功率因数校正仿真实例解析

功率因数校正仿真实例解析
功率因数校正仿真实例解析

功率因数校正仿真实例解析

实例1:变压整流器

下图所示的为一个典型的单相不控整流滤波器电路,这种电路的特点是,用半控型器件作为开关,用相控方式实现电压调节和电源换流,其优点是主电路结构简单,控制方便。但缺点也尤其明显:网测功率因数低;网测电流也将包含谐波,而一些高次谐波的存在会使电路产生畸变功率,从而增加无功功率,而且我们知道谐波对一些负载,尤其是电机的危害非常大。该电路的输入电流,输入电压以及输入功率的仿真结果下图皆有展现。

图4-1-1单相整流滤波器的原理图

VOFF = 0

R2

150图4-1-2单相整流滤波器的PESPICE 仿真图

仿真程序如下:

.lib "nom.lib"

*Analysis directives:

.TRAN 0 104m 54m 0.1m SKIPBP

.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*)) .INC "..\https://www.360docs.net/doc/c33452331.html,"

* source SINGLE_PHASE_RECTIFIER_81

D_D4 0 N04198 MUR880

C_C1 N04257 N04204 1000u IC=-100

R_R1 0 N04257 0.1

R_R2 0 N04204 150

V_V1 N04194 N04198

+SIN 0 165 60 0 0 0

D_D1 N04194 N04204 MUR880

D_D2 0 N04194 MUR880

D_D3 N04198 N04204 MUR880

.END

图4-1-3整流滤波器电路的相关波形

图4-1-4整流滤波器电路的输入电流频谱

仿真结果分析:

从上图的电压电流波形以及输入电流频谱图中,我们不难发现,谐波比较明显,畸变系

数势必较大。我们不妨设基波位移角为φ1,则基波位移因数为cos1φ;基波电流均值I1,则谐波电流均值依次为I2,I3,I4……In,基波有功功率为P1,视在功率为S,电流波形的正弦因数为μ,网测功率因数为λ。

则λ=P1/S (因为谐波形成的有功功率为零);

P1=U1*I1*cos1φ;

S=U*I=U1*I;

则由上式可得:λ=(I1/I)×cos1φ;

μ=

而λ=cos1φ*μ。

从上式中,我们可以看出功率因数λ与电流波形的正弦因数μ有正比的关系,那么谐波越多,μ就越小,从而功率因数就越低。

单相功率因数校正的仿真研究.

学号14051400645 毕业设计(论文) 题目:单相功率因数校正电路的仿真研究 作者王任届别2009届 系别机械与电气工程系专业自动化 指导教师荣军职称讲师 完成时间2009年5月21日

摘要 现代开关电源技术所面临的最重要课题之一就是功率因数校正(Power Factor Correction,PFC)。在各种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。本文叙述了有源功率因数校正(APFC)的原理和方法,对硬开关和软开关主电路的主要元器件参数进行设计,并在软件环境下搭建了功率因数校正电路Boost变换器与Boost-ZVT变换器的仿真模型,分别对输入电压与输入电流、开关管驱动波形、输出电压与输出电流进行仿真,并对仿真结果进行分析和比较,指出了它们各自的优点与缺点。 关键词:开关电源;功率因数校正;OrCAD/PSpice仿真

ABSTRACT One of the most important issue in modern switching power technology is the Power Factor Correction(PFC). Among a variety of single-phase PFC circuit, Boost boost power factor correction has been widely used as a result of the simplicity of the main circuit structure, high conversion efficiency and easy control strategy achievement. This paper considers the principle and method of the Active Power Factor Correction(APFC) and designs the parameters of main circuit components of hard switching and soft switching. Meanwhile, it establishs the PFC Boost converter circuit and the Boost-ZVT converter simulation model by utilizing software. Moreover, it simulates the waveform of input voltage and current together with the drive waveform of the switch tube and the waveform of output voltage and output current respectively. At last, it analyzes the simulation results, then makes a comparison, pointing out their advantages and disadvantages respectively. Key words: Switching Power; PFC; OrCAD/PSpice simulation

功率因数校正的分析

CRM;而如欲减少EMI问题,选择DCM。 b.如功率水平高于250W,CCM是首选方案。此方案虽然可保持峰值电流和有效值电流,但必须解决二极管反向恢复问题。 c.如功率水平在150W 与250w之间,方案的选择则取决于设计人员的磁件设计水平。 d.如果功率在几kw之上,则采用可控整流电路代替不控整流电路,控制方法采用pwm整流,以实现功率因数的矫正。 2、其它系统要求:拓扑的选择还以满足各种高能效标准。例如,如果需要使系统中的频率同步,则不能采用CRM。此外,如果第二个功率段可处理较大范围(在某些功率序列安排中可能需要)的输入电压,则应选择跟随升压。 功率因数的限制因数: 为什么在一般的电路中功率因数较低呢?有很多因数的影响。其中影响功率因数的主要原因是这些电器的整流电源普遍采用的电容滤波型桥式整流电路(图1)。 这种电路的基本工作过程是:在交 流输入电压的正半周,D1、D3导通,交 流电压通过Dl、D3对滤波电容C充电, 若Dl、D3的正向电阻用r表示,交流电 源内阻用R表示,则充电时间常数可近 似表示为: τ = C 2(+ r) R 由于二极管的正向电阻r和交流电源内阻R很小,故r很小。滤波电容C很快被充电到交流输入电压的峰值,当交流电源输入电压小于滤波电容C的端电压时, Dl、D3就处于截止状态;同理,可 分析负半周D2、D4的工作情况。由 分析不难看出,当电路达到稳态后, 在交流输入电压的一个周期内二极 管导通时间很短,输入电流波形畸 变为幅度很大的窄脉冲电流(图 2)。 由上图可分析出,这种畸变的 电流含有丰富的谐波成分,严重影 响电器设备的功率因数。由理论推

功率因数校正控制方案

功率因数校正方案 方案一:采用数字控制 方案:采用MCU (微控制单元)或DSP(数字信号处理)通过编程控制完成系统的功率因数校正。,MCU 时刻检测输入电压、输入电流以及输出电压的值,在程序中经过一定的算法后输出PWM 控制信号,经过隔离和驱动控制开关管,从而提高输入端的功率因数。采用数字控制的优点是通过软件调整控制参数,使系统调试方便,减少了元器件的数量。缺点是软件编程困难,采样算法复杂,计算量大,难以达到很高的采样频率,此外还要注意控制器和主电路的隔离和驱动。 方案二:采用模拟控制 方案:采用专用PFC(功率因数校正)控制芯片来完成系统功率因数的校正。整流后的线电压与误差放大器处理的输出电压相乘,建立电流的参考信号,该参考信号就具有输入电压的波形,同时也具有输出电压的平均幅值。因此在电流反馈信号的作用下,误差放大器控制的PWM 信号基本变化规律是成正弦规律变化的,于是得到一个正弦变化的平均电流,其相位与输入电压相同,达到功率因数校正的目的。该方案的优点是,使用专用IC 芯片,简单直接,无需软件编程。缺点是电路调试麻烦,易受噪声干扰。模拟PFC 控制是当前的工业选择,且技术成熟,成本低,使用方便。通过比较,系统选用方案二,采用TI 公司专用PFC 控制芯片UCC28019 来完成功率因数的校正。 方案一:LC校正电路根据电感电流不能突变的原理,整流后采用LCC滤波电路,可在一定程度上提高功率因素PF,一般可达0.8~0.9。优点是电路简单、可靠性高、成本低、EMI(电磁干扰)小;缺点是体积大、重量重,电感损耗较大,PF很难接近1。 方案二:填谷式PF校正电路使用电容C1~C2及二极管D5~D7构成填谷式滤波电路,扩展了整流二极管电流波形导通角θ,二极管D6后可串联浪涌电流限制电阻R,可将PF提高到0.8~0.9之间。该电路优点:体积略小于LC校正电路,可靠性高,EMI小,PF也容易达到0.85以上;缺点是输出功率小,只能用在输出功率小于25W的AC-DC变换器中,损耗相对较大,输入电压允许变化范围小,一般不超过15%。电路原理图如图2.1所示。 2.1 填谷式电路 方案三:有源功率因素校正(APFC)电路在整流器与负载之间插入具有特定功能的DC-DC变换器,使输入电流波形尽可能接近正弦波,构成有源功率因素校正电路(APFC)。该技术优点是:电路体积小,校正后的PF接近1;输入电压变化范围大,目前支持全电压范围(90V~265V)的APFC电路技术非常成熟、应用也很普及,因此在输出功率为20W~300W的AC-DC 变换器中使用APFC电路来改善电流波形THD(总谐波失真)参数较为合适。缺点是:该电

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

基于Matlab的功率因数 的仿真分析

基于Matlab的功率因数校正电路的仿真 分析 摘要:根据功率因数校正的原理和特点,建立了一种基于Matlab的功率因数校正电路的仿真模型,详细介绍了模型的建立过程并给出了具体的算法,最后对一种三相无源功率因数校正电路进行了参数的优化和仿真,并对建立的模型作了验证。仿真结果表明,运用Matlab中的SimPowerSystems模块对复杂的电路进行仿真分析和研究,不失为一种准确、直观有效的方法。 关键词:功率因数;模型;仿真 Abstract: Based on the principle and characteristic of PFC, a simulator model is built based on Matlab about PFC. The process of the model-building is introduced in detail and the arithmetic is given. Finally, a three-phase passive PFC circuit is simulated and its parameters are optimized, the model is validated. Meanwhile, the simulation result shows that the SimPowerSystems model of Matlab is an accurate, intuitionistic and effective method on simulation analysis and research of complicated circuit. Keywords: power-factor; model; simulation 0 引言 Matlab是一种功能强大的数值计算软件,应用领域很广。在继Matlab5.3之后推出的电力系统工具箱(Power System Blocket),它是在Simulink仿真软件的运行环境下的一个电路工具箱,操作简单易学,不需要自己编程,只需用鼠标拖出元器件来搭建自己需要的电路,仿真速度比Pspice快。。在仿真过程中,可以随时观察仿真结果,并对仿真结果进行处理,以及对电路参数进行分析和优化,达到事半功倍的效果。本文对Matlab在功率因数校正方面的电路进行建模和仿真分析。 1 功率因数校正的原理 功率因数校正电路基本上是一个AC/DC变换器。其输出是不可调节的直流电压Vd,一个大电容Cd(1000uF)用来滤除低频纹波。电容和电阻作为电路的等效负载,电网仅在每个工频周期的一小部分时间里给负载提供能量。电流中包含丰富的高次谐波电流存在

常用有源功率因数校正电路分类及工作原理分析

常用有源功率因数校正电路分类及工作原理分析 来源:半导体器件应用网 摘要:常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。 关键字:有源功率因数校正电路,升压型PFC, PFC电路,工作原理 常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。 1.升压型PFC电路 升压型PFC主电路如图1所示,其工作过程如下:当开关管Q导通时,电流IL 流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。这样,VL与电源VIN串联向电容和负载供电。 图1 升压型PFC主电路 这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。 2.降压型PFC电路

逆变电源中功率因数校正

逆变电源中功率因数校正 中心议题:逆变电源中功率因数校正逆变电源系统功率因数及谐波干扰问题分析 解决方案:采用单级PFC电路的逆变器 由于对性能要求的不断提高,特别是当前“绿色”电源的呼声越来越高,现代逆 变器系统对功率因数校正和电流谐波抑制提出的更高的要求。本文对功率因数校正在现代逆 变电源中的应用作了简要介绍。分析比较了几种带有PFC功能的逆变器构成方案,分析结果 表明带单级隔离型PFC电路的两级逆变器具有更高的可靠性,更高的效率和更低的成本。1 现代逆变电源系统的组成和结构随着各行各业控制技术的发展和对操作性能要求的提高,许 多行业的用电设备都不是直接使用通用交流电网提供的交流电作为电能源,而是通过各种形 式对其进行变换,从而得到各自所需的电能形式。现代逆变系统就是一种通过整流和逆变组 合电路,来实现逆变功能的电源系统。逆变系统除了整流电路和逆变电路外,还要有控制电路、保护电路和辅助电路等。现代逆变系统基本结构。 图1 逆变系统基本结构框图 现代逆变系统各部分功能如下:1. 整流电路:整流电路就是利用整流开关器件,如半导体二 极管、晶闸管(可控硅)和自关断开关器件等,将交流电变换为直流电。除此之外,整流电路 还应具有抑制电流谐波和功率因数调整功能。2. 逆变电路:逆变电路的功能是将直流电变换 成交流电,即通过控制逆变电路的工作频率和输出时间比例,使逆变器的输出电压或电流的 频率和幅值按照人们的意愿或设备工作的要求来灵活地变化。3. 控制电路:控制电路的功能 是按要求产生和调节一系列的控制脉冲来控制逆变开关管的导通和关断,从而配合逆变器主 电路完成逆变功能。4. 辅助电路:辅助电路的功能是将逆变器的输入电压变换成适合控制电 路工作需要的直流电压。对于交流电网输入,可以采用工频降压、整流、线性稳压等方式, 当然也可以采用DC-DC变换器。5. 保护电路:保护电路要实现的功能主要包括:输入过压、欠压保护;输出过压、欠压保护;过载保护;过流和短路保护;过热保护等。2 逆变电源系 统功率因数及谐波干扰问题分析对于逆变器的整流环节(AC-DC),传统的方法仍采用不控整 流将通用交流电网提供的交流电经整流变换为直流。虽然不控整流器电路简单可靠,但它会 从电网中吸取高峰值电流,使输入端电流和交流电压均发生畸变。也就是说,大量的电器设 备自身的稳压电源,其输入前置级电路实际上是一个峰值检波器,在高压电容滤波器上的充 电电压,使得整流器的导通角缩短三倍,电流脉冲成了非正弦波的窄脉冲,因而在电网输入 端产生失真很大的谐波峰值干扰,。(a) 电网输入端电流和电压的畸变 (b)峰值电流中的 各次谐波分量频谱 图2 传统整流电路输入端电网电压和电流失真与谐波干扰分量图 推荐相关文章:开关电源的几种热设计方法手机LED背光电源管理的设计需求2011半导体发 展趋缓,逆变器前景最好肖特基二极管在电源管理中的应用分析电源模块并联供电的冗余结 构及均流技术反激电源的设计反激电源’电源已接通未充电‘问题的解决办法! 单相电源与三相电源的区别什么是脉冲电源 由此可见,大量整流电路的应用使电网供给严重畸变的非正弦电流,对此畸变的输入电流进 行傅立叶分析,发现它不仅含有基波,还含有丰富的高次谐波分量。这些高次谐波倒流入电网,引起严重的谐波污染,使输入端功率因数下降,将造成巨大的浪费和严重危害。输入电 流谐波的危害主要有:(1)使电能的生产、传输和利用的效率降低,使得电器设备过热、产 生振动和噪声并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。(2)可引起电力系统局 部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。(3)使测量仪器产生附 加谐波误差。常规的测量仪器是设计并工作在正弦电压、电流波形的,因此在测量正弦电压 和电流时能保证其精度,但是这些仪表用于测量非正弦量时,会产生附加误差,影响测量精

功率因数校正(PFC)技术的研究

网络教育学院《电源技术》课程设计 题目:功率因数校正(PFC)技术的研究 学习中心:辽宁东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级: 2010年春季 学号: 学生: 辅导教师:武东锟 完成日期: 2012年 2 月 24 日

内容摘要 本文对于单相与单相PFC技术及其控制方法的研究,针对于各种功率因数校正,介绍了相应的基本工作原理,和功率因数校正技术的额发展和其主要最主要特点。从主电路的拓扑形式和控制方式分析有源功率因数校正。进而更好的学习电源技术。 关键词:功率因数校正;PFC技术;控制方法;有源功率因数

引言、 功率因数是衡量电器设备性能的一项重要指标。功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。因此。防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的要求,世界各国尤其是发达国家已开始实施这一标准。 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。

1功率因数校正基本原理及方法 1.1功率因数校正基本原理 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 1.1.1拓扑选择的一般方法 由于输入端存在电感,升压转换器是提供高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正。 a.临界导电模式(CRM)PFC——由于控制的设计较为简单,而且可与较低速升压二极管配合使用,所以在较低功率应用中通常采用此方法。 b.不连续导电模式(DCM)PFC——此创新的方案延承了CRM 的优点,并消除了若干限制。 c.连续导电模式(CCM)PFC——由于这种方案恒频且峰值电流较小,是较高功率(>250 W)应用的首选方案。但是,传统的控制解决方案较为复杂,牵涉到多个环

功率因数校正(PFC)的几个小知识

1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。 2、为什么我们需要PFC? 功率因素校正的好处包含: 1. 节省电费 2. 增加电力系统容量 3. 稳定电流 低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC 功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。 PFC电源供应器是如何帮助节省能源? 藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。 什么是谐波? 谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)] 有哪些国家规定PFC为电子设备的标准配备? 2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。 什么是主动式/被动式功率因数校正(Active/Passive PFC)? 被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因

有源功率因数校正技术及控制方式分析_张浩

第25卷第3期上海电力学院学报V o l .25,N o .3 2009年6月 J o u r n a l o f S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r J u n e 2009 文章编号:1006-4729(2009)03-0201-07 有源功率因数校正技术及控制方式分析 收稿日期:2009-03-30 作者简介:张浩(1962-),男,博士,教授,博士生导师,江苏无锡人.主要研究方向为电力系统自动化,工业以太网, 现场总线,电力监测与管理,电力企业信息化等.E -m a i l :h z h a n g k @y a h o o .c o m .c n . 张 浩,许龙虎 (上海电力学院电力与自动化工程学院,上海 200090) 摘 要:电力电子设备谐波污染问题越来越严重,功率因数校正技术是解决该问题的最有效方法,而有源功率因数校正(A P F C )技术因其独特的优势成了该领域的研究重点.介绍了功率因数的定义和校正原理,并根据有源功率因数校正电路说明了A P F C 的工作原理,重点阐述了A P F C 技术的各种控制方法及其未来的发展趋势. 关键词:有源功率因数;校正技术;控制方式中图分类号:T P 217+.3 文献标识码:A A c t i v e P o w e r F a c t o r C o r r e c t i o n T e c h n o l o g y a n dC o n t r o l Me t h o d s A n a l y s i s Z H A N GH a o ,X UL o n g -h u (C o l l e g e o f E l e c t r i c P o w e r a n dA u t o m a t i o nE n g i n e e r i n g ,S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r ,S h a n g h a i 200090,C h i n a ) A b s t r a c t : T h eh a r m o n i c p o l l u t i o np r o b l e m o f p o w e r e l e c t r o n i cd e v i c e s b e c o m e s m o r ea n dm o r e s e r i o u s ,a n d p o w e r f a c t o r c o r r e c t i o n t e c h n o l o g y i s t h e m o s t e f f e c t i v e m e t h o d t o s o l v e t h i s p r o b l e ma n d t h e a c t i v e p o w e r f a c t o r c o r r e c t i o n(A P F C )t e c h n o l o g y h a s b e c o m e t h e r e s e a r c hf o c u s o w i n gt oi t s u n i q u e a d v a n t a g e s .T h ed e f i n i t i o na n dp r i n c i p l e s o f p o w e r f a c t o r c o r r e c t i o na r ei n t r o d u c e d ,t h e w o r k i n g p r i n c i p l e o f A P F Ct e c h n o l o g y i s s h o w e d a c c o r d i n g t o t h e A P F Cc i r c u i t .T h e d e v e l o p m e n t t r e n d a n d v a r i o u s c o n t r o l m e t h o d s o f A P F Ct e c h n o l o g y a r e m a i n l y a n a l y z e d .K e y w o r d s : a c t i v e p o w e r f a c t o r ;c o r r e c t i o n t e c h n o l o g y ;c o n t r o l m e t h o d s 随着我国经济的发展,各种换流设备的使用越来越多、容量越来越大,加上一些非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变,造成电能质量下降,威胁电网和包括电容器在内的各种电气设备的安全经济运行.为了提高电网的供电质量,限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布了G B /T 14549 -93电能质量公用电网谐波,国际电工委员会(I E C )1998年制定了I E C 61000-3-2标准 [1] .解 决电力电子设备谐波污染问题的方法有两种:一是对电网采用滤波补偿;二是对电力电子设备本 身进行改进,即进行功率因数校正.相对来说,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一 个重要研究方向[2] .

单级功率因数校正(PFC)变压器的设计

单级功率因数校正(PFC)变压器的设计 1引言 为了减少对交流电网的谐波污染,国际上推出了一些限制电流谐波的标准,如IEC 1000- 3-2,它要求开关电源电源必须采取措施降低电流谐波含量。 为了使输入电流谐波满足要求,必须加入功率因数校正(PFCPFC)。目前应用得最广泛的是PFC级+DC/DC级的两级方案,它们有各自的开关器件和控制电路。这种方案能够获得很好的性能,但它的缺点是电路复杂,成本高。 在单级单级功率因数校正变换器[1]中,PFC级和DC/DC级共用一个开关管和一套控制电路,在获得稳定输出的同时实现功率因数校正。这种方案具有电路简单、成本低的优点,适用于小功率场合。本文介绍了一种单级PFC变换器的基本原理及其设计设计过程。 2单级PFC变换器 单级PFC变换器的原理图,是一种基于脉宽调制(PWM)的变换器。变换器的PFC级采用Boost 电感电路,而DC/DC级采用双管单端正激电路结构。 PWM集成芯片采用了UC3842,是一种电流型控制的专用芯片,具有电压调整率高、外围元器件少、工作频率高、启动电流小的特点。其输出驱动信号通过隔直电容,连接在驱动变压器变压器原边。驱动变压器采用副边双绕组结构,得到两路同相隔离的驱动信号,从而实现了DC/DC级的双管驱动。 变换器的过流保护由电阻R9检测到开关管的过流信号,封锁UC3842的输出信号,实现过流保护。电压负反馈控制由电阻R12和R13获得输出电压信号。 变换器的工作原理简述如下:当变换器接通电源时,输入交流电压整流后的直流电压经电阻R17降压后,给UC3842提供启动电压。进入正常工作后,二次绕组N3提供UC3842的工作电压(12 V);绕组N2的高频电压经整流滤波,由TL431获得偏差信号,经光耦隔离后反馈到UC3842,去控制开关管的导通与截止,实现稳压的目的。在一个开关周期Ts内,控制Boost 电感工作在不连续导电模式(DCM)下,使得输入电流波形自然跟随输入电压波形,从而实现了功率因数校正。 3变换器的设计 3.1 EMI滤波器的设计 EMI滤波器能有效地抑制电网噪声,提高电子仪器、计算机和测控系统的抗干扰能力及可靠性[2]。单级PFC变换器的PFC级工作在不连续导电模式下,其输入电流波形为脉动三角波,因此其前端需添加EMI滤波器以滤除高频纹波。 EMI滤波器电路,包括共模扼流圈(亦称共模电感)和滤波电容。共模电感主要用来滤除共模干扰,其电感量与EMI滤波器的额定电流有关。本文中的单级PFC变换器的额定电流为1 A,取共模电感值为15 mH。滤波电容C11和C13主要滤除串模干扰,容量大致为0.01μ F~0.47 μ F。C14和C15跨接在输入端,并将电容器的中点接地,能有效抑制共模干扰,容量范围是2200 pF~0.1 μ F。 3.2功率器件的选取 变换器的开关器件一般均选用功率场效应管(MOSFET),依据输入最高电压时输出最大电流的要求来确定其电压与电流等级,并预留有1.5~2倍的电压和2~3倍的电流裕量。在单管变换器中,开关器件的电压UCEO通常可按经验公式选取

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形

常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多. 图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

UC3854的单级式功率因数校正

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 基于UC3854的单级式功率因数校正的研究 *引言 近年来,随着电子技术的发展,各种办公自动化设备,家用电器,计算机被大量使用,然而,在这些设备的内部都离不开一个共同的“心脏”——开关电源,即将市电转化为直流电源,以供给系统的需求。在这个转换过程中,由于一些非线性元件的存在,导致输入的交流电压虽然是正弦的,但输入的交流电流却严重畸变,功率因数PF=0.67。如图1所示。 图1.输入电压电流波形 脉冲状的输入电流,含有大量的谐波,而谐波的存在,不但对公共电力系统产生污染,易造成电路故障,而且严重降低了系统的功率因数。本课题基于此问题进行有源功率因数校正技术的模拟控制策略研究,设计了基于UC3854为核心的功率因数校正系统,实现了电源装置网侧电流正弦化,功率因数接近1,极大地减少了电流谐波,消除了对公共电力系统的污染。 1.主电路拓扑结构 主电路采用单级功率因数校正器,主要是将PFC级和DC/DC变换级集成在一起,两级共用一只功率器件,它与传统的两级电路相比省掉了一只功率器件,增加了一个二极管。系统拓扑如图2所示。另外,其控制采用常规的PWM方式,相对简单。 iac AC PFC DC/DC 图2.单级有源功率因数校正

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 2.有源功率因数校正电路原理 有源功率因数校正电路原理 整流器输出电压u d 、升压变换器输出电容电压u C 与给定电压U *c 的差值都同时作为乘法器的输入,构成电压外环, 而乘法器的输出就是电流环的给定电流I *s 。 升压变换器输出电容电压u C 与给定电压U *c 作比较的目的是判断输 EMI 滤波器 u i i i +- u d C 1 P WM 形成电路L 1 V 乘法器 i F * s I u d VD C 采样滤波 U o u C - +△ ∞* c U

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

相关文档
最新文档