AVB下一代网络音视频实时传输技术

AVB下一代网络音视频实时传输技术
AVB下一代网络音视频实时传输技术

下一代下一代网络网络网络音视频音视频音视频实时传输实时传输实时传输技术技术 -- Ethernet AVB

作者作者::何冬(首席工程师, Dong.He@https://www.360docs.net/doc/c411947236.html, )

黄晟(工程师, Sheng.Huang@https://www.360docs.net/doc/c411947236.html, )

Charles Wang (技术总监, Charles.Wang@https://www.360docs.net/doc/c411947236.html, )

哈曼哈曼((上海上海))研发中心集团技术研究部

摘要

以太网音视频桥接技术(Ethernet Audio/Video Bridging ,以下简称Ethernet A VB )是一项新的IEEE 802标准,其在传统以太网络的基础上,通过保障带宽(Bandwidth ),限制延迟(Latency )和精确时钟同步(Time synchronization),提

供完美的服务质量(Quality of Service, 简称QoS )

,以支持各种基于音频、视频的网络多媒体应用。Ethernet A VB 关注于增强传统以太网的实时音视频性能,同时又保持了100%向后兼容传统以太网,是极具发展潜力的下一代网络音视频实时传输技术。

引言

1982年12月IEEE 802.3标准的发布,标志着以太网技术的起步。经过不到30年的发展时间,以太网的传输速度已经从最初的10Mbps 发展到100Mbps 、1000Mbps 、10Gbps ,甚至即将出现的100Gbps 。以太网低廉的端口价格和优越的性能,使得以太网占据了整个局域网的85%左右,而基于以太网的网桥、集线器、交换机和路由器则构成了互联网体系相当重要的组成部分。

近十几年来,消费者对于以太网上的多媒体应用的需求日益剧增,这对网络的带宽及服务质量都提出了更高的要求。不过,由于以太网原本只设计用于处理纯粹的静态非实时数据和保证其可靠性,至于顺序和包延迟等并非作为重要的考虑因素。尽管传统二层网络已经引入了优先级(Priority)机制,三层网络也已内置了服务质量(QoS )机制,但由于多媒体实时流量与普通异步TCP 流量存在着资源竞争,导致了过多的时延(Delay )和抖动(Jitter ),使得传统的以太网无法从根本上满足语音、多媒体及其它动态内容等实时数据的传输需要。

IEEE 802.1 A VB 工作组正致力于制定一系列的新标准,

对现有的以太网进行功能扩展,通过建立高质量、低延迟、时间同步的音视频以太网络,为家庭或企业提供各种普通数据及实时音视频流的局域网配套解决方案。

Ethernet A VB 网络的构成

为了在以太网上提供同步化低延迟的实时流媒体服务,需要建立A VB 网络,称之为A VB “云”(Cloud )。A VB “云”的建立需要至少速度在100Mbps 以上的全双工(Full-duplex )以太链路,这就需要能保障传输延迟的A VB 交换机(Switch)和终端设备(End Point),以及逻辑链路发现协议(IEEE 802.1AB - LLDP ),用于设备之间交换支持A VB 的协议信息。

如图1所示,在A VB “云”内,由于延迟和服务质量得到保障,能够高质

量地提供实时的流媒体服务。同时,A VB网络保持与传统以太网的兼容,也能够连接到传统的交换机、集线器和终端设备。但由于集线器的半双工(Half-duplex)特性,以及传统以太网交换机不具有A VB功能,无法完全保障其流媒体服务的实时性,因此在A VB“云”外,只保障普通的最大交付功能(Best Effort)并与A VB网络相连。

图1

Ethernet A VB解决的问题

流媒体服务在如今的以太网上已经得到广泛应用。虽然通过缓冲(Buffer)及自适应时钟恢复技术(Adaptive Clock Recovery)能够在一定程度上解决网络时延和抖动带来的问题,但这本身又会引入更多的延迟,而超过A V应用本身所允许的误差范围,并且恢复的时钟也没有足够的精度对不同位置的A V信号进行同步。为此,A VB定义了高精度的时钟同步协议(IEEE 802.1AS),为以太网提供完美的低延迟、低抖动的时钟。

为了解决网络中A V实时流量与普通异步TCP流量之间的竞争问题,A VB 定义了流预留协议(IEEE 802.1Qat),通过协商机制,在A V流从源设备到不同交换机再到终端设备的整个路径上预留出所需的带宽资源,以提供端到端(End-to-End)的服务质量及延迟保障。

此外,依赖于时间同步的A V流在从源设备、途径不同交换机、再到达目的设备的路径中,还需要指定包转发(Forwarding)及队列(Queuing)的算法,以避免交换机和设备端点中大量TCP等异步流量导致的抖动,并严格保持在250μs的时隙内转发A V流。

A VB规定了A类(Class A)和B类(Class B)两种音视频流,对应的以太网帧率(Frame Rate)分别为125μs和250μs。根据IEEE 802.1D的规定,局域网中最大的网桥直径为7跳(Hops)。所以,在7跳的局域网环境中,每跳250μs

的延迟将使得整个数据流量的最大延迟不大于2ms,这无疑使得流服务应用不需要依赖过多的缓存,降低对硬件资源的要求,使得更多资源紧凑的设备也能实现A VB的功能。

IEEE 802.1 A VB标准概览

鉴于以太网的简单、价格低廉及性能优越的特性,使得以太网在如今的计算机网络中占据了主导性的地位。在研究制定A VB的过程中,IEEE标准委员会的目标就是在保持完全兼容现有以太网体系的基础上,对其功能进行扩展,以提供稳定的实时音视频传输。

为此,4个IEEE 802.1 A VB标准形成了A VB的基础体系,它们分别是:

一、 精准时间同步协议(Precision Time Protocol ,简称PTP)-- IEEE

802.1AS:“Timing and Synchronization for Time-Sensitive Applications

in Bridged Local Area Networks”;

二、 流预留协议(Stream Reservation Protocol,简称SRP)-- IEEE

802.1Qat:“Virtual Bridged Local Area Networks – Amendment 9:

Stream Reservation Protocol (SRP)”;

三、 队列及转发协议(Queuing and Forwarding Protocol,简称Qav)--

IEEE 802.1Qav:“Virtual Bridged Local Area Networks – Amendment 11:

Forwarding and Queuing Enhancements for Time-Sensitive Streams”;

四、 音视频桥接系统(Audio/Video Bridging Systems)-- IEEE 802.1BA:

“Local and Metropolitan Area Networks—Audio Video Bridging (A VB)

Systems”;

此外,还有另外两个使用IEEE 802.1 A VB来提供高质量专业音视频的标准:

一、(二层)音视频桥接传输协议(Audio/Video Bridging Transport Protocol,

简称A VBTP)-- IEEE 1722:“Layer 2 Transport Protocol for Time

Sensitive Applications in Bridged Local Area Networks”;

二、(三层)实时传输协议(Real-time Transport Protocol,简称RTP)-- IEEE

1733:“Layer 3 Transport Protocol for Time Sensitive Applications in Local

Area Networks”。

关于A VB的详细信息及进展情况,可以访问其官方网址

https://www.360docs.net/doc/c411947236.html,/1/pages/avbridges.html

图2为IEEE 802.1 A VB的协议栈框图。

精准时间同步协议((PTP):PTP基于IEEE 1588:2002协议,IEEE 802.1AS精准时间同步协议

定义了整个网络的时钟同步机制。通过定义主时钟选择与协商算法、路径延迟测算与补偿、以及时钟频率匹配与调节的机制,PTP设备交换标准的以太网消息,将网络各个节点的时间都同步到一个共同的主时钟。作为IEEE 1588协议的一个简化版本,IEEE 802.1AS与1588的最大区别在于PTP是一个完全基于二层网络,非IP路由的协议。与IEEE 1588一样,PTP定义了一个自动协商网络主时钟的方法,即最优主时钟算法(Best Master Clock Algorithm,简称BMCA)。BMCA

定义了底层的协商和信令机制,用于标识出A VB局域网内的主时钟(Grandmaster)。一旦主时钟被选定,所有局域网节点的PTP设备将以此主时钟为参考值,如果Grandmaster发生变化,整个A VB网络也能通过BMCA在最短时间确定新的主时钟,确保整个网络保持时间同步。802.1AS的核心在于时间戳机制(Timestamping)。PTP消息在进出具备802.1AS功能的端口时,会根据协议触发对本地实时时钟(RTC)的采样,将自己的RTC值与来自该端口相对应的主时钟(Master)的信息进行比较,利用路径延迟测算和补偿技术,将其RTC 时钟值匹配到PTP域的时间。当PTP同步机制覆盖了整个A VB局域网,各网络节点设备间就可以通过周期性的PTP消息的交换精确地实现时钟调整和频率匹配算法。最终,所有的PTP节点都将同步到相同的“挂钟”(Wall Clock)时间,即Grandmaster时间。在最大7跳的网络环境中,理论上PTP能够保证时钟同步误差在1μs以内。

图2

):传统IEEE 802网络标准的特性限制了

流预留协议((SRP:

IEEE 802.1Qat流预留协议

其无法将普通异步流量与时间敏感的流媒体流量进行优先级划分。为了提供有保障的服务质量(QoS),流预留协议(SRP)确保了A V流设备间端到端的带宽可用性。如果所需的路径带宽可用,整个路径上的所有设备(包括交换机和终端设备)将会对此资源进行锁定。SRP利用IEEE 802.1ak多注册协议(Multiple Registration Protocol,简称MRP)来传递消息,以交换A V流的带宽描述消息并对带宽资源进行预留。符合SRP标准的交换机能够将整个网络可用带宽资源的75%用于A VB链路,剩下25%的带宽留给传统的以太网流量。在SRP中,流服务的提供者叫做Talker,流服务的接收者叫做Listener。同一个Talker提供的流服务可同时被多个Listener接收,SRP允许只保障从Talker到Listener的单向数

据流流动。只要从Talker到多个Listener中的任意一条路径上的带宽资源能够协商并锁定,Talker就可以开始提供实时A V服务。SRP内部周期性的状态机维护着Talker及Listener的注册信息,能够动态的对网络节点状态进行监测并更新其内部注册信息数据库,以适应网络拓扑的动态改变。无论Talker还是Listener,都可以随时加入或离开A VB的网络,而不会对A VB网络的整体功能和状态造成不可恢复的影响。SRP包含注册(Registration)和预留(Reservation)两部分,Talker对A V流所需带宽资源进行协商预留,Listener则注册并接收所需的A V流。

队列及转发协议((Qav):Qav队列及转发协议的作用是确IEEE 802.1Qav队列及转发协议

保传统的异步以太网数据流量不会干扰到A VB的实时音视频流。时间敏感的A V 流转发采用伪同步模式(Pseudo-synchronous),这个机制依赖于SRP提供沿路经的预留带宽以及为PTP提供8Khz的时钟。在每个125us的时隙,包含A VB数据的802.3以太网等时帧(Isochronous)就会被进行转发。同时,为了避免普通数据流量与A VB流量之间的对网络资源的竞争,A VB交换机内对时间敏感的A V 流和普通数据流进行了区别处理,将等时帧与异步帧分别进行排队,并且赋予等时帧最高的优先级。在优先保证等时帧传输的条件下,继续提供普通异步传输的服务,这就是Qav的优先级管理(Prioritize)及流量整形(Traffic Shaping)。尽管终端及交换机设备都需要相应机制保障75%的带宽资源用于A VB应用,但802.1Qav的大部分实现将由A VB交换机负责。

系统标准::A VB系统标准定义了一系列在生产制造IEEE 802.1BA A VB系统标准

A VB兼容设备过程中使用的预设值及设定,使得不具备网络经验的用户也能够去建立、使用A VB网络,而不必对其进行繁琐的配置。目前IEEE 802.1 A VB工作组的主要精力集中在其它三个主要协议上(IEEE 802.1AS、IEEE 802.1Qat和IEEE 802.1Qav),这个标准还处于相当粗略的阶段。

音视频传输协议((A VBTP):A VBTP定义了局域网内提供实时IEEE 1722 音视频传输协议

音视频流服务所需的二层包格式,A V流的建立、控制及关闭协议。A VBTP为物理上分隔的音视频编解码器之间建立了一条带有低延迟的虚拟链路,它使用与IEEE 1394同样的流格式进行数据传输及A V同步。A VBTP所采用的IEC 61883格式如下:

IEC 61883-2: SD-DVCR data transmission

IEC 61883-4: MPEG2-TS data transmission

IEC 61883-6: Audio and music data transmission protocol

IEC 61883-7: Transmission of ITU-R BO.1294 System B

IEC 61883-8: Transmission of ITU-R BT.601 style Digital Video Data

IIDC 1394-based Digital Camera Specification

各种压缩的与非压缩的原始音频视频数据流经由A VBTP协议进行打包(填充由SRP保留的流ID,打上PTP产生的时间戳以及媒体类型等相关信息),通过A VBTP专用的以太网帧类型进行组播,自流媒体服务者(Talker)发出,由A VB交换机进行转发,再被注册过此A V流服务的接收者(Listener)接收并解包、解码然后输出。

IEEE 1733 实时实时传输传输传输协议协议协议((RTP )

:RTP 是一种目前应用最广泛的实时流媒体协议,与IEEE 802.1 A VB 那样完全基于二层的标准不同,RTP 是一种基于三层UDP/IP 网络的协议。为了在基于IP 的三层应用上利用二层A VB 的性能,IEEE 1733对RTP 进行了扩展,在通过桥接及路由的局域网内提供时间同步、延迟保障和带宽预留的服务,以提供实时音视频流的传输。其中涉及到封包格式,流的建立、控制、同步及关闭等协议。

A V

B 的历史的历史、、现状及未来

最初源于一个802.3的研究小组,于2005年11月转而成立IEEE 802.1A VB 工作组(Audio/Video Bridging Task Group ),开始着手研究制定一系列的协议,以增强现有802网络的功能,使得基于以太网的实时音视频传输技术从计划逐步走向试验阶段,并即将走向市场。

目前,A VB 的每一项标准都仍处于草案或投票阶段,并有望在2010年或2011年完成定稿工作。当前A VB 工作组的主要精力专注在802.3以太网上,基于802.11无线网络的A VB 细节将会是下一步的重点。

来自两个阵营的力量在推动着以太网A VB 的发展,一组是以哈曼(Harman International)和BMW 为代表的系统产品厂商,致力于提供一套基于标准的方案来为演播室、影剧院、音乐会现场及汽车娱乐系统等提供稳定可靠的音视频服务;另一组是以博通(Broadcom)、迈威(Marvell)和赛灵思(Xilinx)为代表的芯片厂商,希望提供低延时、供家庭及企业使用的同步音视频网络。

作为以太网A VB 技术的领军人物之一,哈曼正与其战略合作伙伴博通、赛灵思紧密合作,投入巨大的研发力量,积极参与到A VB 的协议制定及实验工作中。哈曼已于2009年4月在美国旧金山举行的第125界AES 大会上展出了哈曼专业系统(Harman Professional)旗下的第一款符合IEEE 802.1 A VB 标准草案的产品。该系统由一个dbx SC32数字矩阵处理器(Talker)、一个Crown 音频放大器(Listener)和一个内置博通以太网A VB 芯片的交换机(Switch)组成,通过网线将3个设备连接起来。模拟音频信号经由dbx SC32输入,进行数字化采样,送入dbx SC32内置的赛灵思以太网A VB 卡进行处理并打包送入A VB 网络,然后以太网A VB 交换机对此A VB 音频流进行转发,最终到达Crown 音频放大器设备,紧接着Crown 音频放大器对此A VB 音频流进行解包,最后经解码后输出到外置喇叭。

关于哈曼

哈曼(Harman International Industries, Incorporated.)是总部位于美国康涅狄格州斯坦福(Stamford, Connecticut)的一家集设计、生产和市场一体,专门面向汽车电子、消费和专业音频及娱乐信息系统产品的公司。作为在其行业内的领导者,哈曼在美洲、欧洲和亚洲均有广阔市场及分支机构,全球雇员超过11000人。哈曼国际旗下有众多世界知名品牌,包括AKG?, Audioaccess?, Becker?, BSS?, Crown?, dbx?, DigiTech?, Harman Kardon?, Infinity?, JBL?, Lexicon?, Mark Levinson?, Revel?, QNX?, Soundcraft? 和 Studer?。哈曼国际在纽约证券交易所上市交易,其交易代号为“NYSE: HAR”。

无线视频监控的三种常见传输方式

如何选择适合自己使用的无线监控系统,主要根据实际的需求和选择何种传输方式。目前主流的无线视频监控有3G/4G移动视频监控、WLAN(无线局域网)无线视频监控、微波(模拟微波)无线视频监控、COFDM无线视频监控、卫星无线监控。 1、3G传输2G的传输方式主要包括CDMA、GSM两种模式。此两种模式成本较低,具备较大的覆盖面,且传输速度较快,其中CDMA理论值传输速率为153.6Kbps,在实际使用中基本可达到60~80Kbps,因此在无线监控使用中,得到不少厂商的青睐。而基于GSM方式的GPRS,虽覆盖率则高于CDMA,但传输速率却略慢,因此在使用上仍处于下风。3G的传输方式主要包括移动(TD-SCDMA)、电信(CDMA2000EVDO)、联通(WCDMA)运营商的3G技术接入方式,自09年起,经各运营商大力推广,已有不少监控厂家针对此方面研发相关的产品。而3G突出的优点即高速的下载能力,理想值可达到3Kbps~1G的传输速率,目前4G设备在市场上也得到了广泛的应用,在3G的基础上更胜一筹。 优点:大范围移动监控缺点:带宽低、月租费适合行业:适用于公交视频监控、长途客车实时监控、押钞车管理和视频监控、船舶视频监控、军事训练移动指挥、记者跟踪采访、越野赛事监控、盛会安全管理、交通抓拍等场景的视频监控系统。 2、COFDM传输COFDM即编码正交频分复用的简称,是目前世界最先进和最具发展潜力的调制技术。它的实用价值就在于支持突破视距限制的应用,是一种在无线电频谱资源方面充分利用的技术,可以对噪声和干扰有着很好的免疫力,绕射和穿透遮挡物是COFDM的技术核心。其基本原理就是将高速数据流通过串并转换,分配到传输速率较低的若干子信道中进行传输。 优点:小范围移动监控、非视距、绕射缺点:频点使用需申请,带宽低,价格高适合行业:移动应急传输应用。应用于公安、消防、交警、人防应急、城管

一种通过WiFi实现实时传输音视频的方法及系统

龙源期刊网 https://www.360docs.net/doc/c411947236.html, 一种通过WiFi实现实时传输音视频的方法及系统 作者:林勇 来源:《信息记录材料》2019年第02期 【摘要】针对传统音视频系统布线成本高、耗时长的缺点,本文基于目前使用广泛的WiFi技术,搭建了一套音视频数据传输系统,通过WPS协议和自定义协议,能够一键配对,快速建立通信链路,实现了对音视频的实时传输,大大简化了用户配置过程,有效降低了传统有线传输时的布线成本,极大的扩展了使用场景。 【关键词】WiFi;实时传输;音视频 【中图分类号】TP274 【文献标识码】A 【文章编号】1009-5624(2019)02-0046-02 1 背景 多媒体时代,用户对音视频的展现技术以及便捷性有了更高的需求,在现有技术中,音视频分屏技术通常是通过HDMI、VGA或DVI等方式分屏到多台显示终端,这种有线分屏输出技术,对设备接口有一定的要求,用户的输出显示设备不一定有对应的接口,且在使用过程中,需要将输入输出设备通过数据线连接,如果显示设备距离较远,还会增加布线的成本,因此,我们需要一种方法可以摆脱数据线和接口的束缚,基于无线传输的技术完成音视频传输。 2 通过WiFi实现实时传输音视频的优点 本文提供一种通过WiFi实现实时传输音视频的方法,实现点对点数据传输的同时按自定义协议协商信息进行数据处理,大大降低网络带宽的负载,提高传输效率。 该方法具有如下优点:(1)基于无线WiFi完成的音视频数据传输,通过一键配对连接,减少各种数据线拔插等操作,变相降低了传统分屏显示的时间成本和经济成本;(2)设备自动协商能力,以最佳采集参数、传输参数以及编解码方式处理数据,大大提高音视频数据传输处理效率;(3)通过自定义协议的协商,完成设备点对点的配对连接,采用单播方式进行音视频数据的传输,且数据经过编码压缩等,降低网络带宽的负载;(4)音视频数据采集、传输、处理与配对协商相互独立,可灵活扩展多种使用场景,大大提升用户体验。 3 通过WiFi实现实时传输音视频的具体实施步骤 如图1所示,一种通过WiFi实现实时传输音视频的方法,包括如下步骤:

400M无线变频数字音视频传输系统

数字化无线高清淅移动视频实时 传输系统应用方案 北京旺达伟业科技有限公司 二零零六年

目录 第一部分.项目背景 (3) 1. 前言 (3) 2. 公司简介 (3) 第二部分.总体设计原理和技术指标 (6) 1. 总体要求 (6) 2. 系统功能 (6) 2.1.无线高清晰度视频实时传输系统前端: (6) 2.2.无线高清晰度视频实时传输系统接收机功能 (6) 2.3.无线高清晰度视频实时传输系统组成 (6) 2.3.1图像传输前端设备; (7) 2.3.2接收设备 (7) 2.4.系统主要技术性能指标要求 (7) 2.5.系统接口技术指标: (8) 2.5.1背负型前端发射模块 (8) 2.5.2大功率车载型前端发射模块 (8) 2.5.3图像接收设备 (8) 第三部分.产品介绍 (9) 第四部分.技术方案 (10) 1. 点对点通信方式: (10) 2. 点对多点应用系统: (13) 3. 多点对多点; (14) 第五部分.应用方式 (15)

第一部分. 项目背景 1.前言 公共安全重大突发性事件一般包括:战争、地震、台风、洪涝、特大交通安全事故、飞机失事、火车出轨、客轮遇险、特大建筑质量安全事故、民用爆炸物品和危险化学品特大事故、生物恐怖事件、山体崩塌滑坡、井下透水/瓦斯/坍塌、锅炉/压力容器/压力管道和特种设备特大事故、特大急性中毒、重大疾病与突发性疫情、重大环境污染、聚众械斗/骚乱/暴乱/叛乱、邪教活动、核泄露事故、网络黑客事件、其他特大安全事故等。 这类重大突发性事件的共同特点一是突然性,二是没有预见性或难以预见。因此我们必须在平时制定相应的应对预案,以加强对此类事件的监控;除避免事件发生外,一个重要目的是:对突发事件顺利实施应急救援和监控。 信息和网络技术的应用是应急救援预案设置工作的一项重要内容,是保证突发事件应急指挥和处理所必须的硬件。只有在一个有效、高速、安全的现代信息网络上才能实现快速反应,从而达到应急指挥和监控的目的。 将图像监控系统安装在可以高速移动和机动的车辆或飞机上,这就将应急指挥的监控范围和应急程度大大提高,由无线数字图像传输电台组成的车载图像传输系统,主要目的是用于应急指挥中心对移动车辆同应急指挥中心的数据、语音和图像实时传输。使指挥机关和领导能在指挥中心或在办公室中甚至首长车内看到实时传输的现场图像,如亲临现场,及时了解重大突发事件现场实况,作出准确的分析判断,达到实时指挥,提高决策系统的快速准确性,增强快速反应能力、指挥能力和突发事件的处置能力。因此保证信息的可靠、安全和实时快速传输是该系统的核心要求。无线数字图像通信系统研究和应用,对于提高应急指挥快速反应能力,打击恐怖活动,打击各种犯罪,维护社会安定,保障人民生活安全,有效处理各种突发事件,具有重要的社会意义。 2.公司简介 我是一家是专门从事网络数字音视频与无线通信数字微波移动视频传输产品开发及生产的高科技公司。研发的无线数字扩频产品,科技含量高,属于急救系统前沿技术,处于国际领先地位,市场前景广阔,是公安、武警、海关缉私和移动通讯放大系统工程安装急需的通信装备。产品在民用方面,如:油田、电力、监控、监测、无线接入网络领域和无线通讯GSM、CDMA等方面也有广泛用途。 针对目前第三代移动通信技术的突飞猛进的快速发展,我公司跟踪国际和国内先

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

AVB与下一代网络音视频实时传输技术

ESS与AVB音频视频桥网络系统 基于以太网的数字音频传输技术 基于以太网的数字音频传输技术是专业音频行业的一个技术焦点,以其不依赖于控制系统而独立存在的特性,广泛的应用到很多项目中。不仅解决了多线路问题,还解决了远距离传输、数据备份、自动冗余等一系列在模拟传输时代无法面对的问题。 目前比较成熟的以太网音频传输技术主要有CobraNet和EtherSound技术,但这两种技术都各有千秋,在它们此基础上,Audinate于2003年推出了Dante这种融合了很多新技术的数字音频传输技术。 至于下一代网络音视频实时传输技术,新IEEE标准——音视频桥,简称AVB,以即插即用和自主开发的姿态面世,则是全世界现场演出行业所梦寐以求的系统解决方案。 CobraNet网络 CobraNet网络是美国PeakAudio公司开发的一种在以太网上传输专业非压缩音频信号的技术,工作在数据链路层(OSI二层)的低层传输协议,但无法穿过路由器,只能在局域网中传递,音频流不能大于8个数据包Bundle。它可以在100M以太网下单向可以传输64个48kHz、20bit的音频信号通道(48kHz、24bit信号为56路);除音频信号外,还可以传输RS485串口通信数据及其它非同步IP数据;开放的MIB文件,支持SNMP。一般使用星型(或连星型)网络结构。 EtherSound网络 EtherSound网络是由法国Digigram公司开发的一种基于以太网传输音频信号的技术,工作在数据链路层(OSI二层)的低层传输协议,只能在局域网中传递。传输能力为单方向64个24bit、48kHz(或44.1kHz)采样频率的音频通道。不能传递串口信号以及其它IP数据,具有极低的延时。一般采用菊花链结构或以太网星型结构或者这两种结构的混合形式,通过以太网交换机互相连接。

无线音视频传输

数字无线音视频通信系统简介 北京菲斯罗克仪器科技有限公司

目次 目次......................................................................I 1概述 (1) 2系统组成 (1) 2.1机载设备 (1) 2.2车载设备 (2) 2.3单兵背负设备 (2) 2.4无线中继设备 (2) 2.5地面中心站设备 (2) 3系统功能 (3) 3.1主要功能 (3) 3.2主要战术技术指标 (3) 3.2.1技术参数 (3) 3.2.2性能指标 (4) 3.2.3环境指标 (4) 3.2.4接口指标 (4) 3.2.5物理指标 (4) 3.3技术特点 (4) 3.4使用特点: (5) 4系统配置 (5) 4.1标准配置 (5) 4.2用户选配 (5) 5无线通信工作原理 (6) 5.1无线局域网介绍 (6) 5.2无线局域网的标准 (6) 5.3无线扩频通信技术 (7) 5.4扩频通信的基本形式 (7)

5.5微波扩频无线网特点及运行环境 (7) 5.6链路计算 (7) 5.6.1由空间传输损耗定义 (7) 5.6.2系统参数 (8) 5.6.3自由空间传输损耗计算 (8) 5.6.4系统增益:Gs (9) 5.6.5衰落储备 (9) 6系统使用方案 (10) 6.1系统应用 (10) 6.1.1应用于政府突发公共事件的应急通信 (10) 6.1.2应用于侦防、公安、交警人员 (11) 6.1.3应用于军事领域-作战、训练和演习 (11) 6.1.4应用与军事领域-边海防巡逻 (11) 6.1.5应用于消防 (11) 6.1.6应用于深林防火 (11) 6.1.7新闻工作人员 (11) 6.1.8辑毒 (12) 6.1.9油管搜查人员 (12) 6.1.10部队侦察(尤其是单兵侦察) (12) 6.2系统典型布设方案 (12)

无线视频传输技术的发展

无线视频传输技术的发展 随着移动通信业务的增加,无线通信已获得非常广泛的应用。无线网络除了提供语音服务之外,还提供多媒体、高速数据和视频图像业务。无线通信环境(无线信道、移动终端等)以及移动多媒体应用业务的特点对视频图像的视频图像编码与传输技术已成为当今信息科学与技术的前沿课题。 1 无线视频传输技术面临的挑战 数字视频信号具有如下特点: ·数据量大 例如,移动可视电话一般采用QCIF分辨率的图像,它有176X144=25344像开绿灯。如果每个像素由24位来表示,一帧图像的数据量依达 594kbit。考虑到实时视频图像传输要求的帧频(电视信号每秒25帧),数据传输速率将达到14.5Mbps! ·实时性要求高 人眼对视频信号的基本要求是,延迟小,实时性好。而普通的数据通信对实时性的要求依比较低,因此相对普通数据通信而言,视频通信要求更好的实时性。 无线环境则具有如下特点: ·无线信道资源有限 由于无线信道环境恶劣,有效的带宽资源十分有限。实现大数据量的视频信号的传输,尤其在面向大众的无线可视应用中,无线信道的资源尤其紧张。 ·无线网络是一个时变的网络 无线信道的物理特点决定了无线网络是一个时变的网络。 ·无线视频的Qos保障 在移动通信中,用户的移动造成无线视频的Qos保障十分复杂。 由此可以看出,视频信号对传输的需要和无线环境的特点存在尖锐的矛盾,因此无线视频传输面临着巨大的挑战。一般来说,无线视频传输系统的研究设计目标如表1所示。 表1 无线视频传输系统的主要性能指标和设计目标

事实上,表1中许多性能指标是相互制约的。例如,视频图像压缩比的提高会增加编码算法的复杂度,因此会影响算法的实时实现,并且可能降低视频的恢复质量。 2 视频压缩编码技术 视频信息的数据量十分惊人,要在带宽有限的无线网络上传送,必须经过压缩编码。目前国际上存在两大标准化组织——ITU-T和MPEG——专门研究视频编码方法,负责制公平统一的标准,方便各种视频产品间的互通性。这些协议集中了学术界最优秀的成果。 除各种基于国际标准的编码技术外,还有许多新技术的发展十分引人注目。 2.1 基于协议的视频压缩编码技术 国际电信联盟(ITU-T)已经制定的视频编码标准包括H.261(1990年)、H.263(199 5年)、H.263+(1998年),2000年 11月份将通过H.263++的最终文本。H.26X系列标准是专门用于低比特率视频通信的视频编码标准,具有较高的压缩比,因此特别适合于无线视频传输的需要。它们采用的基本技术包括:DCT变换、运动补偿、量化、熵编码等。H.263+和H.263++中更增加考虑了较为恶劣的无线环境,设计了多种增强码流鲁棒性的方法,定义了分线编码的语法规则。 MPEG制定的视频编码标准有MPEG-1(1990年)、MPEG-2(1994年)、MPEG-4(完善中)。其中MPEG-1、MPEG-2基本已经定稿,使用的基本技术和H.26X相同。MPEG-1、MPEG-2的特点在于针对的应用主要是数字存储媒体,码率高,它们并不适于无线视频传输。人们熟知的VCD、DVD是MPEG-1、MPEG-2的典型应用。随后,MPEG组织注意到了低比特率应用潜在的巨大市场,开始和ITU-T进行竞争。在 MPEG-4的制定中,不仅考虑了高比特率应用,还特别包含了适于无线传输的低比特率应用。MPEG-4标准的最大特点是基于视频对象的编码方法。 无线通信终端是多种多样的,其所处的网络结构、规模也是互异的。视频码流的精细可分级性(Fine Granularity Scalability)适应了传输环境的多样性。 编码协议并不提供完全齐备的解决方案。一般来说,协议内容主要包括码流的语法结构、技术路线、解码方法等,而并未严格规定其中一些关键算法,如运动估计算法、码率控制算法等。运动估计算法在第3部分有较为详细的介绍。码率控制方案在第4部分有较为详细的介绍。 2.2 其他视频压缩编码技术

视频传输标准

视频传输标准 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

VGA概述 VGA(Video Graphics Array>是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。 目录[隐藏] VGA应用 VGA原理 内存寻址 程序技巧 技术性细节 标准文字模式 VGA色版 VGA线路 VGA 公插头(通常位于显示器侧> [编辑本段]VGA应用 VGA技术的应用还主要基于VGA显示卡的计算机、笔记本等设备,而在一些既要求显示彩色高分辨率图像又没有必要使用计算机的设备上,VGA技术的应用却很少见到。本文对嵌入式VGA显示的实现方法进行了研究。基于这种设计方法的嵌入式VGA显示系统,可以在不使用VGA显示卡和计算机的情况下,实现VGA图像的显示和控制。系统具有成本低、结构简单、应用灵活的优点,可广泛应用于超市、车站、飞机场等公共场所的广告宣传和提示信息显示,

也可应用于工厂车间生产过程中的操作信息显示,还能以多媒体形式应用于日常生活。b5E2RGbCAP [编辑本段]VGA原理 1 显示原理与VGA时序实现 通用VGA显示卡系统主要由控制电路、显示缓存区和视频BIOS程序三个部分组成。控制电路如图1所示。控制电路主要完成时序发生、显示缓冲区数据操作、主时钟选择和D/A转换等功能;显示缓冲区提供显示数据缓存空间;视频BIOS作为控制程序固化在显示卡的ROM中。p1EanqFDPw 1.1 VGA时序分析 通过对VGA显示卡基本工作原理的分析可知,要实现VGA显示就要解决数据来源、数据存储、时序实现等问题,其中关键还是如何实现VGA时序。 VGA的标准参考显示时序如图2所示。行时序和帧时序都需要产生同步脉冲(Sync a>、显示后沿(Back porch b>、显示时序段(Display interval c>和显示前沿(Front porch d>四个部分。几种常用模式的时序参数如表1所示。DXDiTa9E3d 1.2 VGA时序实现 首先,根据刷新频率确定主时钟频率,然后由主时钟频率和图像分辨率计算出行总周期数,再把表1中给出的a、b、c、d各时序段的时间按照主计数脉冲源频率折算成时钟周期数。在CPLD中利用计数器和RS触发器,以计算出的各时序段时钟周期数为基准,产生不同宽度和周期的脉冲信号,再利用它们的逻辑组合构成图2中的

无线视频监控系统发展趋势

无线视频监控成为监控系统新的发展方向 随着无线通信技术的日益发展,传输带宽不断提高,通信终端的实时信息处理能力飞速增强,无线 多媒体应用日渐成为业内关注的焦点,也成为人们的必然需求。其主流应用之一是便利、灵活的无线实时视频监控系统,如无线家庭防盗、汽车监控等。基于多种无线传输手段的移动视频监控以其特有的灵活性已成为视频监控新的发展方向。 无线化视频监控包括两方面内容:一是监控中心的移动。通常情况下,被监控对象或是摄像机往往 是固定的,而作为监控系统的使用者(监控中心)则可以是动态的。二是视频监控网络的无线化。当监控点分散且与监控中心距离较远,或被监控对象不固定时,利用传统有线网络的视频监控技术,往往成本高且难以实现。 无线监控和传统的监控方案相比,能够避免大量的布线工作,节省施工费用,重定位能力强,灵活性高,具体地说有以下优点:(1)综合成本低,无须挖沟埋管,特别适合室外距离较远及已装修好的场合;采用无线监控可以摆脱线缆的束缚,有安装周期短、维护方便的优点。(2)组网灵活,可扩展性好,使用 时能灵活挪动终端设备。(3)改造方便,维护费用低。 二、无线视频监控系统涉及的关键技术 1?高效率、抗干扰的视频编解码机制 当今的视频压缩标准有MPE餉H.26X两大系列。MPEG-4目前已应用于Internet流媒体领域,为了尽量减轻MPEG-4视频流对误码的敏感性,以保证压缩视频解压后的恢复质量,MPEG-4提供了多种抗误 码工具,承载流媒体业务的实时网络传输层及底层移动通信系统也可以进一步改善流媒体传输的抗误码性能。MPEG-7是针对存储形式或流形式的应用而制定的,不仅仅用于多媒体信息的检索,更能广泛地用于其他与多媒体信息内容管理相关的领域,并且可以在实时和非实时环境中操作。 ITU-T颁布的H.261标准,用于可视电话和会议电视。H.263标准是ITU组织为了满足码率低于 64kb/s的应用而提岀的一个低码率视频压缩编码建议;它能够在较低码率的情况下达到较好的图像质量,因此广泛应用于远程监控、电视会议以及可视电话等领域,尤其在视频监控领域,它已经可以在嵌入式系 统中达到实时、稳定的压缩效果,是应用较多的视频压缩算法。目前大多数视频监控产品都支持MPEG-4和

多站点远程实时视频传输与控制系统

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),2008年第48卷第7期 2008,V o l.48,N o.723/41 1154-1156   多站点远程实时视频传输与控制系统 刘小康, 戴梅萼, 王 昊, 吴照人, 孟凡博, 叶 银 (清华大学计算机科学与技术系,北京100084) 收稿日期:2006-01-22 基金项目:国家自然科学基金资助项目(60773148,60503039); 航天部创新基金项目(J0320060003) 作者简介:刘小康(1983—),男(汉),湖南,硕士研究生。通讯联系人:戴梅萼,教授,E-mail:me@tirc.cs.ts inghua.ed https://www.360docs.net/doc/c411947236.html, 摘 要:为了实现远程监控图像的清晰,并保障系统的实时性和可靠性,需要高效率和高质量地进行视频压缩,无差错地进行快速网络传输,有效地进行命令控制。通过优化最新的H .264视频编码算法,设计有效的传输方案和引入自适应的传输机制来解决远程活动图像传输系统中存在的清晰、实时、高效、可靠性问题。实验结果表明:改进后的算法较原有的T .264编码方案速度提高了30%以上,设计的传输策略在保障传输速度的同时,能有效地适应不同的网络环境。在系统中引入的几个关键技术对远程视频传输系统提供了有力的支持。 关键词:应用软件;视频编码;视频传输;命令控制;自适 应;远程控制 中图分类号:T P 317 文献标识码:A 文章编号:1000-0054(2008)07-1154-03 Multiple site ,real -time video transmissions for remote control systems LIU Xiaokang ,DAI M ei ’e ,WANG Hao ,WU Zhaoren , MENG Fanbo ,YE Yin (Department of Computer Science and T echnology , T s inghua University ,Beij ing 100084,China ) Abstract :High image quality,fast,reliable rem ote control sys tems requ ire efficient video com pres sion algor ith ms, robus t netw ork tran smis sion strategies and effective control meth ods.T he H.264algorithm w as optim ized to des ign an effective tr ans miss ion meth od for a s elf-adaptive remote control sys tem.Tests sh ow that the optimized algorithm is more than 30%faster than the T.264algorithm. T he sys tem can b e applied to various netw ork en vir on men ts w ith more efficient transm ission.Th es e techniqu es sign ifican tly im prove remote con tr ol s ystem s. Key words :application software;video coding;video transm ission ; com man d control;s elf-adaptive,remote con tr ol 近年来网络多媒体技术越来越成熟,视频编码/解码技术也不断进步,H.264视频编码标准 [1] 的出 现,极大地提高了视频编码的压缩率,并能获得更好的视频重构质量。由于它支持多种视频格式和不同 网络条件,从而被迅速应用到各个领域,如视频点播、广播、视频压缩存储等。另一方面,视频监控技术的应用也越来越广泛,如交通管理中心对车流的监 控,护理中心对病人状况的监控等。该技术的核心问题是视频采集端的数据压缩、视频监控端的解压缩和二者之间的数据有效传输 [2,3] 。为减轻网络带宽负 荷,需要更高的视频压缩比;为实现更好的监控效果,需要更好的视频解码重构质量。 本文作者选用H.264进行视频压缩解压缩,并通过有效的传输方案和命令控制手段,实现了一个基于H.264的高保真活动图像远程传输与控制平台。 1 系统结构 整个视频传输与控制平台采用Client/Server 架构。采集端为Ser ver 端,获取原始的视频数据,作为服务器提供数据源;控制端作为Client 端,主动连接采集端获取视频数据,通过监控窗口显示远程视频图像,并对远程采集端进行命令控制。控制端通过多线程方式,可启动多个监控窗口,从而实现对多个采集站点进行实时监控。 整个视频远程传输与命令控制平台可分为3个子系统,具体包含9个小的功能模块。这3个子系统及其对应的模块描述如下。 1)视频编解码及传输子系统,包括模块如下。 a )视频采集与压缩模块。 从摄像头获取原始视频流,经H .264算法,形成压缩视频数据。 b)视频传输模块。将压缩视频数据经Internet 从采集端传输到控制端。 c )视频解压缩与显示模块。控制端解码并回放。

各种音视频编解码学习详解

各种音视频编解码学习详解 编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间。尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析、应用开发、释放license收费等等。最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了。所以豆丁上看不出所以然,从wiki上查。中文的wiki信息量有限,很短,而wiki的英文内容内多,删减版也减肥得太过。我在网上还看到一个山寨的中文wiki,长得很像,红色的,叫―天下维客‖。wiki的中文还是很不错的,但是阅读后建议再阅读英文。 我对媒体codec做了一些整理和总结,资料来源于wiki,小部分来源于网络博客的收集。网友资料我们将给出来源。如果资料已经转手几趟就没办法,雁过留声,我们只能给出某个轨迹。 基本概念 编解码 编解码器(codec)指的是一个能够对一个信号或者一个数据流进行变换的设备或者程序。这里指的变换既包括将信号或者数据流进行编码(通常是为了传输、存储或者加密)或者提取得到一个编码流的操作,也包括为了观察或者处理从这个编码流中恢复适合观察或操作的形式的操作。编解码器经常用在视频会议和流媒体等应用中。 容器 很多多媒体数据流需要同时包含音频数据和视频数据,这时通常会加入一些用于音频和视频数据同步的元数据,例如字幕。这三种数据流可能会被不同的程序,进程或者硬件处理,但是当它们传输或者存储的时候,这三种数据通常是被封装在一起的。通常这种封装是通过视频文件格式来实现的,例如常见的*.mpg, *.avi, *.mov, *.mp4, *.rm, *.ogg or *.tta. 这些格式中有些只能使用某些编解码器,而更多可以以容器的方式使用各种编解码器。 FourCC全称Four-Character Codes,是由4个字符(4 bytes)组成,是一种独立标示视频数据流格式的四字节,在wav、avi档案之中会有一段FourCC来描述这个AVI档案,是利用何种codec来编码的。因此wav、avi大量存在等于―IDP3‖的FourCC。 视频是现在电脑中多媒体系统中的重要一环。为了适应储存视频的需要,人们设定了不同的视频文件格式来把视频和音频放在一个文件中,以方便同时回放。视频档实际上都是一个容器里面包裹着不同的轨道,使用的容器的格式关系到视频档的可扩展性。 参数介绍 采样率 采样率(也称为采样速度或者采样频率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数叫作采样周期或采样时间,它是采样之间的时间间隔。注意不要将采样率与比特率(bit rate,亦称―位速率‖)相混淆。 采样定理表明采样频率必须大于被采样信号带宽的两倍,另外一种等同的说法是奈奎斯特频率必须大于被采样信号的带宽。如果信号的带宽是100Hz,那么为了避免混叠现象采样频率必须大于200Hz。换句话说就是采样频率必须至少是信号中最大频率分量频率的两倍,否则就不能从信号采样中恢复原始信号。 对于语音采样: ?8,000 Hz - 电话所用采样率, 对于人的说话已经足够 ?11,025 Hz ?22,050 Hz - 无线电广播所用采样率 ?32,000 Hz - miniDV 数码视频camcorder、DAT (LP mode)所用采样率 ?44,100 Hz - 音频CD, 也常用于MPEG-1 音频(VCD, SVCD, MP3)所用采样率

4G无线视频传输系统方案详解

4G无线视频监控通信系统 设计方案中国移动通信集团黄石分公司

3G 无线移动视频传输设计方案 1无线视频监控技术简述 1.1 无线视频监控概述 随着移动通信技术的发展和 4G 时代的到来,移动通信数据网络为监控视频数据的传输 提供了更好的传输条件。无线网络视频监控技术,在有线视频监控技术的基础上,迅速发 展成为视频监控应用领域的另一重要分支,并根据行业应用的不同需求,提供各种类型的服 务。 目前,众多的行业用户应用,如平安工程、城市交通系统的道路监控、检验 检疫部门的电子监管视频系统。这些特殊行业用户对监控系统的要求很高,不仅需要视频监 控系统为其提供实时、清晰的有线图像、保存完好的数据、迅速响应的云台控制等,还增加了 对无线视频采集(如交通巡逻、平安城市移动巡逻、城管移动巡逻与执法等)及移动视频的观 看、控制方面的要求。 往往在许多特殊的应用环境,有线监控部署的成本很高甚至根本无法部署,在这样的 环境中 4G 无线视频监控就有了很大的用武之地,目前无线视频监控的应用需求在公交、 公安、交通、城管、电力、金融押运、现场勘查等行业领域有着广泛的应用需求。 1.2 无线视频监控应用特点 4G无线视频监控传输系统融合了3G技术、视音频编解码技术、数字加解密 技术、网络传输技术。凭借无线性、移动性、便携性、高带宽、高清晰、双向性等优点,同时支持最新4G高速移动网络,对数字图像和声音通过多路4G无线链 路进行高清晰处理和流畅传输,能够广泛应用在公安现场勘察车辆、应急指挥系 统、海事巡逻、公交地铁车辆、水闸航道监控、交通执法、市容城管执法、水利 防汛、森林防火、金融押运、远程保险定损、路政管理等诸多有线监控难以部署 的领域。 第2页共15页

实时视频传输与控制协议-v2

全球眼 实时视频传输和控制协议v2 修改历史 复审人

一、说明 这份协议描述了视频服务器与流媒体分发服务器、视频服务器与企业客户端之间传输实时视频的方法。文档中没有针对媒体分发服务器与企业客户端(第三方播放器)之间的通信方法,但是媒体分发服务器与企业客户端(第三方播放器)之间的通信方法尊守RTC1889和RPC2326定义的规范。 在这篇文档里我们把象视频服务器这样能够给观看者提供视频数据的设备称为逻辑上的服务端角色(也就是视频源),象企业客户端这样播放视频的终端设备称为逻辑上的客户端角色(也就是接收者或观看者)。流媒体分发服务器同时具有两种角色。 交互流程中列出了两种模式,我们当前要先实现接模式。推模式是为了视频服务器在私网环境时也可以通过流媒体发服务器向用户提供视频服务。推模式暂不实现。 协议中没有提及RTCP协议,但并不影响视频通信质量,而且目前很难实现有效的编解码之间返馈的处理方法,所以现在,以及将来的一段时间都不会考虑RTCP协议,除非出现有效的视频质量控制机制。 本文参考RFC 1889、1890、2326、3550完成,如有不符合标准的、或者不完善的陈述,请提出来,发电子邮件到piaoxichuang@。如果您有更好的想法也可以通过邮件进行交流。 二、协议 通信方式使用RTP over TCP方式。(RTC1889、RFC2326) 1、一个完整的包 网络字节顺序

2、RTP包的封装(RTP over TCP) 网络字节顺序 Channel Identifier:取值0。因为只有一个流在一个TCP连接中传递,同时不使用RTCP协议。参见RFC 2326 [10.12]节。 Lenth:取值为RTP包的大小,包括RTP头部,但不包含本身的4个字节,以BYTE为单位。 3、RTP 12字节头部 网络字节顺序 V:版本,取值2。[可能会使用0值,还没想清楚,可能的使用情况是为了实现防火墙穿透] P:附加数据,取值为0。 X:扩展头,取值为1。 CC:CSRC列表数量,取值为0。 M:记号,取值0或1。关于M字段的取值:如果扩展头中T字段为1,则当一个包(RTP Packet)是一个帧(Sample)的最后一个包时取值1,否则取值0;扩展头中T字段为1时,由于指令长度较小,一个RTP就可以传输完成,所以取值为1。除非要使用多个RTP包传输,最后一个RTP包取值为1,前面的包取值为0。 PT:负载类型,动态,取值96。参见RFC 1890 [7]节。 Sequence Number:RTP包的序号,初始值是随机的,不是0。 Timestamp:以视频编码算法提供者的需要填写或单调增长的时间戳。[将来可能把这个值也传递给视频解码算法中去。] SSRC:随机数,用于在同一个会话中区分不同的流。建议使用MD32。 UINT Y[4] If Y = MD5(X) Then MD32(X) = Y[1] ^ Y[2] ^ Y[3] ^ Y[4] 注:RTP包大小最大值为2048。(因为DSS支持的最大包为2048Bytes)

实时音频采集与播放技术的研究

实时音频采集与播放技术的研究 荣治国陈松乔(中南大学信息工程学院 湖南 长沙 410083) 【摘 要】介绍了音频采集、播放的三种技术,分别给出实现模型,并对三种技术作出对比分析,以此提出了声音实时传输的依据。 【关键词】声音采集、播放;媒体控制器;DIRECTSOUND;实时传输 在信息化日益加速的今天,数字多媒体的应用越来越广泛,随着宽带网概念深入人心,数字多媒体进入到了一个更广阔的空间,许多应用课题都围绕着两者展开,其中可视电话、电话会议系统和视频会议系统发展迅速,这些都要涉及到多媒体数据通信。在多媒体数据通信中,要求有良好的实时性,能够对多媒体数据进行细节的操作,如压缩、实时流传输等。而在这些应用之中,因为现实的网络状况还难以满足较好的实时视频通讯,音频数据在其中就更显重要,本文对比分析了实时音频采集和播放技术,以期为音频数据通讯提供参考。 1 音频采集、播放的三种模式 Windows通过高级音频函数、媒体控制接Array口MCI[1、2]设备驱动程序;低级音频函数 MIDI Mapper、低级音频设备驱动;以及 DirectSound提供了音频服务,可以从声卡获 取音频流。图1说明了应用程序与提供音频支 持的Windows成员之间的关系。 使用MCI的方法极其简便,灵活性较差; 使用低级音频函数的方法相对来说难一点,但 是能够对音频数据进行灵活的操控;而采用 DirectSound的方法,控制声音数据灵活,效 果比前二者都好,但实现起来是三者中最难的。下面我将分别介绍如何用三者实现音频的实时采集和播放。 2 使用MCI方法实现音频采集与播放 用MCI方法是很方便的,它对媒体设备控制主要通过命令接口函数mciSendCommand ()或者字符串接口函数mciSendString()来完成的,这两个函数的作用相同。命令接口函数比命令字符串使用起来要复杂,但它为MCI提供了更为强大的控制能力,下面就介绍命令接口函数的使用。 2.1命令接口函数的原型 MCIERROR mciSendCommand(MCIDEVICEID IDDevice,UINT uMsg, DWORD fdwCommand,DWORD dwParam);

4G无线视频传输系统方案设计详解

实用标准文档 4G无线视频监控通信系统 设计方案 中国移动通信集团黄石分公司

1无线视频监控技术简述 1.1无线视频监控概述 随着移动通信技术的发展和4G时代的到来,移动通信数据网络为监控视频数据的传输提供了更好的传输条件。无线网络视频监控技术,在有线视频监控技术的基础上,迅速发展成为视频监控应用领域的另一重要分支,并根据行业应用的不同需求,提供各种类型的服务。 目前,众多的行业用户应用,如平安工程、城市交通系统的道路监控、检验检疫部门的电子监管视频系统。这些特殊行业用户对监控系统的要求很高,不仅需要视频监控系统为其提供实时、清晰的有线图像、保存完好的数据、迅速响应的云台控制等,还增加了对无线视频采集(如交通巡逻、平安城市移动巡逻、城管移动巡逻与执法等)及移动视频的观看、控制方面的要求。 往往在许多特殊的应用环境,有线监控部署的成本很高甚至根本无法部署,在这样的环境中4G无线视频监控就有了很大的用武之地,目前无线视频监控的应用需求在公交、公安、交通、城管、电力、金融押运、现场勘查等行业领域有着广泛的应用需求。 1.2无线视频监控应用特点 4G无线视频监控传输系统融合了3G技术、视音频编解码技术、数字加解密技术、网络传输技术。凭借无线性、移动性、便携性、高带宽、高清晰、双向性等优点,同时支持最新4G高速移动网络,对数字图像和声音通过多路4G无线链路进行高清晰处理和流畅传输,能够广泛应用在公安现场勘察车辆、应急指挥系统、海事巡逻、公交地铁车辆、水闸航道监控、交通执法、市容城管执法、水利防汛、森林防火、金融押运、远程保险定损、路政管理等诸多有线监控难以

部署的领域。 4G网络是移动运营商所建的全社会覆盖的巨型网络,利用运营商建设的现有无线网络传输移动视频图像和声音,有以下显而易见的优势: ?地理位置广,只要在手机信号能覆盖的位置就能传输视音频 ?初始投资低,省去了基站建设的建设和维护的高额费用,从全社会角度 看可以避免大量单位重复建设基站,从而节省了社会资源。 ?通讯资费便宜,手机链路的通信资费相比卫星等传输方式,资费具有极 大的优势,同时通过参加套餐、预存话费等方式还能够大幅降低运营通 讯费。从而使无线视频监控纳入日常业务而成为可能。

即时通讯 手机音视频技术开发方案

“SDK即时通讯平台”是一套跨平台的即时通讯解决方案,基于先进的H.264视频编码标准、AAC音频编码标准与P2P技术,支持高清视频,整合了佰锐科技在音视频编码、多媒体通讯领域领先的开发技术和丰富的产品经验而设计的高质量、宽适应性、分布式、模块化的网络音视频互动平台。 “SDK即时通讯平台”包含了音视频处理模块(采集、编解码)、流媒体管理模块(丢包重传、抖动平滑、动态缓冲)、流媒体播放模块(多路混音、音视频同步)以及P2P网络模块(NAT 穿透、UPnP支持、IP组播支持)等多个子模块,封装了底层的硬件操作(音视频采集、播放)、封装了流媒体处理(编解码、网络传输)等非常专业和复杂的技术,为上层应用提供简单的API控制接口,可以在极短的开发周期,以及极少的人力资源投入下为客户的现有平台增加音视频即时通讯、多方会议的功能。 “SDK即时通讯平台”分为客户端SDK和服务器SDK两大部分,其中客户端SDK用于实现语音、视频的交互以及其它客户端相关的功能,而服务器SDK主要实现业务层逻辑控制,以及与第三方平台的互联等。客户端SDK和服务器SDK均支持C++、C#、https://www.360docs.net/doc/c411947236.html,以及Delphi等开发语言。 通过“SDK即时通讯平台”,可以开发具有企业特色的即时通讯系统、视频游戏系统、视频会议系统、网络教学系统、语音视频聊天系统、专家咨询平台以及政府应急指挥平台等,系统的功能、界面完全由企业定制。 AnyChat是国内知名音视频互动开发平台,经过长达九年之久的广泛应用和复杂化环境的检测,SDK系统在兼容性、安全性、稳定性、易用性方面具有较高的声誉。该SDK是佰锐科技全力打造的核心产品. SDK手机视频开发包是面向集成或软件开发商使用,用于开展手机视频相关的产品开发和系统集成。 开发包提供手机端音视频采集、编码、压缩、音视频传输等功能;通过与后端服务器对接,优先P2P通讯,实现手机视频即拍即传、手机视频直播,手机视频录制和手机视频通话。当前手机视频SDK开发包支持iOS和Android平台。 . 提供手机视频采集直播的开发接口 通过视频参数设置接口,设置拍摄视频的分辨率、编码方式、码流、媒体流类别等 通过视频拍摄,实现视频的采集,编码和传输 ·提供语音、文字通讯接口 ·提供视频录制接口,包括本地视频录制 ·提供文件传输接口 . 支持跨平台通讯,可与windows,web ,Linux完美互联互通 ·提供透明通道,实现特殊功能 一、拓扑结构图:

相关文档
最新文档