本系统按860MHz模拟邻频传输设计,频道配置避开共用天线电视所占用的频道以及当地大功率发射的开路电视频道对本系统的同频干扰。由于共用天线电视节目采用550MHz邻频传输方式,已占有V端全部频道。为降低终端接收成本,相次卫星电视前端不采用增补频道,而采用550MHz端的邻频标准电视频道。 3. 系统组成及信号处理方式 3.1系统组成 CATV系统网络由总前端(卫视前端、上海共用天线电视混合组成总前端)和用户分配网络二部分组成。 用户终端盒分配如下: 用户终端分布情况表 楼层电视信息点数(300个) 3.2信号处理方式 卫星电视接收天线接收下来的卫视下行微波信号,经高频头下变频后,送到卫星电视接收设备。卫星电视接收设备输出的AV信号经过视、音频调制、处理后,变成RF射频信号送入混合器。为降低建设成本,卫视前端信号、自办节目信号与共用天线电视并网采取宽带混合,若出现宽带信号中有个别频道指标达不到技术规范要求,采用频道处理器进行下变频、中频处理后再上变频后进入混合器,以提高前端输出信号质量。

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

通信与现场总线课程设计报告书

电气工程学院 通信与现场总线课程设计

目录 一:设计任务 (4) 理想模型: (4) 实验中用到的任务模型 (5) 二:力控软件平台建立的实验模型 (5) 三、实验设备与仪器 (6) 四、设计思路与过程 (6) 五、调试和功能 (13) 六、联机调试:C/S方式的远程控制 (26) 七、课设总结与心得 (29)

(一)本次课程设计题目: 通过三维力控组态软件实现对搅拌罐的网络控制 (二)主要容及要求 在组态软件Forecontrol V6.1平台上,通过工业以太网,分别以C/S方式(客户端/服务器)及B/S方式(浏览器/服务器)完成对SIEMENS的可编程序控制器通过工业现场总线PROFIBUS方式与2台SIEMENS MM440变频器控制的三相异步电机的实际工程平台,实现对搅拌罐PLC控制系统(含本地控制和远程控制)的网络控制。 独立完成,承担系统设计、系统分析、组态软件的学习与编程、网络系统调试等任务,要求提供最终的解决程序(验收)和相关文件,并以报告论文方式说明实现的思路及工程应用前景。 (三)进度安排: (1)在第一次课堂上了解并知道了Forecontrol V6.1软件的初步使用。 (2)根据相关资料,熟悉并设计并完成客户端组态软件的实际工艺流程界面界面的绘制。 (3)对搅拌罐工程相关控制进行了编程。 (4)熟悉服务器端通信参数的要求,完成C/S的网络控制。 (4)3月30日在实验室完成整个系统的软件调试及最后联机调试。 (5)撰写设计报告。

通过三维力控组态软件实现 对搅拌罐的网络控制 一:设计任务 在组态软件Forecontrol V6.1平台上,通过工业以太网,分别以C/S方式(客户端/服务器)及B/S方式(浏览器/服务器)完成对SIEMENS的可编程序控制器通过工业现场总线PROFIBUS方式与2台SIEMENS MM440变频器控制的三相异步电机的实际工程平台,实现对搅拌罐PLC控制系统(含本地控制和远程控制)的网络控制。 本次课程设计中,我们主要运用了C/S(客户端/服务器)方式,实现对搅拌罐PLC控制系统(含本地控制和远程控制)的网络控制。 理想模型:

关于动中通天线的选择

关于动中通xx的选择 从技术层面看,目前动中通天线主要有三种基本类型,分别是: ①传统抛物面天线;②阵列、赋形反射面天线③全相控阵天线。三种天线各有自己的特点,都有自己的应用范围,不存在“谁取代谁”的问题。 做为用户,应该根据卫星天线的使用的环境、承载的方式、地理位置、主要业务和预算等情况,综合来进行选择。 下面我们根据我们的经验,对于用户政府应急平台动中通天线的选择提出一些看法,供选择参考。 一、政府应急平台动中通天线的选择应考虑的重点问题 应急平台建设是应急管理的基础性工作,其中动中通天线是实现应急通信保障的工具,高可靠性和高可用度无疑是动中通天线选择的前提,确保在“突发”事件状态下能够真正“应急”,而其它指标(如体积和重量)应该是在此前提下再考虑的次要指标。 动中通天线的“高可靠性和高可用度”主要表现在以下两个方面: (1)工作的全天候性,即在任何天气环境状态下,都应该正常的工作。而一般突发时间的发生往往伴随恶劣的天气条件。 (2)能够提供足够的带宽保证应急业务的需要。应急一般需要图像、语音、数据等多种业务,因此选择动中通天线应该满足大数据量的需要。 以上两个方面的要求决定了动中通天线选择时应该考虑足够的增益余量。 二、3种动中通天线的特点比较 目前动中通天线主要有①传统抛物面天线②阵列、赋形反射面天线③全相控阵天线三种基本类型。 1.传统抛物面天线 传统抛物面天线的姿态调整采用机械式,其特点表现在:

优点: 增益高、带宽高 弱点: 体积和重量大,安装不方便 2.阵列、赋形反射面天线(轮廓柱状天线) 阵列、赋形反射面天线的姿态调整也采用机械式,其特点表现在: 优点: 安装相对简单,搜索锁星时间短 弱点: 天线口径效率低,增益不高,带宽也不高(比同天线口径抛物面天线要低得多) 3.全相控阵天线 全相控阵天线的姿态调整采用电调式,其特点表现在: 优点: 体积小、重量轻,xx 弱点: 天线有效口径低,增益低,带宽窄 根据以上比较,从保障通信的“高可靠性和高可用度”出发,在选择动中通天线类型时,我们建议: 应当首先考虑采用传统抛物面天线,决不能采用全相控阵天线。如果通信业务的数据率在1M以上,只能采用传统抛物面天线。 三、典型抛物面天线和低轮廓阵列、赋形反射面天线的比较

船载卫星通信系统解决方案

船载卫星通信系统解决方案 2010年5月12日 摘要:本文阐述了船载卫星通信系统在海事搜救中的解决方案和实际应用。 关键词:船载动中通天线;卫星通信技术 我国是国际航运大国,拥有辽阔的海域。1985年我国加入《1979年国际海上搜寻救助公约》。交通运输部在构筑和谐社会的新形势下,提出了将海事搜救建成“全方位覆盖、全天候运行、快速反应的水上安全保障体系,对发生在我国搜救责任区内的海上险情实施快速有效救助”的总体目标。 实现海上搜救的信息化、可视化、自动化已经是大势所趋,现代卫星移动通信技术的发展和应用,为实现这一目标提供了可靠技术保障。船载卫星通信系统的应用有效地保障了海上搜救中信息的传输。 文中详细阐述了海事搜救中对船载卫星通信系统的需求、解决方案和实际应用。通过最新的移动卫星通信技术,从根本上解决海事搜救通信中实时图像、语音、数据的传输问题。 根据海事搜救的特点,将海事搜救实时通信指挥系统的需求归纳如下:实时图像传输,即将搜救船上摄像机采集的现场图像实时传回指挥中心;建立搜救船与指挥中心的视频会议系统;建立搜救船与指挥中心的语音通话系统,实现电话、传真等功能;建立搜救船上局域网与指挥中心局域网互联,实现移动办公和现场指挥;建立搜救船上Internet接入,便于搜救时收发邮件和查找资料。 根据以上需求,提出采用基于全网IP的LinkStar高速卫星通信网络的船载卫星通信系统解决方案。 一、船载卫星通信系统链路解决方案 船载卫星通信系统链路包含以下几个部分:船载卫星动中通天线、卫星通信系统、卫星

地面站、指挥中心的通信专线或指挥中心远端卫星接收站等,其卫星通信系统链路原理如图1所示。 船载卫星动中通天线与通信卫星进行通信,通信卫星与卫星地面站进行通信,卫星地面站与指挥中心的专线,或通过与指挥中心远端卫星端站进行通信,从而实现搜救船与指挥中心的卫星通信。 船载卫星动中通天线是实现船岸通信的最重要组成部件,需要保证船在航行过程中克服船的横摇、纵摇以及上下起伏,保持与通信卫星的稳定通信。 因此,船载卫星动中通天线的选择首先要保证的是在复杂的航行条件下天线能稳定地跟踪通信卫星。其次是它的通信能力,天线的通信设备要能支持较高通信带宽。第三,安装方便。对于海事局60米巡逻船而言,船上能提供的船载天线安装空间有限,因此安装方便非常重要。 在本文所述的解决方案中,选择的是以色列Orbit Orsat(AL-7103MKⅡ)船载动中通卫星天线,如图2所示:

全自动卫星天线定位伺服控制系统概要

全自动卫星天线定位伺服控制系统 本控制系统是专门为4.5M卫星天线设计制作,通过本控制系统可方便地进行天线的方位、俯仰和极化的角度调整。由于采用了新型交流伺服控制器,使天线的各角度的控制精度得以大幅提高,在目前国内同类系统中应用技术较为先进。 (一)卫星天线控制系统的方案 采用我公司生产的交流伺服控制器和交流异步电机组成的伺服驱动单元,以可编程控制器、可编程终端等组成控制单元。 系统构成方案如图所示。 (二)系统功能及技术指标 该系统由室内控制单元和室外伺服驱动单元组成,通过可编程终端显示的文字提示进行操作。交流伺服控制器驱动天线机构上的交流异步电机实现精确的位置、速度控制,以实现天线的方位、俯仰和极化的角度调整。安装在电机上的编码器不仅为交流伺服控制提供反馈信息,而且为室内控制单元提供天线的方位、俯仰信息,经数据处理后用于控制和显示角度。 软件在实现系统的各种功能中起着非常重要的作用。本系统的软件有交流伺服控制器(3台)的程序、可编程控制器的程序和可编程终端的程序。这几种程序分别担负着人机界面、数据处理、动作控制以及状态监视等各种作用。与天线方位有关的软件部分对应于天线和本系统安装在北半球。

动作范围:方位90.00°(东)~270.00°(西)[正南为180°] 俯仰 5.00°(俯)~90.00°(仰) 极化±90° 动作方式: ⑴角度操作:设定角度值,运动至设定位置。(对好第一颗星之后) ⑵步进操作:选择步进距(小步距0.01°、中步距0.05°、大步距0.25°)后,单键操作,按1次键,运动1步。 ⑶启停操作:选择电机转速(方位、俯仰和极化的速度分挡不同)后,单键操作,按1次运动、再按1次停止。 换星操作:按序号登录5颗星的方位角、俯仰角数据。设定目标星号后执行换星。非常快捷、方便。若所设定的星号未登录则不执行并提示“无效”。 防护操作:俯仰运动至87.00°使天线朝上,在遇强风时防止机构或基础的损害。 限位保护:设有限位开关和极限开关。方位可设定软极限。设定后限制方位角度范围,防止干涉或碰撞。 控制精度:与电机同轴装有2500线的编码器,作为位置及速度的传感器。天线的方位轴是经减速器后,0.01°间距对应2333个脉冲;俯仰轴是经减速器后,0.01°间距对应约20000个脉冲。交流伺服控制器将编码器的信息是按4倍频(10000脉冲/转)进行数据处理。而且,它的位置控制精度可达±1个脉冲。因此、天线的综合控制精度相当高。 间隙补偿: 每当电机转动改变方向时,减速器和机构等机械部件会有换向间隙。用伺服控制能补偿实测的间隙量。 角度显示:卫星天线的位置数据是以有2位小数的角度值表示。方位角度是3位整数2位小数。4舍5入至小数点后第2位。俯仰角度是2位整数2位小数。4舍5入至小数点后第2位。极化角度不显示。 报警提示:交流伺服控制器监视,异常时有文字提示。限位和原点传感器监视,异常时有文字提示。 使用电源:控制单元AC 220V±10%(单相) 50Hz 100W 伺服驱动单元AC220V±10%(单相) 50Hz 1000Wmax 外型尺寸:室内控制单元 (标准19吋3U) L:300 W:430 H:134(mm) 室外伺服驱动单元 L:250 W:600 H:800(mm) 工作环境温度:室内控制单元0℃~40℃ 室外伺服驱动单元-30℃~40℃(内有温度调节单元) (三)特点 ⑴.与卫星通讯设备一致,本系统采用单相交流220V电源。 ⑵.以对准第一颗卫星时登录的天线方位、俯仰角度为数据,方便、快速地进行对星、换星的操作。基准 ⑶.使用交流伺服控制器,定位控制精度高,重复好。 ⑷.有互锁、限位等多项安全防护功能。

动中通天线比较

关于动中通天线的选择 一、名词解释 1、邻星干扰 邻星干扰分两种情况 1)动中通卫星系统区别与静中通及地面站卫星系统,天线的初始状态(加电前)未对准所在卫星。此时,如果卫星功率放大器处于工作状态,则在天线寻星过程中,产生干扰载波。CT8000型号产品在天线指向偏离大于0.5 度,回传链路自动关闭,直到指向误差被天线的跟踪系统纠正。有效的避免了干扰载波的产生。 2)VSAT小站在向所在卫星发射载波时,会产生二次谐波,如设计不当,就会影响周边的卫星。就此情况,Tracstar天线已被韩国卫星组织严重警告,限制进口。 2、捕获时间与再捕获时间 捕获时间是指卫星设备初加电,天线锁定卫星的时间。 再捕获时间,是指卫星天线再从遮挡物出来时,天线锁定卫星的时间。 3、可维护度 因为相控阵天线是由上百个天线振元组成,在单个振元出现问题后,并不影响正常使用。而且,相控阵天线采用电子和机械混合扫描方式,对传动机构的损坏较其它天线低。 传统动中通天线和中轮廓天线对机械要求比较高,相对来说,故障

率高。 二、动中通天线的分类 目前,常用的动中通天线从技术上可以分为三种: 1、相控阵天线(平板):起源于雷达相控阵技术,是近年来从国外 引进的先进卫星天线系统,无需手动对星,采用GPS 信号;自动捕获并 跟踪卫星,内置陀螺仪使之可以快速从视线遮挡中恢复,天线使用机械 和电子混合扫描,保持指向精度;如果天线指向偏离大于0.5 度,回传 链路自动关闭,直到指向误差被天线的跟踪系统纠正。系统具有重量轻、 安装结构简单、不占用车内空间等优点。 2、光导陀螺天线:可以分为光纤陀螺和激光陀螺两种,系统依靠 陀螺高精度姿态信号,主动跟踪卫星。天线结构大多采用带高速电机驱 动系统的环焦天线,对星精度和恢复速度较快,但天线质量重、安装结 构复杂。 3、信标跟踪天线:依靠卫星信标接收机,完成初始对星后,根据 接收到的信标信号强、弱,结合普通电子传感器判断天线偏离角度,通 过高速驱动电机调整天线对星方向。天线结构大多采用带高速电机驱动 系统的环焦天线,对星精度低和恢复速度慢,天线质量重、安装结构复杂、占用车内大部分空间。 三、天线技术性能对比 传统动中通天线中轮廓动中通天线相控阵平板天线产地/型号国产美国/Tracstar 美国/CT-8000

动中通卫星移动通信系统在森林防火应急通讯中的应用

科技论坛 动中通卫星移动通信系统在森林防火应急通讯中的应用 赵文鹏 刘硕 (国家林业局东北航空护林中心,黑龙江哈尔滨150027) 当前森林防火通信手段主要有无线电短波、超短波和卫星通信,无线电通信具有建立迅速、易于组织等优点,但由于我国森林资源和火险区多处在经济欠发达的地区,山高林密,交通不便,一旦发生森林火灾,现有通信设施设备不能满足森林防火灭火的需要,经常出现贻误战机;超短波通信全部是模拟话音通信,无论是中继“背靠背”级联,还是中继链路级联,以及扫描中继级联等都有一个共同的问题,都存在重叠覆盖区内本网络多个信道频率以及其它地区网络频率的互调干扰产生的二次谐波和三阶互调现象,通信效益低,堵塞严重。卫星通信则受制于接受系统的不可移动性。近年来,随着动中通在地震灾害应急中的成功运用,越来越多的人发现它的优势,本文将阐述动中通在森林防火应急通信中的应用。 1动中通概述 1.1动中通的工作原理 动中通自动跟踪系统是在初始静态情况下,由GPS 、 经纬仪、捷联惯导系统测出物体的航向、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动 方位,并以信号极大值方式自动对准卫星。 在载体运动过程中,测量出载体姿态的变化,通过数学平台的运算,变换为天线的误差角,通过伺服机调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星,达到传播信号的目的。 1.2动中通的特点 动中通是通过统一的移动式、 便携式卫星站,建立一套完整的现场信息传输系统。动中通卫星通讯车是以卫星为链路媒介,能够在最短时间内实现一定范围的机动联网,实现通讯车与控制总部多渠道通讯,进而将其与控制系统联网,保障最及时地将现场实况信息进行传输。具有以下几个特点:一是在使用过程中采用自主跟踪方式跟踪卫星,充分利用了卫星通信覆盖区域大、抗干扰能力强、线路稳定的特点,可实现点对点、点对多点、点对主站移动卫星的通信。即在林区多变的环境中可以实现与外界保持畅通的通信,及时准确的将火场信息反馈出去;二是动中通车具有灵活、机动的特点,能确保快速、实时的静态和动态实时传播信号,动中通车体可以延伸至林区内部并靠近火场发挥最大功效;三是自动重捕时间短,驶出通信盲区后能快速恢复通信,在森林火灾扑救中可以快速转场并 且快速建立起通信链路;四是与OFDM “无方向”移动微波设备相比,“动中通”车无需收、发设备操作人员在恶劣环境条件下工作,节约了人力、物力,而且减小了电磁辐射污染;五是信号传输过程的节点减少,提高了火场信息转播质量和可靠性。 1.3动中通的通讯优势动中通从带宽、通信质量、抗毁坏性、机动性和信号覆盖六个指标与其它通信手段(短波电台、海事卫星、全球星和亚星)相比,主要有以下几个优势: 1.3.1实时性好。能够在运动过程中,实时地将现场的图像、语音、 数据通过卫星传送到卫星地面站,实现与任何地方的通信。1.3.2机动性强。“动中通”天线不需要展开时间,能够在运动过程中实时对准卫星,非常灵活、机动,能够根据警情、灾情的情况到达需要的地方快速处理现场的情况。 1.3.3兼容性好。动中通的天线跟踪平台保证载体在移动中始终对准卫星,建立通信链路,并可兼容任何卫星通信设备。 1.3.4测量速度快。陀螺的测量角速度一般在每秒200度以上, 不受天线跟踪速度的影响。足够高的姿态敏感速度保证了汽车过坑、高速转弯等快速姿态变化情况下,有能力保持跟踪。 2动中通在森林防火应急通讯中的应用在高森林火险地区,部署一定数量的动中通指挥车,采用卫星通信、 微波通信、移动多媒体及车辆改装等多种技术,建设一套动中通卫星通信系统,构成多手段、多业务的移动通信平台,实现实时采集、处理各类勤务现场信息,通过通信卫星资源,实现动中通指挥车与指挥部、静中通卫星通信车之间图像、话音和数据等实时双向传 输,并可以在物理上与现有的视频指挥系统、 语音通信网、信息网和无线通信系统等实现直连。切实做到森林防火通讯畅通的预警目标。森林防火办公室在确定为火警时,半小时内上报,找到火场后,由森防指根据上报的火场实际情况,决定是否需要增派兵力。火灾得到控制后,明火被全部扑灭,火场由火灾发生地所在单位留守看守,在确定无复燃可能,经请示后,方可撤离火场。但如何保证及时的发现火灾隐患以及如何更清晰的了解火灾现场的实时情况,以便采取更有效的灭火措施,是实际防火中比较关注的问题。针对这一情况,考虑将动中通系统应用到森林防火中,它可以使指挥车在行进途中锁定通讯链路,实现移动通讯。动中通系统能够有效地实现图像采集,运动或静止中实时不间断传输图像、数据、语音等多媒体信息,组建应急无线通信网,实时登录公安专网,实时登录Internet 网,实时拨打森防专网电话,实时拨打PSTN 市话,广播扩音,电子导航,现场声光警示及视频传输等。这样地面指挥中心系统与突发现场之间便可以建立语音、数据和图像传输通信网络,及时传达上级指示精神、上报现场最新信息和战时指挥调度,实现前方移动指挥所会商系统与后方地面指挥所指挥中心形成的一体化的指挥调度 系统、 确保上级领导指挥命令的顺利传达。3动中通在实际森林防火中应注意的问题3.1天线的直径 对于动中通卫星移动通信系统,天线的选型很重要。直径大的天线各种参数指标高,对信号的传输有利;直径小的天线运动惯量小,易于提高机械操控的精度。因此,在客观条件允许的情况下,应当选取大直径的传输天线。 3.2卫星的信号 受空中各种摄动力的影响,卫星的位置在不断地漂移,其姿态也在细微地改变,这些都会加大指向误差。因此,检测卫星信标信号 的变化,对精确跟踪卫星会有很大的帮助。 同时,动中通车用于直播会遇到暂短链路遮挡问题,所以转播方案中要着重考虑弥补措施。因为动中通能实现点对多点的卫星通信,所以要预先设计,当某一颗星被遮挡时,发射天线应快速锁定另一颗星。 4结论 针对我国森林火灾的特点,本文将动中通卫星摘要:动中通卫星移动通信系统(以下简称动中通)优越于其他通信手段,不仅能够保证通信区域畅通无阻,而且能够保证通信质量,具有实时、灵活、精准、高效的特点。动中通能满足新闻媒体长距离、大动态的电视移动转播,也能够满足武警、公安系统在遇到地震救灾、 抢险等突发事件或森林防火部门在重特大森林火灾扑救指挥时的应急需求。本文主要从动中通在森林火灾发生前预警通讯、发生后的应急通讯等方面,论证了动中通应用在森林防火应急通讯中的重要性,阐述了动中通在森林防火通讯中的应用前景。 关键词:动中通;森林防火;预警通讯;应急通讯表1动中通与其它通信手段对比分析 (下转69页 )66··

现场总线设计报告

# 重庆科技学院 课程设计报告 院(系):_电气与信息工程学院专业班级: 测控普2007-01 学生姓名: 黄亮学号: 99 设计地点(单位)__ I502________ __ ______ 设计题目:__基于WinCC和S7-300的温度测控系统__ * 完成日期:2010年 12 月 10 日 指导教师评语: _______________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________ <

目录

1课程设计任务书 设计题目:基于WinCC和S7-300的温度测控系统 教研室主任:指导教师:胡文金、刘显荣 2010 年 11月 26 日

2温度控制对象概述 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。随着生产力的发展和对温度控制精度要求的不断提高,温控系统的控制技术得到了迅速发展,能否成功地将温度控制在所需范围内,关系到整个活动的成败,由于控制对象的多样性和复杂性,导致采用的温控手段的多样性,且控制对象普遍具有时间常数大、纯滞后时间长、时变性较明显等特点,给控制带来一定难度。 在本次设计中采用的是TKPLC-2型温度加热器。 功能特点与技术参数 TKPLC-2型温度加热器是包括三个模块,电压驱动模块、电阻丝加热模块以及电流输出模块,温度加热器功率为50W。电压输入为0-5V,电流采用标准的DDZⅢ型4-20mA输出信号,温度传感器采用Pt100,测温范围0-200℃,Pt100采用电桥连接。电阻丝温度变化大概为0-100℃,因此满足实验的要求。 控制手段 温度控制对象由于存在比较大的滞后,控制快速性以及控制精度较难权衡,因此控制比较复杂。针对各种温度控制对象,已经有了各种不同的温度控制方法,包括最经典的PID控制算法,模糊控制算法,神经网络控制,最优控制等等,这些控制算法各有各自的特点及优势。 由于实验的条件以及自身的知识水平,采用最经典的PID控制算法作为本次课程设计的核心温度控制算法。整个控制流程为:由温度加热器的自带的温度传感器Pt100实时测量温度,再由温度加热器内部调理电路,将温度信号转换为4-20mA的电流信号,电流信号通过电缆传送到S7300型号PLC的模拟量输入端,通过PLC内部自带的FB58温度控制PID模块控制,然后通过PLC的模拟量输出口采用0-10V(实际程序控制只需输出0-5V)方式电压输出控制温度加热器的加热电压,达到控制温度的目的。此外实验中还通过WinCC组态软件来实时监控温度控制过程,包括实时温度,PID三个参数(Kp、Ti、Td),以及输出控制流量,绘制实时曲线,棒图等。PLC通过DP总线与PC连接,WinCC组态软件通过配置PG接口与PLC连接,达到数据传输的目的。 以此,一个PID温度控制以及实施监控的控制的系统叙述完毕。

动中通卫星通信天线系统组成及原理分析

动中通卫星通信天线系统组成及原理分析 摘要:动中通天线系统主要用于移动载体移动条件下实时通信,满足处理突发紧急事件的需求。本文提出惯导跟踪式动中通卫星通信车载天线系统的组成,对工作原理进行了分析。惯导跟踪式的动中通天线系统不依赖于任何外部信号,利用惯性导航系统自身即可完全实现自主对星,在移动载体移动过程中也能够进行实时对星和换星,灵活性高。 关键词:动中通,惯性导航,天线,卫星通信 概述 动中通卫星通信天线系统主要用于车辆等载体在快速移动的条件下,保持对卫星实时跟踪,使车载卫星天线始终对准地球同步通信卫星,在地球同步通信卫星与卫星地面站之间构建双向链路的卫星通信,以达到实时、不间断与其他地面站进行图像、语音、数据的卫星通信双向传输。 动中通卫星通信车应用动中通卫星通信天线系统跟踪卫星,利用卫星通信的无缝覆盖,加上所具备的机动灵活和行进间通信的特点,可以使动中通卫星通信车在任何时间、任何地点开通并投入使用,满足处理紧急突发事件的需求。 动中通卫星通信天线系统是实现动中通车载站的核心,天线面通常采用偏馈或正馈面反射的抛物面天线,外形呈球状,相对于相控阵天线来说,其天线增益较高,旁瓣特性较好,可以跟踪制导系统控制天线的方位和俯仰指向。 1天线系统主要分类 一般来说,动中通卫星通信天线系统主要采用以下两种技术实现对星跟踪: (1)单脉冲跟踪式:利用多个方向上卫星通信信号强弱的和差关系,在短时间内判断出天线指向的偏差,即时调整卫星天线的指向,保持对通信卫星的跟踪。 (2)惯导跟踪式:利用惯性导航系统建立一个坐标基准,通过前馈控制伺服系统,使卫星天线稳定在坐标基准中,不受到车辆载体运动的干扰,始终对准通信卫星。 单脉冲跟踪式动中通卫星通信天线系统由于依赖卫星信号进行对星跟踪,因此存在以下问题: 在卫星信号受到遮挡时容易丢星,如途经隧道、桥梁等情况下,被楼宇、大树等遮挡的情况下,都难以保持正常通信;在没有卫星信号的时候无法进行初始对准卫星,在车辆载体行进中无法进行初始对准卫星;在车辆载体大动态情况下,

车载卫星天线系统

车载卫星天线系统 车载卫星天线系统是车载的单向通信或双向通信的卫星通信天线,可与单颗或多颗Ku频段卫星通信的车载天线系统。 在运动中接收卫星信号的车载天线为“动中通”;在静止状态自动寻星,接收卫星信号的车载天线为“静中通”。 美国卫星通讯公司RaySat的SpeedRay3000车载卫星天线,可置于汽车顶部,支持卫星高速上网并能随时随地接收卫星电视信号。 1.车载卫星天线 车载卫星天线解决了各种地面载体在移动中实时高频宽带大容量不间断地传递语音、数据、动态图象、传真等多媒体信息的难题,是通讯领域的一次重大突破。 车载卫星天线工作环境恶劣,天线高度、功耗、天线重量都受到限制,因此,在天线方案的选取中,采用高效率变焦距椭圆波束天线,以降低天线高度;天线反射面采用碳纤维材料成型,并采用了天线碳素或玻璃钢加罩设计,以减轻重量和降低伺服功耗。如图6所示。 2.车载卫星天线组成及功能 (1)天馈系统 由等效0.35~1.2米椭圆波束天线和宽带TE21模馈源系统组成,它的主要任务是接收和发射通信载波。 (2)跟踪接收系统 跟踪接收系统由LNA、跟踪下变频器和跟踪接收机等组成,它的主要任务是为伺服控制系统提供天线在仰角和方位角两方向偏离卫星的二路误差信号,经过环路调整后,使天线能始终跟踪卫星目标。

(3)天线伺服控制系统 载车在行进中可能遇到各种路况,包括崎岖路面造成的车体颠摇和振动冲击;隧道、桥洞、树林、山体遮挡造成电波的中断等,都是静止接收站不会遇到的工作条件。 (4)天伺系统的功能 ①载车在不同方向、不同坡度的路面行驶,天伺系统的跟踪方位范围在0~N×360°、俯仰范围在0~90°; ②载车在各种不同路况下行驶,伺服系统对路面和车速共同造成的载车颠摇与冲击的隔离度大,保证天线始终指向卫星; ③遮挡消失后伺服系统再捕信号的最大捕获时间小。载车进入信号中断区域后,伺服系统无信号跟踪卫星、通信中断;载车离开中断区,信号恢复后,立即恢复通信。伺服系统重新使天线主波束对准卫星的最大捕获时间短; ④信号中断后天线指向的记忆功能。经过短时间的电波中断后,天伺系统不需要重新捕获,即可恢复通信; ⑤天伺系统的跟踪精度,选择跟踪精度≤1/8天线波束宽度; ⑥能耐受车型、车速与路况共同造成的冲击震动环境。 3.车载卫星接收系统主要特性 (1)机动性强 可实现动态中不间断宽带多媒体通信,具有很强的灵活性和机动性。 (2)接收信号能力强 可以通过任何一颗地球同步卫星或空中平台,超越时间和空间的限制,实现点对点、点对多点的移动卫星多媒体通信,并能迅速将移动载体中多媒体数据瞬时传到世界各地或接收世界各地的多媒体信息。 (3)保密性强

神通型动中通相控阵卫星天线

产品描述: 神通Ⅱ型Ku卫星双向相控阵天线是国 内卫星通信的革命性的、划时代的突破产品, 神通Ⅱ型的超薄(24cm厚度)相控阵天线系 统是专为运动载体(飞机、火车、汽车、轮 船)的“动中通”实时通信而设计的。全新 理念的天线系统自动搜索、捕获指定的卫星 信号,并且在运动载体高速运动过程中,自 动控制方位、仰角和极化角,自动跟踪并保 持精确指向。 神通Ⅱ型卫星双向相控阵天线具有非常 广泛的应用,特别是应急通信,因为它可以 为公共安全部门和第一响应单位提供高速移动的宽带卫星通信链路,不依赖于易受服务中断、自然灾害和人为破坏所影响的地面通信链路。也由于它不依赖于地面网络,它可以应用于任何需要的领域,特别是那些偏远的、无电信运营商服务覆盖到的地区和专有军事领域。产品适用领域有:应急体系、军队、武警、公安、国安、消防、交通、能源、环保、自然资源、运输等各行各业。 系统组成: 神通Ⅱ型由超薄的安装于移动载体的相控阵天线和内部的控制器组成。 外部安装天线内置BUC(可外置以增加发射功率)和LNB,控制器为天线提供电源并控制相控阵天线的运动。 系统特点: 全自动对星; 采用GPS信号,自动捕获并跟踪卫星(无GPS时可自动盲扫) 运动中自动寻找卫星信号最大值; 控制系统可以使之快速从视线遮挡中恢复,天线使用机械和电子混合扫描,保持指向精度; 邻星干扰保护: 如果天线指向偏离大于0.5度,发射链路自动关闭,直到指向误差被天线的跟踪系统纠正。 设备采用标准机架安装,同时优化设计适用于移动载体,易于安装和维护。

1.天线主体 型号:ST-2K 技术指标: 频率范围: 发送:14.0-14.5 GHz 接收:12.25-12.75 GHz 数据速率: 发送(回传链路):64kbps~4096 Kbps (外置40W BUC) (根据不同的卫星和地区会有变化)接收(前向链路):大于15 Mbps 增益: TX:33.5dBi RX:33.5dBi 极化:线极化/圆极化(自动控制) 上行EIRP:49.5dBw(40w BUC) G/T:9 dB/K @30度 旁瓣电平:<-14dB 交叉极化:>27dB IF输入/输出:L频段950-2050MHz 捕获和跟踪: 信号捕获并锁定:自动,<60秒 极化角调整:自动 跟踪速率:45°/秒 重新捕获:<20秒 仰角捕获误差:<0.3° 极化角捕获误差:<0.35° 极化调整误差:<1° 天线单元: 尺寸:1360×1200×248mm(L×W×H) 重量:≤40Kg 电性能指标 电源:30VDC 功耗:≤70W 电源接头:TNC 射频接头:TNC 机械性能指标 俯仰范围:20° - 70° 方位范围:360°连续 跟踪速率:60°/s 极化范围:-90o~+90o 工作温度: 天线主体单元: -40°~+55°C 贮存温度: -50o~+70oC 相对湿度:<90% 运动速度:≤350 Km/h

动中通卫星通信系统

动中通卫星通信系统 同步卫星的移动通信应用俗称“动中通”,是当前卫星通信领域需求旺盛、发展迅速的应用。“动中通”除了具有卫星通信覆盖区域广、不受地形地域限制、传输线路稳定可靠的优点外,真正实现了宽带、移动通信的目的。 “动中通”卫星通信系统由中心站和“动中通”用户站组成,系统的网络拓扑结构以星状网为宜,中心站为固定地面站。“动中通”用户站根据移动载体的区别可以是船载站、车载站(列车、汽车)、机载站,通过“动中通”用户站可以实现与中心站之间的双向数据、话音、图象传输。 “动中通”在铁路系统主要应用在客运列车的通信方面,装备“动中通”卫星通信系统后,在客运列车上可以开通卫星电视,装备车载电话厅,也可以用专用车厢,装备几间移动办公室,因为有Internet接入和电信通道,移动办公室内可配备计算机,电话,传真机。 “动中通”卫星通信的主要技术特点 传输容量较大:可以实现几十——几百kb/s信息速率传输。 不平衡传输:接收DVB卫星广播信号和Internet接入。 单向接收:接收卫星电视广播 系统组成 “动中通”卫星通信系统由中心站和“动中通”用户站组成,系统的网络拓扑结构通常为星状网、也可以为网状网结构。 中心站与其他卫星系统主站相似,根据系统提供的业务要求设计、配置软件和硬件,并与地面网络连接,包括地面电话交换网、Internet地面接入口等。 “动中通”用户站由卫星接收和发射设备分系统、“动中通”天线伺服分系统组成,“动中通”天线伺服分系统是本项目应用的核心部分,通过其对选择卫星的跟踪功能,始终保持对准卫星转发器,实现信号的接收和分发。 卫星通信分系统 卫星通信系统选择Ku频段,以获得较小的天线口径和较高的天线增益。设备主要由收发信机和调制解调器组成,通信终端可以和以太网相连,提供数据应用和Internet接入;与话音网关连接,提供VoIP电话。 天线伺服分系统 车载“动中通”Ku波段0.8米卫星天线,可在车行进期间始终高精度地对准所使用的同步通信卫星,实现高质量的通信。 --- 主要性能指标 1)天线口径:椭圆口径,长轴2a=1.0m, 短轴2b=0.66m (等效口径 0.8米) 2)工作频率:接收:12.25~12.75GHz 发射:14~14.5GHz 3)天线增益:收: 38.2+20lgf/12.50dBi 发:39.3+20lgf/14.25dBi 4)极化方式:线极化 5)端口隔离度:收发隔离度380dB 6) 运动范围:方位:360°连续(或±420°) 俯仰:10°~90°极化:±100° 7)工作速度、加速度:速度:方位≤100°/s 俯仰≤80°/s 加速度:方位≤800°/s2 俯仰≤600°/s2 8)天线座重量:≤95Kg(含天线) 9)跟踪精度: 1/10 θ0.5(r.m.s) 10)捕获卫星目标方式:自动搜索、人工控制 11)再捕获最大时间:≤5秒

动中通天线(80W)

动中通天线 美国TracStar公司的宽带双向卫星通信系统天线系列产品——IMVS450M柱面反射器天线系统,突破了低轮廓相控阵天线系统的限制。是专为运动中的车载VSAT卫星通信系统而设计的中等轮廓、宽带、高码速率卫星通信天线产品。创新的天线系统自动展开技术,自动搜索、捕获指定的卫星信号,容许非专业人员在改良或非改良的公路上操作移动VSAT卫星通信天线。存取宽带卫星通信信息。在车辆运动过程中,可通过自动控制方位、仰角和极化角,自动跟踪保持精确的指向效果。 系统特点: ?系统最大特点是满足宽带卫星通信需要。上行数据传输速率可大于2Mbps.天线效率和增益高,G/T值高达11dB; ?系统高度只有30cm; ?单键操作自动捕获卫星,无需手动对星; ?可配置世界范围的Ku波段卫星; ?可与任何卫星MODEM互联; ?跟踪车速大于95mph(150Km/h); ?无需专用天线校准测试设备; ?无需计算机或外部设备去操作天线; ?无需电话呼叫网络操作手或服务; ?无需标校。 系统部件

(1)天线 IMVS450M天线系统包括柱面反射器、极化调节器、无源RF部件和天线罩组成。 (2)远程位置调节器 远程位置调节器是一个机电一体化的组合件,在规定的速度和加速度要求下使天线波束指向期望的卫星,远程位置调节器有马达、驱动部件、角位置反馈器件、速度反馈器件以及需要的结构件组成,在天线控制器的控制下使天线旋转。 (3)天线控制器 天线控制器(ACU)完成控制模式、位置环闭环,极限值监控、故障监控、平台运动补偿以及天线伺服环路补偿。 ACU 可以为每个远程位置调节器马达提供放大的驱动信号,并从每个远程位置调节器反馈器件接收位置和速度数据。 (4)惯性敏感元件 惯性敏感元件可以测量移动平台在惯性空间(横摇、纵摇和艏摇)的位置和动态运动并向ACU提供这些数据,以便在卫星捕获、再捕获和正常运转时补偿或隔离平台的扰动。天线利用综合性的GPS接收机测量移动平台在地面上某一点的位置并把该数据提供给ACU, 让ACU 来确定卫星的角位置。 (5)平台坐标系 平台坐标系如图4示出的,是一个右手坐标系,X轴指向汽车前方,Z轴向下指向汽车底部,当地水平坐标系(也叫做惯性坐标系)与平台坐标系有同样的原点,但是X轴是指向北,Z轴指向地球中心(重力矢量)。平台坐标系的方向与当地坐标系的关系由横摇、纵摇和艏摇角定义。要从当地水平坐标系变换到平台坐标系,首先旋转艏摇角,然后旋转纵摇,最后旋转横摇角,标记旋转角按右手定则,沿着X-,Y-,和平台坐标系的Z轴分别作推进、摇摆、和重力作直线运动。 在运动中,ACU利用惯性敏感元件提供的参数,将当地水平坐标系转换为平台坐标系,在平台坐标系下产生新的方位和俯仰角,使天线指向并跟踪期望的卫星。

相关文档
最新文档