数学分析 重积分化累次积分

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

数学分析 重积分

第二十一章重积分 教学目的:1.理解并掌握二重积分的有关概念及可积条件,进而会计算二重积分; 2.理解三重积分的概念,掌握三重积分的计算方法,并能应用其解决有关的数学、物理方面的计算问题; 教学重点难点:本章的重点是重积分的计算和格林公式;难点是化重积分为累次积分。 教学时数:22学时 § 1 二重积分概念 一.矩形域上的二重积分 :从曲顶柱体的体积引入. 用直线网分割 . 定义二重积分 . 例1用定义计算二重积分 . 用直线网 分割该正方形 , 在每个正方形上取其右上顶点为介点 . 解 . 二. 可积条件 : D . 大和与小和. Th 1 , .

Th 2 , . Th 3 在D上连续 , Th 4 设 D ) . 若在D上有界 , 且 ( 或 在D \ 上连续 , 则 三.一般域上的二重积分: 1.定义:一般域上的二重积分. 2.可求面积图形: 用特征函数定义. 四.二重积分的性质 : 性质1 . 性质2 关于函数可加性 . 在D上可积在 性质3 则 和可积 , 且. 性质4 关于函数单调性 . 性质5 .

性质6 . 性质7 中值定理 . Th 若区域D 的边界是由有限条连续曲线 ( 或 在D上可积 . )组成 , 在D上连续 , 则 例3去掉积分中的绝对值 . § 2 二重积分的计算 二. 化二重积分为累次积分: 矩形域上的二重积分: 1. 2. 简单域上的二重积分: 简推公式, 一般结果]P219Th9. 例1 , . 解法一P221例3 , 解法二为三角形, 三个顶点为 . 例2 , . P221例2. 的两直交圆柱所围立体的体积 . P222例4. 例3求底半径为

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

第21章重积分 21.1本章要点详解 本章要点 ■二重积分的概念 ■二重积分的定义、存在性及性质 ■格林公式 ■曲线积分与路径无关的定义 ■二重积分的变量替换 ■三重积分的定义、计算 ■重积分的应用 重难点导学 一、二重积分的概念 1.平面图形的面积 (1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类 ①Δi上的点都是P的内点; ②Δi上的点都是P的外点,即; ③Δi上含有P的边界点.

图21-1 将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ). 由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记 显然有 通常称I P 为P 的内面积,P I 为P 的外面积. (2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积. (3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得 S p (T )-s p (T )<ε (4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

数学分析之定积分

第九章定积分 教学要求: 1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 4.理解并熟练地应用定积分的性质; 5.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点: 1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 3.理解并熟练地应用定积分的性质; 4.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学时数:14学时 § 1 定积分概念(2学时) 教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;

教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1.曲边梯形的面积: 2. 变力所作的功: 二、不积分的定义: 三、举例: 例1已知函数在区间上可积 .用定义求积分. 解取等分区间作为分法, . 取 .= . 由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 . 例2已知函数在区间上可积 ,用定义求积分. 解分法与介点集选法如例1 , 有 .

上式最后的极限求不出来 , 但却表明该极限值就是积分. 例3讨论Dirichlet函数在区间上的可积性 . 四、小结:指出本讲要点 § 2 Newton — Leibniz公式(2学时) 教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分. Th9.1 (N — L公式)( 证 ) 例1求ⅰ> ; ⅱ> ; 例2 求. §3可积条件(4学时) 教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题. 教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 一、必要条件: Th 9.2 ,在区间上有界. 二、充要条件:

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用 一、曲面的面积 问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积. 分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=?n i i S 1 ≈∑=?n i i A 1 , 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积. ∴当T →0时,可用和式∑=?n i i A 1 的极限作为S 的面积. 建立曲面面积计算公式: ∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=) ,(),(11 22i i y i i x f f ηξηξ++. ∵A i 在xy 平面上投影为σi , ∴△A i = i i γσcos ?=i i i y i i x f f σηξηξ?++),(),(122. 又和数∑=?n i i A 1 =∑=?++n i i i i y i i x f f 1 22),(),(1σηξηξ是连续函数

),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有 △S=∑=→?++n i i i i y i i x T f f 1220 ),(),(1lim σηξηξ=??++D y x dxdy y x f y x f ),(),(122, 或△S=∑ =→?n i i i T 1 cos lim γσ=??∧ D z n dxdy ) ,cos(, 其中),cos(∧ z n 为曲面的法向量与z 轴正向夹角的余弦. 例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤2 1 , 0≤θ≤2π}, 又z x = 2 2y x x += r r θcos =cos θ, z y =22y x y +=r r θsin =sin θ, ∴△S=??++D y x dxdy z z 221=?? π θ20210 2rdr d = π4 2. 例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=?'+b a dx x f x f )(1)(22π. 证:由上半旋转面方程为z=22)(y x f -, 得 z x = 2 2)()()(y x f x f x f -', z y = 2 2 )(y x f y --. 即有 221y x z z ++=2 22 2222)()()()(1y x f y y x f x f x f -+-'+=2 222)()) (1)((y x f x f x f -'+. ∴S=??--'+b a x f x f dy y x f x f x f dx ) () (2 22)()(1)(2=??-'+b a x f dy y x f dx x f x f )(0222)(1 )(1)(4 =??---'+b a x f x yf d x f y dx x f x f ) (0 1 2 22))(()(11)(1)(4

(完整版)数学分析知识点总结(定积分)

第一篇 分析基础 1.1收敛序列 (收敛序列的定义) 定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有 ε<-a x n 那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为 a x n =lim 或者)(+∞→→n a x n 定理1:如果序列}{n x 有极限,那么它的极限是唯一的。 定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件 N n z y x n n n ∈?≤≤, 如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有 a y n =lim 定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价 (1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得 , 1,2,.n n x a a n =+=L (收敛序列性质) 定理4:收敛序列}{n x 是有界的。 定理5: (1)设a x n =lim ,则a x n =lim 。 (2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。 (3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则a x n 11lim =。 (5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim lim lim n n n n y y b x x a ==。 (收敛序列与不等式) 定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有 n n x y < 定理7:如果}{n x 和{}n y 都是收敛序列,且满足 0, ,n n x y n N ≤?> 那么 lim lim n n x y ≤

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分 5三重积分 一、三重积分的概念 引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i n i i i i T V f ?∑=→10 ),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i n i V ≤≤. 概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i n i V ≤≤. 在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i n i i i i V f ?∑=1 ),,(ζηξ. 定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有 J V f i n i i i i -?∑=1 ),,(ζ ηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z) 在V 上的三重积分,记作J=???V dV z y x f ),,(或J=???V dxdydz z y x f ),,(,其中 f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域. 注:当f(x,y,z)=1时,???V dV 在几何上表示V 的体积.

数学分析9.1定积分概念

数学分析9.1定积分 概念 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

F(x)≈F(ξi ), x ∈[x i-1,x i ], i=1,2,…,n. 于是质点从x i-1位移到x i 时,力F 所作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

微积分、高等数学和数学分析的差别

数学分析对于数学专业的学生是迈进大学大门后,需要修的第一门课,也是最基础最重要的一门课程。但对于非数学专业的朋友们是个陌生的概念,如果身边有人问我数学分析学什么?我会毫不犹豫地告诉他们就是微积分,那么似乎所有人都会接着提一个问题:那和我们学的微积分有什么差异?为什么我们学一学期你们要学一年半到两年啊?囧... ...这个问题就不容易回答了,于是我只能应付说学得细了,但其实并非仅仅如此。 对这个问题我在学习数学分析的过程中是不能说清楚的,正因为如此,起先学分析完全是乱学,没有重点没有次序的模仿,其结果就是感觉自己学到的东西好比是一条细线拴着好多个大秤砣,只要有一点断开,整个知识系统顿时倾覆。我也一直在思考这个问题,但直到在北师大跟着王昆扬老师学了一学期实变函数论之后,我才意识到数分与高数真正的区别在于何处。 先从微积分说起,在国内微积分这门课程大致是供文科、经济类学生选修的,其知识结构非常清晰,主要内容就是要说清两件事:第一件介绍两种运算,求导与求不定积分,并且说明它们互为逆运算。第二件介绍基础的微分学和积分学,并且给出它们之间的联系——Newton-Leibniz公式。这里需要强调的是,求不定积分作为求导数的逆运算属于微分学而不属于积分学,真正属于积分学的是Riemann定积分。不定积分与定积分虽然在字面上只差一字,但从数学定义来看却有本质的区别,不定积分是找一个函数的原函数,而Riemann定积分则是求Riemann和的极限,事实上它们之间毫无关系,既存在着没有原函数但Riemann可积的函数,也存在着有原函数但Riemann不可积的函数。但无论如何Newton-Leibniz公式好比一座桥梁沟通了不定积分(微分学)和定积分(积分学),这也是Newton-Leibniz公式被称为微积分基本定理的原因。因此我们可以看出,微积分的核心内容就是学习两种新运算,了解两样新概念,熟悉一条基本定理而已。 对于高等数学要求的层面就要比微积分高一些了,国内高等数学主要是为非数学专业的理工科学生开设的,主要的目的是解决工程上遇到的一些问题,例如求体积、求周长,求速度等等。所以高等数学除了要介绍数学知识更要学生理解各个数学概念的实际意义是什么。比如求导可以理解为求瞬时速度,可以理解求增长律,积分可以理解为求面积,求功等等。对于实际问题,数据往往是复杂的,算式也往往是冗长的,对于不易积分,不易求导的实际问题,我们怎么去求其高精度的近似解呢?那么就需要引进级数这一概念,例如将不易找到原函数的函数进行Taylor展开再逐项积,再例如利用Newton差值法计算方程的近似解。在这些问题中最令人苦恼的往往都是复杂的计算,是故高等数学对学生的计算能力要求非常高。于是高等数学的主要内容就是三条:理解数学概念背后的实际含义,熟练运用数学工具求导求积分,会使用一些手段对实际问题进行精确估计。这些可以看作是对微积分的运用,但一切仍然停留在对运算理解上。 而数学分析与以上两门课程有着本质的区别,数学分析作为数学系本科生的基础课是整个分析学的基础。什么是分析学?是分析变量以及诸多变量之间关系的学科,在数学中主要利用函数来刻画变量与变量间的关系,所以数学分析的研究主体应当是函数。在中学,我们已经学习过六类简单初等函数(常指对幂,正反三角),并且学习过一些研究初等函数的手段,但这些函数都是极其特殊的,比如他们都是逐段连续的,并且是无穷阶可导的。而学习数学分析的目的就是将函数系进行大范围扩张,去学习并且研究那些解析式不规则、不连续或者不可导的函数,这样的函数比起连续的函数可以说要多无穷多倍。那用什么方式去刻画这样的函数呢?数学分析中介绍的方法主要有两个:变限积分(尽管Riemann可积函数的变限积分也是连续的)与函数项级数。特别的,所有的初等函数都可以表示为函数项级数,但函数项级数要比初等函数的范围大很多很多,我们可以利用它构造各种千奇百怪的函数,例如处处不可导的连续函数,在有界区间内图像长度为无穷大的函数等等。这些函数的表示要比初等函数复杂很多,研究其变化性质就会变得困难得多,对此我们需要学习一些系统的定理与方法,将这些知识组合在一起就构成了数学分析这门学科。与微积分、高等代数有明显的区分,学数学分析的目的不是学习导数或者积分这样的运算,而是要扩大函数范围,学习研究复杂函数的方法。 记得在学习数学分析的时候,我曾经查阅过Liouville和Chebyshev的文章,特意去了解那些不具有初等原函数的初等函数。当时去看这些文章的初衷主要是觉得这样的函数太神奇,太不可思议了。对于其中不懂的问题,我曾经请教过老师,但没想到会招来老师极度的不满:“你研究这个毫无意义,你之所以觉得这种函数有趣,是因为你脑子里对初等函数与复杂函数还是有明显的界限,说明你没学懂,如果你把数学分析真的学懂了,你就会认识到研究这种问题,就和讨论Sin(x)为什么不是Ln(x)一模一样的无聊... ...”我正是在听完这句话之后才恍然大悟的。

数学分析21.7n重积分(含习题及参考答案)

第二十一章 重积分 7 n 重积分 引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为 3 2 221112121)(r dz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-. 将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =?????? -V dz dy dx dz dy dx r x x z y x z y x 2221113 2122221111) )(,,(),,(ρρ.这是在由 六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示. 概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2. 设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n V dx dx dx x x x f ??????2121),,,(.

数学分析教案 (华东师大版)第八章 不定积分

第八章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式( 4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 是的一个原函数. 定义. 注意 原函数的个数: Th 若 是在区间上的一个原函数, 则对,都是 上的原函数;若也是在区间上的原函数,则必有

数学分析第三版-不定积分的概念

数学分析 数学与信息科学学院罗仕乐

第八章不定积分8.1 不定积分的概念与基本积分公式8.2 换元积分法 8.3 分部积分法 8.4几类特殊函数的不定积分

8.1 不定积分的概念和基本积分 公式

第八章第1节 例 ()x x cos sin =' x sin 是x cos 的原函数. ()) 0(1 ln >=' x x x x ln 是x 1 在区间),0(+∞内的原函数. 如果在区间I 内,定义1: 可导函数)(x F 的 即I x ∈?,都有) ()(x f x F ='或dx x f x dF )()(=,那么函数)(x F 就称为) (x f 导函数为)(x f ,或dx x f )(在区间 I 内原函数.一、原函数与不定积分的概念

原函数存在定理: 如果函数)(x f 在区间 I 内连续,简言之:连续函数一定有原函数. 问题: (1) 原函数是否唯一? 例 ()x x cos sin =' ()x C x cos sin =' +( 为任意常数) C 那么在区间I 内存在可导函数)(x F , 使I x ∈?,都有)()(x f x F ='.(2) 若不唯一它们之间有什么联系?

关于原函数的说明: (1)若 ,则对于任意常数 , )()(x f x F ='C C x F +)(都是)(x f 的原函数. (2)若 和 都是 的原函数, )(x F )(x G )(x f 则 C x G x F =-)()(( 为常数) C 证 [] )()()()(x G x F x G x F '-'=' - )()(=-=x f x f C x G x F =-∴)()(( 为常数) C

数学分析华东师大定积分

数学分析华东师大定积分 Revised by Jack on December 14,2020

第九章定积分 §1 定积分概念 一问题提出 不定积分和定积分是积分学中的两大基本问题.求不定积分是求导数的逆运算, 定积分则是某种特殊和式的极限, 它们之间既有区别又有联系.现在先从两个例子来看定积分概念是怎样提出来的. 1 . 曲边梯形的面积设 f 为闭区间[ a , b] 上的连续函数, 且 f ( x ) ≥0 . 由曲线y = f ( x ) , 直线x = a , x = b 以及x 轴所围成的平面图形( 图9 - 1) , 称为曲边梯形.下面讨论曲边梯形的面积( 这是求任 何曲线边界图形面积的基础) . 图9 - 1 图9 - 2 在初等数学里, 圆面积是用一系列边数无限增多的内接( 或外切) 正多边形面积的极限来定义的.现在我们仍用类似的办法来定义曲边梯形的面积. 在区间[ a , b] 内任取n - 1 个分点, 它们依次为 a = x0 < x1 < x2 < < x n - 1 < x n = b, 这些点把[ a , b] 分割成n 个小区间[ x i - 1 , x i ] , i = 1 , 2 , , n .再用 直线x = x i , i = 1 , 2, , n - 1把曲边梯形分割成n 个小曲边梯形( 图9 - 2 ) . 在每个小区间[ x i - 1 , x i ]上任取一点ξi , 作以 f (ξi ) 为高, [ x i - 1 , x i ]为底的小矩形.当分割[ a , b] 的分点较多, 又分割得较细密时, 由于 f 为连续函数, 它在每个小区间上的值变化不大, 从而可用这些小矩形的面积近似替代相应小曲边

相关文档
最新文档