数学分析之不定积分

数学分析之不定积分
数学分析之不定积分

第八章不定积分

教学要求:

1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。

2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。

3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。

教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式;

教学时数:18学时

§ 1 不定积分概念与基本公式( 4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。

教学重点:深刻理解不定积分的概念。

一、新课引入:微分问题的反问题,运算的反运算.

二、讲授新课:

(一)不定积分的定义:

1.原函数:

例1填空: ; ( ;

; ; ;

.

定义. 注意是的一个原函数.

原函数问题的基本内容:存在性,个数,求法.

原函数的个数:

Th 若是在区间上的一个原函数, 则对,都是

在区间上的原函数;若也是在区间上的原函数,则必有

. ( 证 )

可见,若有原函数,则的全体原函数所成集合为{│R}.

原函数的存在性: 连续函数必有原函数. ( 下章给出证明 ).

可见, 初等函数在其定义域内有原函数; 若在区间上有原函数, 则在区间上有介值性.

例2. 已知为的一个原函数, =5 . 求.

2.不定积分——原函数族:定义;不定积分的记法;几何意义.

例3 ; .

(二)不定积分的基本性质: 以下设和有原函数.

⑴.

(先积分后求导, 形式不变应记牢!).

⑵.

(先求导后积分, 多个常数需当心!)

⑶时,

(被积函数乘系数,积分运算往外挪!)

由⑶、⑷可见, 不定积分是线性运算, 即对, 有

( 当时,上式右端应理解为任意常数. )

例4. 求. (=2 ).

(三). 不定积分基本公式:基本积分表. [1]P180—公式1—14.

例5 .

(四).利用初等化简计算不定积分:

例6. 求.

例7.

例8.

例9.

例10⑴; ⑵

例11.

例12 .

三、小结

§2换元积分法与分部积分法(1 0 学时)

教学要求:换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。

教学重点:熟练地应用换元积分公式;熟练地应用分部积分公式;

一、新课引入:由直接积分的局限性引入

二、讲授新课:

(一). 第一类换元法——凑微分法:

引出凑微公式.

Th1若连续可导, 则

该定理即为:若函数能分解为

就有

.

例1 .

例2 .

例3

常见微分凑法:

凑法1

例4

例5

例6

例7

由例4—7可见,常可用初等化简把被积函数化为型,然后用凑法1.

例8⑴. ⑵

.

凑法2 . 特别地, 有

.和.

例9 .

例10

例11 .

例12

=.

凑法3

例13 ⑴⑵

例14

例15.

例16

凑法4 .

例17

凑法5

例18

凑法6

.

例19

. 其他凑法举例:

例20. 例21

例22

.

例23.

例24.

例25

例26 .

三、小结

(二)第二类换元法——拆微法:

从积分出发,从两个方向用凑微法计算,即

= =

=

引出拆微原理.

Th2 设是单调的可微函数,并且又具有原函数. 则有换元公式

(证)

常用代换有所谓无理代换, 三角代换, 双曲代换, 倒代换, 万能代换, Euler代换等.

我们着重介绍三角代换和无理代换.

1. 三角代换:

⑴正弦代换: 正弦代换简称为“弦换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 令, 则

例27

解法一直接积分; 解法二用弦换.

例28.

例29

.

⑵正切代换: 正切代换简称为“切换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 利用三角公式即

令. 此时有

变量还原时, 常用所谓辅助三角形法.

例30.

解令有. 利用例22的结果, 并用辅助三角形, 有

=

=

例31

⑶正割代换: 正割代换简称为“割换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 利用三角公式令有变量还愿时, 常用辅助三角形法. 例32

.

例33.

解法一(用割换)

解法二(凑微)

2.无理代换:

若被积函数是的有理式时, 设为的最小公倍数,作代换, 有.可化被积函数为的有理函数.

例34 .

例35

.

若被积函数中只有一种根式或可试作代换或. 从中解出来.

例36 .

例37

例38 (给出两种解法)

例39

.

本题还可用割换计算, 但较繁.

3.双曲代换:利用双曲函数恒等式, 令, 可

去掉型如的根式. . 化简时常用到双曲函数的一些恒等式, 如:

例40

.

本题可用切换计算,但归结为积分, 该积分计算较繁. 参阅后面习

题课例3.

例41

.

例42.

4.倒代换: 当分母次数高于分子次数, 且分子分母均为“因式”时, 可试用倒代换

例43

.

5.万能代换: 万能代换常用于三角函数有理式的积分(参[1]P261). 令

就有,

例44.

解法一 ( 用万能代换 ) .

解法二( 用初等化简 ) .

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

(整理)数学定积分知识总结

定积分 1. 概念: 定积分源自于求曲边梯形的面积, 它的 计算形式为:0 1 ()l i m ()n b k k a k f x dx f x λξ→==?∑?, 结果是一个数值, 其值的大小取决于两个因素(被积函数与 积分限). 2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和; 3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()b a f x dx ?是x 在区间[],a b 中的该 经济总量. 4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到. (1)() ()b a a b f x dx f x dx =-??; (2)[]()()()()b b b a a a f x g x d x f x d x g x d x ±= ±? ??; (3)()()b b a a kf x dx k f x dx =??; (4)()()()b c b a a c f x d x f x d x f x d x = +???; (5)0 0()2() a a a f x f x dx f x dx f x -?? =?????为奇函数时()()为偶函数时. 1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则 ()()() b a f x d x F b F a =-?. 2.换元法: 若()f x 在[],a b 连续, ()x t ?=在[],c d 上有连续的导数'() t ?, 且()t ?单调, 则有 () ()(())'()b d x t a c f x dx f t t dt ???=?? ? . 3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有 ()()()()()()b b a a b u x dv x u x v x v x du x a =?-??. 1. =? __4 2 a π_____;

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则, lim 0→x x x sin 1=, lim 0→x x x s i n 1=, lim 0)(→x ?)()(sin x x ??1=,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0 →x x x arcsin 1=, lim ∞ →n n n )11(+e =,lim ∞→x x x )11(+e =,lim 0→x x x 1)1(+e =, lim )(∞→x ?)())(11(x x ??+e =,lim 0)(→x ?)(1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,22 1~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim ) (lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)()(x g x f ) ()(lim x g x f a x ''=→ 基本未定式:00,∞∞, 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+=??→?)()(000 lim h x f h x f h )()(000 lim -+=→

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

数学分析之定积分

第九章定积分 教学要求: 1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 4.理解并熟练地应用定积分的性质; 5.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点: 1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 3.理解并熟练地应用定积分的性质; 4.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学时数:14学时 § 1 定积分概念(2学时) 教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;

教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1.曲边梯形的面积: 2. 变力所作的功: 二、不积分的定义: 三、举例: 例1已知函数在区间上可积 .用定义求积分. 解取等分区间作为分法, . 取 .= . 由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 . 例2已知函数在区间上可积 ,用定义求积分. 解分法与介点集选法如例1 , 有 .

上式最后的极限求不出来 , 但却表明该极限值就是积分. 例3讨论Dirichlet函数在区间上的可积性 . 四、小结:指出本讲要点 § 2 Newton — Leibniz公式(2学时) 教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分. Th9.1 (N — L公式)( 证 ) 例1求ⅰ> ; ⅱ> ; 例2 求. §3可积条件(4学时) 教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题. 教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 一、必要条件: Th 9.2 ,在区间上有界. 二、充要条件:

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

(完整版)数学分析知识点总结(定积分)

第一篇 分析基础 1.1收敛序列 (收敛序列的定义) 定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有 ε<-a x n 那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为 a x n =lim 或者)(+∞→→n a x n 定理1:如果序列}{n x 有极限,那么它的极限是唯一的。 定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件 N n z y x n n n ∈?≤≤, 如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有 a y n =lim 定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价 (1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得 , 1,2,.n n x a a n =+=L (收敛序列性质) 定理4:收敛序列}{n x 是有界的。 定理5: (1)设a x n =lim ,则a x n =lim 。 (2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。 (3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则a x n 11lim =。 (5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim lim lim n n n n y y b x x a ==。 (收敛序列与不等式) 定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有 n n x y < 定理7:如果}{n x 和{}n y 都是收敛序列,且满足 0, ,n n x y n N ≤?> 那么 lim lim n n x y ≤

AP微积分CALCULUS知识点总结

A DERIVATIVE FUNCTION 1. The derivative function or simply the derivative is defined as )(x f '=y '=x x f x x f x y x x ?-?+=??→?→?)()(lim lim 00 2. Find the derivative function a) Find y ?, b) Find the average rate of change x y ??, c) Find the limit x y x ??→?0 lim . 3. Geometric significance Consider a general function y=f(x), a fixed point A(a,f(a)) and a variable point B(x,f(x)). The slope of chord AB=a x a f x f --)()(. Now as B →A, x →a and the slope of chord AB →slope of tangent at A. So, a x a f x f a x --→)()(lim is )(a f '. Thus, we can know the derivative at x=a is the slope of the tangent at x=a.

4. Rules C(a constant) 5. The chain rule If )(u f y = where )(x u u = then dx du du dy dx dy =. ) (ln )()(ln ) () () ()(x u x v x u x v e e x u x f x v ===,

高中数学人教版选修2-2导数及其应用(定积分)知识点总结

数学选修2-2导数及其应用(定积分)知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

数学分析9.1定积分概念

数学分析9.1定积分 概念 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

F(x)≈F(ξi ), x ∈[x i-1,x i ], i=1,2,…,n. 于是质点从x i-1位移到x i 时,力F 所作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

相关文档
最新文档