低压配电网故障及其解决方法

低压配电网故障及其解决方法
低压配电网故障及其解决方法

內电力科授

1

1 Power technology

摘要:电力系统的安全性受到社会各界的高度关注,一旦低压配电网发生故障,将会导致电力系统瘫痪. 文章分析了低压配电网容易出现的故障问题,从加强低压配电网络的运营维修管理工作、强化电网预防自 然灾害的能力等4个方面探究了每种故障的解决方式,有助于我国电力事业的发展.关键词:低压配电网;常见故障;解决办法

文章编号:2096-4137 ( 2019 ) 19-084-03 D0I : 10. 13535/j. cnki. 10-1507/n. 2019. 19. 22

■文/茅倩申镇施文波许斌锋一丿

0引言

由于低压配电网的线路较长, 配电范围较广,整个电网比较复

杂,因此在实际的运营中容易出现 各种各样的故障问题。再加上电网 线路与用户终端属于直接连接,发

生故障会直接影响用户的使用情 况。因此,相关人员必须要找到低

压配电网发生故障的原因,并对其 进行干预和改善,进而提升低压配 电网的安全性能。

1低压配电网的常见故障

1.1线路漏电故障

低压配电网在实际运行过程 中时常发生漏电故障。这种故障发

生的原因在于低压配电网中的线路

老化或材料老化等,这些老化现象

降低了配电系统的绝缘性能,导致

导线和导线间出现了漏电故障。当

低压配电网络发生漏电故障时,线

路中容易出现电火花,继而增加热

量的输出,一旦热量到达线路的熔

点,将会引起火灾,无法保障电网

11.04-9.08= 1.96mm o 从测量结果分析,确实存在B 低压缸变形反常情况,但变形量和

#1机组相近,冲转应无问题。另

需对B 缸正向23级隔板底部进行处 理,使其达到9.00mm 以上。轴封处 间隙变化大,会对机组真空和低压

缸的效率造成影响。

3处理措施

(1 )将B 低压缸正向23级隔板

底部汽封顶修磨,使真空状态下的 通流间隙大于9.00mm o

(2) 低压内缸隔板汽封暂不

处理,但在启动时要求控制启动参 数和暖机时间,过临界转速时提高 升速率,试运时加强听音、轴承金 属温度等的监测。

(3) 鉴于新机尚未试运行,决定加强现场监视。4试运结果

4. 1

#1机组

试运正常,未发生因低压缸变

形导致的内部动静碰磨或振动超标 的情况。

4.2 #2机组

整套启动时顺利冲转到

3000rpm,但在暖机过程中#7、#8

轴瓦振动相对其他轴瓦偏大,随着

暖机时间的增长和负荷的增大,逐 渐趋于平稳。在达到1000MW 满负

荷时,#5、#6轴瓦振动增大,之后

随着运行时间的增长,2台低压缸

对应的轴瓦振动均趋于平稳。

5试验结论

通过对低压缸变形量动静态试

验过程的数据测量、比对、分析,

确定了低压缸变形量的大小,通过

对变形规律的深入研究和测量结果 的分析,找出了安装中所应采取的 针对性的有效措施,并在机组的试 运过程中得到了验证,保障了机组

整套启动试运行的安全。也为同类

型机组在此方面问题上提供了可参

考的经验。?

参考文献

[1] 刘治国,李东峰.大型汽轮机转子 泊松效应对胀差影响浅析[j].机械工 程师,2010 ( 4 ) : 151-152.

[2] 王洪鹏,韩丽丽,呂智强.哈汽一 东芝型超超临界1000MW 汽轮机[J].热 力透平,2008 ( 1 ) : 6-11.

(作者系中电投电力工程有限公司

工程师)

? 84 ? |中啊再新科技2019年第55

低压配电网零线带电故障原因分析及处理方式

低压配电网零线带电故障原因分析及处理方式 发表时间:2018-11-11T12:12:44.500Z 来源:《电力设备》2018年第18期作者:李方利[导读] 摘要:结合实际,对低压配电网零线带电故障的发生原因进行分析,结合实际工作经验及故障发生后系统表现出的各种电气特征,针对零线带电故障提出一些简单有效的快速查找措施,希望这些零线带电故障查找措施能够给相关工作人员提供一些参考,为我国配电运维水平的提升贡献一份力量。 (广西电网有限责任公司桂林供电局 541002)摘要:结合实际,对低压配电网零线带电故障的发生原因进行分析,结合实际工作经验及故障发生后系统表现出的各种电气特征,针对零线带电故障提出一些简单有效的快速查找措施,希望这些零线带电故障查找措施能够给相关工作人员提供一些参考,为我国配电运维水平的提升贡献一份力量。 关键词:零线带电故障;零序合成电流;二分法排查; 引言 改革开放以来,科学技术迅速发展,各行各业呈现欣欣向荣的局面,在电力领域亦是如此,国家电力行业水平进入稳定且迅猛的发展阶段。进入新世纪以来,电力作为人们生活的基本保障,国家对电力行业发展水平极其重视,从事电力行业的相关人员更是做出了不懈努力推动国家电力行业发展。笔者从事配电网运维工作多年,对配网维护工作中的一些难点积累了大量的实际工作经验。此文通过大量实践经验及相应的理论分析,对配电零线带电故障的查找提出了最佳排查方法,希望对相关工作人员起到一定的指导作用。 1 零线带电故障的危害及传统排查方法存在问题 当低压配电网出现零线带电时,通常会家用电气设备的金属外壳带有一定的电压,人在接触家用电器外壳时就会发生人员触电,同时由于零线带电后,家用电器上的供电电压就会交正常供电时的电压低,造成设备工作异常或无法启动。这些问题都会影响用户的正常用电,影响用户的生活质量。此外,部分零线带电故障会造成线路电流超过额定值,长时间运行会让线路及设备发热,导致设备损坏及引起火灾等,因此一旦发生零线带电故障,必须及时排查并处理造成零线带电故障的原因。 传统零线带电故障排查方法,主要是依靠停电解开二分之一线路处的线路接头,对线路进行分段试送,最终确定零线带电故障的原因。这种方法的缺点是线路需要反复停电送电,以及需要多次登杆或登梯操作,需要耗费大量时间及人力。在如今减员增效及优质服务大企业环境下,配电运维人员及需要一种新的方式方法来排查零下带电故障。为此,我们结合大量实际故障案例,分析零线带电情况下系统表现出来的各种电气特征,实现不停电情况下,快速查找零线带电故障原因。 2零线带电故障原因 低压配电网零线带电故障原因,主要有两种情况:第一种,零线断线或零线接触不良,造成中性线电流无法通过零线流回变压器中性点; 第二种,零线完好的情况下,某相线绝缘损坏通过一阻值较低电阻接地,接地电流无法通过系统零线流回变压器中性点,而是通过大地及系统重复接地点流回变压器。这两种情况的共同点是电流无法通过零线形成正常回路,而是通过大地形成回路,从而在零线上形成接地电压。 3 零线带电故障排查方法 3.1分相排查法 处理零线带电故障的第一步是分相排查,在运行情况下,通过逐相拉开台区低压总刀闸,并依次检测零线是否带电,并以此确定哪一相有问题。此方法操作简单快速,能将排查范围缩小到原排查范围的三分之一。 3.2二分法排查法 此方法是选取线路的二分点处,解开线路安普后试送线路,以此确定故障点位置。二分点处可以选择变压器低压刀闸朝不同方向的主线分段,以及主线二分点处或大支线T接点处。 通过此故障排查方法,一般可以在3至4次试送后,确定零线带电故障点。 3.3 电流异常排查法 通过大量实际零线带电案例统计分析,出现零线带电后,相线电流及零线电流会出线明显的增加。电流增量的大小与零线带电故障点发生的部位有关,一般主干线处发生故障点时,相线电流可以达到100A至500A左右,而变压器中性点处的电流可以达到相线电流的1/3至1/5左右,主要原因是完好零线与大地回路的分流作用造成。因此,对于变压器中性点接地线电流超过5A的零线带电,我们可以在二分点处检测线路的相线及零线的合成电流大小,根据合成电流的大小确定故障点位置,且从电源侧越靠近故障点,合成电流越大。对于变压器中性点接地电流小于5A的,故障点基本可以确定在支线末端,此时,可以测量各支线合成电流,根据合成电流大小,可以快速确定故障点。 3.4 漏电感应法 零线带电的一个主要原因是相线绝缘损坏,相接地电流通过金属构件等流入大地,最后流回变压器中性点,所以在相线绝缘破损点处对地会产生一个接地电压,根据这一特点,我们可以使用感应电笔对线路跨越的金属构架进行带电检测,如果感应笔指示有电,则可以肯定此处就是故障点。 4 零线带电故障预防方法 零线的重要作用使得其时刻处于正常工作状态,零线正常工作才能够发挥其自身价值,否则,电路线路将处在不安全范围之内,对电力供应稳定造成不利影响,人民正常生活受到扰乱,生产环节不得不中断,造成经济损失,最严重的甚至损害生命健康。本文进行大量的实例研究,总结出以下零线故障预防方法。 4.1保持三相电流平衡 前文便对零线工作进行详细的解释,其中之一便是对三相电流进行积极平衡,从而达到保护线路的目的。通过相关的研究可知,导致线路故障发生的主要原因来自于相电流不平衡引起故障的,因此,在采取预防措施对其控制时,必须要做好三相电平衡的控制,从而保证它在系统中能够得到有效应用。此预防方法基本原理是尽量平衡三相电之间的电流,从而避免三相电不平衡后对零线造成的损害。 4.2加强线路施工质量把控

配电网故障定位现状及方法综述

配电网故障定位现状及方法综述 发表时间:2019-12-06T17:15:09.787Z 来源:《科技新时代》2019年10期作者:李家成何沁鸿 [导读] 配电网故障定位可大幅度减少故障排查的工作强度,从长远角度看,能有效提高配电网供电稳定性。 (国网湖北省电力有限公司钟祥市供电公司湖北钟祥 431900) 摘要:随着人们对配电网供电安全稳定性的不断提升,尽早发现配电网故障点就显得越来越重要。而电力系统配电网的故障精准定位问题一直没有得到很好地解决,对该问题的研究能够减少经济损失,保障人们的正常生活。因此,本文分析了现阶段常用的故障定位方法的优点和缺点以及各自的适用范围。 关键词:故障定位;优缺点;适用范围 引言:近年来,我国电网规模的不断扩大,配电网的线路结构也日益复杂,人们的生活越来越离不开电能的同时,用户对供电安全稳定的要求也不断提高。要提高供电稳定性首先要尽可能减少故障的发生情况;另一方面,在故障发生后要能迅速解决故障并重新供电。配电网故障定位可大幅度减少故障排查的工作强度,从长远角度看,能有效提高配电网供电稳定性。 常用的配电网故障定位方法及其优缺点 当前配电网故障定位方法主要有阻抗法、故障行波法、故障指示器法等。 1.阻抗法 阻抗法是根据发生故障的时间点所测得的对应电压和电流得出故障回路阻抗的方法,又因理想条件下,回路阻抗与距离大致呈正相关,由阻抗数值可定位故障发生点。阻抗法原理十分简单,但配电网线路很复杂,且受负荷影响较大。因此,故阻抗法不能直接的用于测距计算,在实际应用中常常用作估计大致故障点。 2.行波法 行波法一般可分为单端法、双端法。 (1)单端行波法 单端行波法是利用故障产生的暂态行波进行单端定位的方法。在线路发生故障时,故障点产生的暂态行波在故障点与母线之间来回反复,根据行波在测量点与故障点之间往返一次的时间和行波的波速即可求得故障点的距离。 单端行波法计算公式如下所示: l=(t1-t0)v/2 式中l为故障距离;L为线路全长;t0、t1分别为故障波头和反射波到达计算端母线的时间点;t2为另一边母线的反射波到达的时间点;v为行波的速度。该方法原理同样简单,但在实际工程中,由于故障点反射波、母线反射波难以识别,因此,单端行波法一般用作双端行波法的补充。 (2)双端行波法 双端行波法是利用在线路产生故障时,初始行波向线路两端的两个测量点发射到达的时间差计算故障点到两边分别的距离。计算公式如下: l1=L(t2-t1)v/2l2=L(t1-t2)v/2 式中:l1、l2分别为故障点到两端的距离;t1、t2分别为行波各自到达线路两端的时间,L为线路全长。双端行波测距由于是利用第一个行波波头,而不是故障点反射波、母线反射波,较易识别。因此,在实际应用中主要采用双端行波法测故障点的距离。(3)多端行波法 在双端行波故障定位原理的基础上,进一步提出了多端行波定位法。在现有的研究中,该方法主要有2种具体做法:一是将多个检测点处所采集的故障行波信息进行融合,以确定具体的线路分支在某一采集装置出现故障的时间,可以准确判断到故障分支,并且比较准确。但是在精准的同时该做法需对目标线路区段进行逐一排查,涉及过程复杂,消耗成本高,不能快速排查配电网故障。另一种是利用最先采集到故障行波信息的3个采集装置进行故障定位,然后将分支点位置同定位结果相比较,从而将伪故障点去除,该做法计算较小,实用性和快速性较高。但是,多端定位算法需要将行波采集装置安装在配电网每一个末端,因此在对复杂多分支的配电网进行故障定位时,需要巨额的投资和维护费用。 3.故障指示器法 整体而言,故障指示器在技术上已经较为成熟,结构简单,在国内电力系统已经获得广泛应用,便于大规模的推广应用。不过需要指出的是,与FTU类似,故障指示器的定位精度与配置密度相关,若为保证定位的精度,需要沿线逐点布设故障指示器,构建故障定位系统的成本仍然较高,因此,故障指示器适合于城市电网,不适合于长距离的农村电网故障定位。从实际运行经验看,故障指示器用于短路时定位效果较好,但用于单相接地故障时效果尚不理想。 4.结语: 本文介绍了国内外实际应用中常用的的配电网故障定位技术,有上述不难看出,不同的定位技术都有各自的优缺点及适用范围,为了缩短故障定位时间和容错性,可以尝试将多种算法共同运用到配电网故障定位中,作为检验。实际应用中应结合当地配电网的结构和已有条件综合多项指标选择最契合的定位方案。 参考文献: [1]刘健,毕鹏翔,杨文宇等.配电网理论及应用[M].北京:中国水利水电出版社,2007. [2]万家震,钱丹丹,金莉.配电网中重合器预分段器、熔断器的合理配置[J].吉林电力,2001(3):28~32 [3]孙波,孙同景,薛永端,等.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,32(3):52-55. [4]卢继平,黎颖,李健,等.行波法与阻抗法结合的综合单端故障测距新方法[J].电力系统自动化,2007,31(23):65-69. [5]杜红卫,孙雅明,刘弘靖等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,24(5):52-55.

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 1低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种

是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。TT系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。 因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。 (3)TN系统: 在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即:过去称三相四线制供电系统中的保护接零。 当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。 1)IT系统:

配电网故障定位的方法

配电网故障定位的方法 快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。 配电网故障定位 快速,准确的故障定位是迅速隔离故障和恢复供电的前提,对于维护配电网的安全运行具有重要意义。那么,如何对配电网进行快速,准确的故障定位呢? 一、配电网故障处理特点 配电网络馈线上一旦发生单相、相间、三相等短路时,设备上的F1U及时将故障信息卜传至主站系统。即变电站SCADAS系统,若变电站运行人员处理不了,再次将信息上传至上一级调度,经调度SCADAS系统分析进行定位、隔离、恢复。一般来说,配电网故障处理有以下几个特点: (1)配电网不仪有集中在变电站内的设备,而且还有分布于馈线沿线的设备,如柱上变压器、分段开关、联络开关等。信号的传输距离较远,采集相对比较困难,而且信号具有畸变的可能性,如继电器节点松动。开关检修过程中的试分/合操作及兀’U本身的误判断等都会干扰甚至淹没有用信号,导致采集到的信号产生畸变。 (2)配电网设备的操作频度及故障频度较高,因此运行方式具有多变性,相应的网络拓扑也具有自身的多变性。 (3)配电网的拓扑结构和开关设备性能的不同。对故障切除的方式也不同。如多分段干线式结构多采用不具有故障电流开段开关和联络线开关,故障由变电站的断路器统一切断,这种切除方式导致了停电范围的扩大。 配电网故障定化是配电网故障隔离、故障恢复的前提,它对于提高配电网的运行效率、改善供电质量、减小停电范围有着重要作用。 二、配电网故障定位的方法 1、短路故障定位技术方法 配电网系统中短路故障是指由于某种原因,引起系统中电流急剧增大、电压大幅下降等不利运行工况,同时该故障发生后会进一步引发配电网系统中变配电电气设备损坏的相与相、相对地间的大电流短接故障。按照短路发生部位,可以分为三相短路、两相短路、两相对地短路、以及单相对地短路故障。由于配电网发生短路故障后,其电流、电压等特征故障参量较为明显,故障定位技术方法的实现相对较为简单,工程中最常用的是“过电流法”。

配电网故障分析论文

摘要 配电网是我国电力系统重要组成部分,它的安全稳定运行对整个电力系统的安全稳定起着重要的作用。在我国,电力系统中性点的接地方式对于电网的运行至关重要。目前主要的接地方式有中性点不接地、中性点直接接地、中性点经电阻接地、中性点经消弧线圈接地。我国中、低压配电网中性点大多数采用小电流接地方式,即中性点不接地、经高电阻接地或者经消弧线圈接地。由于城市电力系统的不断发展,电力电缆被广泛的使用,所分布电容也随着增大,从而导致了接地的电容电流大大的超过了运行规程规定,因此为了能瞬时自行熄灭接地电弧,采用了中性点经消弧线圈接地的运行方式,就是我们所常说的谐振接地。当在中性点不接地系统中,发生单相接地故障后,由于故障电流的比较小,系统还能正常运行一段时间,不会对用户供电造成影响。尽管如此,但假如长时间运行,要是则会引起其它更严重的系统故障,破坏整个系统安全运行。所以,要及时找到故障的线路并且切除故障。单相接地故障时,由于故障电流小,尤其在中性点的经消弧线圈接地运行方式中,因为电感电流的补偿作用,使故障电流就更小了,这会给准确的故障选线带来了困难。 目前在我国内已经提出了好多选线方法,不过每种方法都有其适用范围。本课题先简单讲解了各种选线方法所存在的问题和基本原理,接着介绍配电网的中性点的各种主要的接地方式和短路故障类型,主要分析了中性点的不接地系统及中性点的经消弧线圈接地系统在单相接地故障发生时的电气特征量,作为本课题的选线判据理论基础。 广域测量技术是近年来电力系统前沿技术中最活跃的领域之一。该技术是基于同步相量测量技术,在现代高速的通信网络的支持下,对地域广阔的电力系统 运行状态进行监测和分析,为电力系统实时控制和运行服务的系统。广域测量系统对电力系统控制、保护、规划、分析等领域也有着深远的影响。从保护角度出发,还与放射性配电网的自身结构特征结合,来提出了一种基于广域信息的配电网接地故障选线。这种方法是从电力系统的最基本网络方程来出发,利用放射性配电网特征结构信息的矩阵和广域信息完成了对故障线路的判断。跟以往的方法比较,这方法不是利用故障的电流,而是利用通过广域信息来完成故障判断。这方法不仅能够判断线路是否发生对称故障,还能判断线路是否发生也不对称故障,比如:单相短路的接地故障。这方法有明确的物理概念还能判断出本线路末端的故障以及下一条线路出口处的故障。文中利用了33 节点的系统来验证了方法 的有效性。 在配电网中,单相接地故障率最高,尽快选出故障线路,对系统的正常运行具

低压配电系统电气故障分析

第五章低压配电系统电气故障分析 低压配电系统从电网中获得电能质量满足各项技术要求的强大电力,供给电力用户使用。从而给生产、科研、办公、教育、经营和生活等各方面带来了许多便利条件而造福于人民。 但是,有些时候对低压配电线路和电气设备来说,某些设计不尽合理、电气产品的质量和性能比较差、施工安装工艺质量达不到要求或者运行中操作、使用和维护不当等各方面的原因,致使低压配电线路和电气设备将发生各种不同的电气故障,从而引发人体遭受电击伤害、电气设备损坏、电气火灾以及停电停产等事故相继发生,甚至同时还会造成人员伤亡和财产的巨大损失。 第一节正常工作状态和故障工作状态 低压配电线路和电气设备的工作状态,基本上可分为两种,即正常工作状态和故障工作状态。并且这两种工作状态必然有自己的一些基本特征表现出来。因此不同的基本特征属性反映了它们处于不同的工作状态。 一、正常工作状态及其技术指标 低压配电线路和电气设备处于正常工作状态,其主要技术指标应符合技术标准的规定。这些技术指标,一般应包括以下几项: 1.电压及其偏差; 2.正弦波非线性畸变:总畸变率和各次谐波含量; 3.频率及其偏差; 4.电压的不对称性; 5.电流限值; 6.温度限值; 7.绝缘电阻限值或泄漏电流限值。 以上各项技术指标满足技术标准的规定,是正常工作状态的基本特征。因此在这种情况下,低压配电线路和电气设备才能安全、可靠和稳定的工作。 二、故障工作状态 低压配电线路和电气设备处于故障工作状态,其情况与正常工作状态恰恰相反,在主要技术指标中,某一项或某几项不符合技术标准的规定,因此将会引发电气故障,造成人体电击伤害、电气设备损坏、电气火灾以及停电停产等事故发生。 有一项或几项技术指标不满足技术标准的规定是故障工作状态的基本特征。在故 第165页 障工作状态的低压配电线路和电气设备,必须立即停止工作并及时进行检修恢复正常供电。 第二节过载故障 一、绝缘导线过载故障 在规定的条件下,绝缘导线连续工作且其温度不超过温度限值时的最大电流称为绝缘导线的允许载流量。 如果绝缘导线中的工作电流超过其允许载流量称为绝缘导线过载。 同样,对于电气设备来说,当上作电流超过其额定工作电流,则称为电气设备过载。 在低压配电线路的线路电压降允许的范围内,绝缘导线过载除了以绝缘导线的电流是否超过允许载流量来加以衡量之外,还可以以绝缘导线芯线的温度限值来加以衡量。当绝缘导线的芯线温度超过其温度限值时,则表明绝缘导线已经过载。绝缘导线芯线的温度限值,如表5—1给出的数值。 二、过载故障产生的原因 造成绝缘导线过载的主要原因如下:

配电网故障定位方法及系统与制作流程

本技术公开了一种配电网故障定位方法,该方法包括:对包含多层网络模块和双向长短时记忆网络模块的深度神经网络模型框架进行机器学习训练,从而得到最优深度神经网络模型;各监测终端对配电网进工况录波得到录波数据,并对录波数据进行截取获得故障波形区域;利用最优深度神经网络模型中的多层网络模块对故障波形区域进特征提取;各监测终端将特征数据上传至系统主站,并有系统主站进行特征数据归集,并根据配电网拓扑结构将位于同一传输线路上的监测终端的特征数据组合成特征数据序列;将特征数据序列输入双向长短时记忆网络模块从而获得各监测终端与故障点之间的相对位置。 权利要求书 1.一种配电网故障定位方法,其特征在于,该方法包括: 对包含多层网络模块和双向长短时记忆网络模块的深度神经网络模型框架进行机器学习训练,从而得到最优深度神经网络模型; 各监测终端对配电网进行工况录波得到录波数据,并对录波数据进行截取获得故障波形区域;

利用最优深度神经网络模型中的多层网络模块对故障波形区域进行特征提取得到特征数据; 各监测终端将特征数据上传至系统主站,并由系统主站进行特征数据归集,根据配电网拓扑结构将位于同一传输线路上的监测终端的特征数据按线路位置组合成特征数据序列; 将特征数据序列输入双向长短时记忆网络模块从而获得各监测终端与故障点之间的相对位置。 2.根据权利要求1所述的配电网故障定位方法,其特征在于,所述多层网络模块内置于监测终端内部,由监测终端完成对工况录波的特征提取。 3.根据权利要求2所述的配电网故障定位方法,其特征在于,所述多层网络模块包含输入卷积层、卷积块、平均池化层及全连接层。 4.根据权利要求3所述的配电网故障定位方法,其特征在于,所述卷积块的结构为双层卷积层叠加结构,或者为多通道的且每一通道由双层卷积层叠加的结构构成,或者为多通道的且每一通道包含1至3层卷积层的结构构成。 5.根据权利要求4所述的配电网故障定位方法,其特征在于,所述卷积层区域中的卷积块之间设置有残量连接,所述残量连接是指将一个卷积块的输入和输出取和,并将取和结果作为输入传递至下一卷积块。 6.根据权利要求1所述的配电网故障定位方法,其特征在于,所述双向长短时记忆网络模块中的每一长短时记忆单元均对应于一个监测终端,且长短时记忆单元的排列顺序对应于特征数据序列中特征数据的排列方式。 7.一种用于配电网故障定位的系统,该系统使用权利要求1-6之一所述的配电网故障定位方法进行故障定位,该系统包括系统主站以及布置于配电网拓扑中不同位置的多个监测终端;其特征在于,该系统使用端对端的深度神经网络对配电网的故障进行定位判定;所述深度神经网络中包含多层网络模块和双向长短时记忆网络模块,其中多层网络模块布置于监测终端内部,双向长短时记忆网络模块布置于系统主站内部。

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

配电网故障定位方法研究分析

配电网故障定位方法研究分析 发表时间:2018-03-08T11:20:48.843Z 来源:《电力设备》2017年第30期作者:刘柏罕1 曾凡有2 [导读] 摘要:随着城市的快速发展,配电网络覆盖面积日益扩大,配电网的结构也愈加复杂。 (1国网南昌供电公司江西南昌 330000;2.江西省电力设计院江西南昌 330096) 摘要:随着城市的快速发展,配电网络覆盖面积日益扩大,配电网的结构也愈加复杂。各电气设备以及配电网各个部分的联系越来越紧密,因此,配电网中的任何一个环节的故障都将导致连锁反应,甚至是造成大面积停电事故。本文深入探讨了配电网故障的定位方法以及故障快速恢复的策略,对提高配电网供电可靠性和电网检修工作有重大的指导意义。 关键词:智能配电网;故障定位;故障恢复 引言 配电网分布广、结构复杂,在城区电网架空线路多与电缆线路混合分布。对于保护不完善的线路,一旦线路某区段发生接地故障,则需要通过多次开关的操作才能将故障隔离开。故障处理时间长,易造成较大面积的停电,故亟需进一步提高故障定位和处理水平。本文就配电网故障定位方法进行深入综述,以帮助检修人员快速找到故障点,对故障进行隔离和处理,这对加快恢复供电速度具有重要意义。 1配电网故障定位的方法 1.1中电阻法 由理论可知故障电流仅仅在故障线路故障相和系统母线之间流通。因此可以在故障系统中性点加入一定值的电阻。首先检测流过该电阻的故障电流,通过计算便可以实现故障点的定位。该方法的缺点是要专门设计中性点电阻,其设计比较麻烦,增加故障定位成本。在中性点人为增加的电阻,增大了系统的故障电流,需进一步考虑解决系统绝缘的难题,且增大的故障电流亦将会对通讯系统造成较大干扰。 1.2基于FTU的故障定位方法 利用馈线终端单元FTU上传的参数,经过运算实现故障定位的方法称为基于FTU的故障定位方法。FTU安装在柱上开关设备处,各FTU分别采集相应柱上开关设备的运行情况,并将采集的信息通过通讯网发送到远方的配电自动化控制中心。在故障发生时,各FTU记录下故障前及故障时的重要信息,上传到控制中心,经计算机系统分析后确定故障区段和最优恢复供电方案,最终以遥控方式隔离故障区段,恢复健全区段供电。对于辐射状网、树状网和处于开环运行的环网,判断故障区段只需根据馈线沿线各开关是否流过故障电流就可以了。 1.3综合测距方法 1.3.1行波和交流综合定位法 该定位方法迅速,不用巡线查找故障点,并且具有可以进行多次定位的优势来确定故障的电气距离,并确定故障点所在区段,然后利用交流法实现精确定位,确定故障点,其原理如图1所示。 图1行波法和交流综合定位法流程图 1.3.2交—直流综合定位法 该方法克服了直流法难检测、交流法有效范围小的缺点,充分利用直流法和交流法的优点,实现准确快速定位。定位过程是先用直流法确定故障线路,接着继续用直流法缩小故障区域,最后由交流法实现细定位,其原理如图2所示。 1.4和声算法故障定位 一般来说,配电网故障主要采用二进制编码,其中0代表无故障,1则代表有故障,-1则代表负方向过电流。此方法的运行原理为:根据分区域处理法来对配电网进行划分,其中包括:无源树枝、有源树枝两大类,上传故障电流的相关信号,排除无源树枝,并明确维数,这样各个变量值都能以0或1的形式表示出来,对应呈现出线路的工作状态,再对数据库进行更新,判断目标函数。由于配电网通常开环运转,各个联络开关均能充当独立闭合环,和各个开关开合状态之间交换,这其中网络依然处于辐射状态。单联络环配电网的基础上,可以优化配电网达到控制解码维度的目的。各个单联络环都要编码处理,闭合各个开关,让出度和入度之合小于2的节点连接支路,合成一个支路组,能够达到相同的解环效果。 图2交—直流综合定位流程图 2配电网故障快速恢复策略 2.1基于单联络环网络连通恢复 配电网故障时,分段开关将自动将故障分隔开来,据此应该闭合一切单联络环所对应的联络开关,以此来重新让网络连通起来。因为

低压配电故障的原因分析及其维护处理

龙源期刊网 https://www.360docs.net/doc/c46364028.html, 低压配电故障的原因分析及其维护处理 作者:赵鑫 来源:《装饰装修天地》2017年第03期 摘要:近年来,随着我国电力事业的不断发展,在电网供电方面,低压配电系统正在发挥着越来越重要的作用。但是,在实际应用中,由于各方面因素的影响,导致低压配电系统时常会发生一些电气故障,从而对正常供电产生不良的影响。对此,应当细致的分析其常见的电气故障,并采取相应的措施进行处理,保障低压配电系统的安全运行。 关键词:低压配电系统;常见电气故障;分析与处理 1前言 在人们日常的工作和生活当中,电力能源是必不可少的重要能源,在社会各个领域当中的应用越来越广泛。但与此同时,在低压配电系统的运行过程当中,如果没有进行合理化的设计和规范的应用,就会引发更多的电气故障,从而影响低压配电系统的运行,造成不必要的损失。因此,应当加强对低压配电系统常见电气故障的分析,通过有效的处理措施,确保低压配电系统作用的正常发挥。 2低压配电系统的基本概念 低压配电系统是我国电网当中十分重要的构成部分。通常来说,低压配电系统中主要包含了配电变电场所、高压配电线路、配电变压器、以及相应的保护设备等。其中,配电场所的作用主要是将电网中的电压降低。在供电过程中,为了满足实际的用电需求,配电变压器应当具备1000V以上的线路高压。而在低压配电线路当中,则应当能够控制在1000V以下的电压。在民用建筑当中,低压配电系统的应用最为广泛,包括三相、单相等用电设备,其在运行中分别需要连接三相电源和单相电源,才能确保设备的正常工作。此外,还应当将接地装置安装在低压配电系统当中。在实际安装连接接地装置的过程中,由于线路走向、设备外壳、安装地点等方面的差异,因此应当采用不同的方式进行安装连接。 3低压配电系统常见电气故障 3.1短路 在低压配电系统的运行当中,电气线路有时会受到不同因素条件的影响,导致其中两个不同电势点相互接触,造成回路中的电流过大,金属导体的温度急剧升高,甚至熔断。此时,线路将会发生短路故障,如果情况过于严重,甚至还会喷溅出电火花,从而引燃短路点周围的绝缘层或其它可燃物,导致火灾的发生。 3.2漏电

低压配电TN系统常见故障及防范措施

1、引言: 低压配电系统可分为TN系统、TT系统、和IT系统三大类。TN系统属于中性点直接接地的保护接零系统,它分为TN-C系统、TN-S系统、TN-C-S系统。本文仅分析TN-C系统常见故障及防范措施. TN-C系统为三相四线制供电方式,如图一。其电源中性点引出一条PEN线,其中设备的外壳接零线引到PEN线上,此系统由于N线与PE线合二为一,从而可节省导线材料,比较经济。在无特殊条件下,当发生单相电源碰壳故障时,泄漏电流将经设备外壳引至PEN线导入大地,此时,当有人触摸漏电设备外壳时,由于工作接地电阻一般很小约2-4欧,而人身电阻很大,在最不利情况下,人体电阻约1000-2000欧,其值远远大于工作接地电阻,因分流作用,流过人体的电流很小,不足以对人构成威胁,但当下列几种情况时,应值得注意。 2、PEN线因某种原因断开时,可能引起如下事故: 2.1在三相负荷基本对称且负荷性质基本相同时 当某台设备、某相发生单相碰壳事故,其泄露电流将无通路。则故障设备与非故障设备间,将会出现不等电位,引起非故障设备外壳带电现象,在易燃易爆危险场所将是很危险的。 2.2在三相负荷不对称,负荷性质基本相同时 当PEN线断开时,利用节点法可得PEN线的电压为 严重不平衡,三相相位严重不对称,如图三。严重威胁设备的正常运行,甚至烧毁用电设备。 综上分析,应采取如下有效措施 (1)在不对称负载下,设备运行必须保证PEN线不能断开,中性点不会发生位移。PEN线要符合设计要求,要有足够的机械强度,且阻抗要小 (2)PEN线上不允许接开关或熔断器,以防当开关打开或熔断器熔丝熔断后,人为造成断开PEN线。

低压配电网故障定位系统设计

低压配电网故障定位系统设计 发表时间:2020-03-19T06:23:40.613Z 来源:《云南电业》2019年9期作者:吴家斌 [导读] 本文主要分低压配电网故障定位系统设计和故障快速抢修。 (身份证号码:44010319900601xxxx) 摘要:在经济发展中,所有行业和企业的发展必须利用电力的能量,这对供电工作要求很高,低压配电网在日常运营过程中容易出现一些故障。电力企业必须不断加强维护支持能力,努力快速解决问题、修复工作、低压配电网络的安全性和顺利运行。本文主要分低压配电网故障定位系统设计和故障快速抢修。 关键词:低压配电网;故障定位系统设计;快速抢修 引言 低压配电网处于整个电力系统的最末端,其运行状况的好坏直接影响到供电的安全性和可靠性,与电力用户的切身利益相关,由此可见,实现对低压配电网故障的快速定位和隔离具有巨大的现实意义,同时应加强对低压配电网的日常管理工作,保证低压配电网处理良好的工作状态,有利于保证我国经济快速、有序的发展。 1、低压配电网的常见故障 低压配电网最常出现的故障包括接地故障和短路故障,其中接地故障主要以单相接地为主。目前,我国在3-66kv中低压配电网中普遍采用中性点不接地或经消弧线圈接地(即谐振接地)运行方式。在电网发生单相接地故障时可带故障继续运行1-2h,但是长期带故障运行,容易促使绝缘薄弱处发生对地击穿,造成两相接地短路故障,并会带来跨步电压,给故障线路周围的行人带来安全隐患,线路故障应及时处理,其中跨步电压分布示意图如图1所示。 图2 基于ZigBee的网络拓扑结构 2.2低压配电网故障定位与快速恢复系统 该系统能够独立完成局域范围的低压配电网故障的定位与快速恢复:采集与传输系统把采集到的动态数据传输到故障定位的数据接收中心,进行存储分析,结合故障特征库,实时进行故障分析与推理,并实施对故障的定位、隔离与快速恢复(图3)。

配电网常见故障分析及相应措施

编号:SM-ZD-32163 配电网常见故障分析及相 应措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

配电网常见故障分析及相应措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 农用配电网负荷分散、线路长、设备数量多、运行维护条件差、保护措施少。在运行中不仅要承受机械和电气负荷,还要经受风、霜、雨、雪等各种因素的侵扰,因而故障机率较大。除不可抗拒的自然灾害造成的事故外,通常发生的故障有: 1、导线接头电阻较大,运行时因接头高温氧化而烧断。 2、引线间或引线与设备端子间连接不良、接触电阻较大,导致引线烧断或设备端子、接线柱损坏。 3 因跌落式熔断器等开关设备的动静触头接触不良造成的触头烧毁、损坏及设备缺相运行的假象。 4 未按规定及时清理、确保防护区内外的树木及其他较高的物体;设备安装不正确、固定不牢致使运行中造成带电体之间或带电体对地间隙不足,造成线路间歇性接地、金属性接地、甚至相间短路。

智能配电网故障定位研究

智能配电网故障定位研究摘要:我国电力行业快速发展,智能配电网因其具有互动性、可靠性以及优质性等多种优势,成为现代电网发展的主要方向,需要与时俱进研究有效的智能配电网故障定位与故障恢复方法。我国配电网主要采用的是小电流接地系统,本文针对其发生率最高的单相接地故障进行研究,提出故障检测定位方法。 关键词:智能配电网;故障定位;遗传算法 前言 如今,世界各国都在大力发展高效、环保的能源,分布式能源因此被大量接入到配电网中。另外,随着科技进步,用户的互动、需求侧管理等技术得到传播推广。智能配电网是智能电网重要部分,直接关系着智能电网的发展,在分布式能源大量接入和用户互动、需求侧管理技术的冲击下,对配电网结构、技术的更新发展提出新的要求,更是影响着整个智能电网的技术发展。为了应对时代的挑战,推动我国电力技术革命性地发展以及实现绿色能源经济的建设,必须深入研究发展智能配电网技术。近年来,我国电力用户平均停电时间与发达国家相比仍有较大差距,例如在2014年我国高达350分钟,而发达国家不到100分钟,而发生电力用户停电的主要原因是配电线路故障。由于配电网多存在与人口密集区域的原因,配电线路故障是严重的安全隐患,甚至导致死亡。为了保证社会生产和居民人身财产安全、避免损失,必须及时发现及处理配电线路故障。因此,思考研究配电网

故障实现快速定位的技术,具有深远的、重要的意义。随着科学技术的不断发展,智能电网中运用人工智能算法进行配电网故障定位,极大提高了定位效率。目前,应用较多有遗传算法、模糊理论、神经网络等等,每种算法都具有各自的优缺点。本文结合现有的智能算法经验,提出基于改进遗传算法的智能配电网故障定位算法,并通过仿真对其进行验证。 一、遗传算法概述 遗传算法是一种模拟生物进化过程搜索最优解的全局优化概率搜索计算模型,从代表问题参数的染色体开始,根据问题域中个体适应度来选择,最后借助遗传算子来组合交叉及变异,最终生成代表问题最优解的优化后染色体。遗传算法广泛应用在机器学习、模式识别等领域用。遗传算法具体的运算步骤如图1所示。 图1 遗传算法运算步骤 随着广泛应用中暴露的一些问题,以及对遗传算法研究的发展,

10kV配电网故障定位系统研究与应用

10kV 配电网故障定位系统研究与应用 摘要:在整个电力系统中,配电网处于最末端的位置,运行过程中的故障直接影响着供电的安全性、可靠性及电能质量,与电力用户用电关系密切,所以研究配电网故障点的迅速查找与隔离有着巨大的现实意义。本文针对10kV 配电网接地短路故障设计了一种新型的配电网故障定位系统,简述了该系统的设计理念与实现,以及故障自动定位过程。运行实践证明,这一系统在10kV 配电网发生故障后,能够快速的帮助检修人员准确的找到故障点。 关键词:10kV 配电网;故障点;查找与隔离;故障定位系统 中图分类号:TM76 文献标识码:A 随着经济社会的发展,电能的使用越来越多,对供电的安全可靠和电能质量提出了更高的要求。配电网是电力系统构成的最后一部分,由铁搭、变压器、配线路、无功补偿电容等设备组成,与电力用户直接相连,其中任何一个设备、一条线路发生故障,都会导致与其相连的电力用户停电,带来了负面影响是无法估量的。特别是配电线路一般较长,南方地区夏季雨水较多,配电网易受雷雨天气影响而发生故障,针对南方电网的这种特点,如何建立一个适合的配电网故障定位系统,实现对故障点的迅速查找与隔离,减少停电面积,仍是南方供电企业要考虑的重点问题。研究10kV 配电网故障定位系统,不仅利

用供电企业实施故障检测,也利于实现配电网络自动化,对智能电网建设的影响重大。 一、10kV 配电网线路特点 作为配电网的一种型式,10kV 配电网线路有着自身独特的特点,决定着该配电网故障定位系统的设计思路与实现。第一,10kV 配电网线路分支较多,且分支又能产生子分支,往往有数十代之多,信号随着一代代分支的出现而不断衰减,加大了故障检测难度;第二,10kV配电网的杆塔多是石灰杆,若发生接地故障,电阻数值会加大到几千欧,有时甚至达到几十千欧,但是故障信号却较弱,不容易检测到;第三,通常配电线路越长,线路的对地电容越大,而对地电容对注入交流信号具有分流作用。10kV配电网线路一般都较长,这样一来,对注入交流信号的分流作用也会变大,故障信号将会越来越弱,为故障点定位带来了难度。 二、10kV配电网故障定位系统设计思路与实现 (一)设计思路 实用的10kV配电网故障定位系统要求在满足故障定位检测的基础上,使用更方便,基于这样的要求及10kV配电 网线路特点,提出建立一种无源的实用型故障定位系统,主要利用中心主站系统、故障信息采集系统和故障指示器来查找故障点。故障指示器在配电网中,主要负责指示故障电流通路,可根据故障检测的种类显示不同的报警形式,便于检修人员第一时间确定故障类型。中心主站系统、故障信息采集系统,能够对配电网线线路故障

相关文档
最新文档