电平转换电路max232

电平转换电路max232

MAX232芯片可以完成TTL与EIA双向电平转换

TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V... MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14 13----12为一组. 10-----7 8----9为一组... 51单片机要与PC机进行串口通信,通常使用MAX232芯片来作电平转换。下面把MAX232与51单片机的接口电路贴出来供大家参考。(此电路图已经过实际验证) MAX232芯片可以完成TTL与EIA双向电平转换,MAX232提供两路串口电平转换,现在只用一路串口,所以另一路悬空不使用,MAX232与51单片机接口电路如下图所示。(单击图片可放大)

图中DB9为串口的插头(母接头),插座共有9个引线. MAX232的12脚接单片机的P3.0(RXD) MAX232的12脚接单片机的P3.1(TXD) MAX232还带有4个电容,都是容量都是104,为了减少电路板体积,可以用无极电容代替极性电容。 VCC 是5V DC 提示:串口插座有公母两种类型其中 公的串口插座是带有插针的(有针) 母的串口插座是不带有插针的(有洞) 如下图所示 由以上分析可知,DB9为母接头,而电脑PC的串口接头一般是分接头。 所以此电路与PC相连时,所用的串口线应该是一公一母的串口线。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL 电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。这是由于可靠性和成本两面的原因。因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

串口电平转换芯片数据手册SP3222_3232E

DESCRIPTION s Meets true EIA/TIA-232-F Standards from a +3.0V to +5.5V power supply s 235KBps Transmission Rate Under Load s 1μA Low-Power Shutdown with Receivers Active (SP3222E ) s Interoperable with RS-232 down to +2.7V power source s Enhanced ESD Specifications: ±15kV Human Body Model ±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact Discharge The SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-held applications such as notebook or palmtop computers. The SP3222E/3232E series has a high-efficiency, charge-pump power supply that requires only 0.1μF capacitors in 3.3V operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E are 2-driver/2-receiver devices. This series is ideal for portable or hand-held applications such as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The SP3222E device has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1μA. SELECTION TABLE L E D O M s e i l p p u S r e w o P 232-S R s r D e v i r 232-S R s r e v i e c e R l a n r e t x E s t n e n o p m o C n w o d t u h S L T T a S -3e t t f o .o N s n i P 2223P S V 5.5+o t V 0.3+224s e Y s e Y 02,812 323P S V 5.5+o t V 0.3+2 2 4 o N o N 6 1

MAX232引脚图 接线图 电路图 及RS232引脚定义

MAX232是一种把电脑的串行口RS232信号电平(-10 ,+10v)转换为单片机所用到的TTL信号点平(0 ,+5)的芯片,这个芯片的价格比较贵大约要5元. 下图为MAX232引脚图和接线图,及RS232引脚定义,带有转串口的电路。 TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为 0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V...

MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14,13----12为一组; 10-----7 8----9为一组... 由于有时候接把MAX232的232端口和TTL端口搞反发现还能工作....所以大家要用的时候一定要注意了... max232电路:

RS232引脚定义: 引脚定义符号 1 载波检测 DCD 2 接收数据 RXD 3 发送数据 TXD 4 数据终端准备好 DTR 5 信号地 SG 6 数据准备好 DSR 7 请求发送 RTS 8 清除发送 CTS

9 振铃提示 RI 搜索datasheet上: https://www.360docs.net/doc/c49782898.html,/ https://www.360docs.net/doc/c49782898.html,/

电路图和实物图相互转化专题

电路连接练习(1) 1、按电路图,将实物连成电路. 2、根据图所示的电路图连接图所示的实物图 3、按电路图(甲)连接图(乙): 4、按图所示的实物图画电路图: 5、按图所示的实物图画电路图:; 6、按图所示的实物图画电路图: 7、按图所示的实物图画电路图: 8、按图所示的实物图画电路图: 9、按图所示的实物图画电路图: 10、按图所示的实物图画电路图:》

11、按图所示的实物图画电路图: 12、按图所示的实物图画电路图: 13、按图所示的实物图画电路图: 14、按图所示的实物图画电路图: [ 15、按图所示的实物图画电路图:] : ?;

电路连接练习(2) 16、按图所示的实物图画电路图: ( 17、按图所示的实物图画电路图: 18、将下图中的元件连接起来,形成并联电路并标出电流的方向.(要求每个开关控制一个灯泡) 19、将下图中给出的元件用导线按要求连接起来,标出电流流动的方向: (1)用开关控制灯泡 (2)用开关控制电动机和发光二极管20、一节电池一个开关、两盏灯L1和L2要组成并联电路,还应再连接两根线就可以了。 ) 21、根据电路图连接实物图: 22、根据电路图连接实物图: 23、根据电路图连接实物图:

24 、 根据电路图 连接实物图: | 25、图B 所示的实物图画成电路图: 26、按图所示的实物图画电路图: 27、根据实物图 画出电路图; 28、根据实物图 画出电路图; 29、将下图中的元件连接起来,形成串联电路并标出电流的方向. { 30、某医院安装了一种呼唤电铃,使各病床的病人均可单独呼叫,只要一按床头的开关,值班室的电铃就响,且与该病床相对应的指示灯亮,请在图中画出正确的连接方法: :

MAX232原理及应用

RS232 (DB9)引脚定义 1 :DCD :载波检测。主要用于Modem通知计算机其处于在线状态,即Modem检测到拨号音,处于在线状态。 2 :RXD:此引脚用于接收外部设备送来的数据;在您使用Modem时,您会发现RXD指示灯在闪烁,说明RXD引脚上有数据进入。 3 :TXD:此引脚将计算机的数据发送给外部设备;在您使用Modem时,您会发现TXD指示灯在闪烁,说明计算机正在通过TXD引脚发送数据。 4 :DTR:数据终端就绪;当此引脚高电平时,通知Modem可以进行数据传输,计算机已经准备好。 5 :GND:信号地;此位不做过多解释。 6 :DSR:数据设备就绪;此引脚高电平时,通知计算机Modem已经准备好,可以进行数据通讯了。 7 :RTS:请求发送;此脚由计算机来控制,用以通知Modem马上传送数据至计算机;否则,Modem将收到的数据暂时放入缓冲区中。 8 :CTS: 清除发送;此脚由Modem控制,用以通知计算机将欲传的数据送至Modem。 9 :RI : Modem通知计算机有呼叫进来,就是否接听呼叫由计算机决定 MAX232原理

MAX232芯片就是专门为电脑的RS-232标准串口设计的接口电路,使用+5v单电源供电。 内部结构基本可分三个部分: 第一部分就是电荷泵电路。由1、2、3、4、5、6脚与4只电容构成。功能就是产生+12v与-12v两个电源,提供给RS-232串口电平的需要。 第二部分就是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。 TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、 T2OUT送到电脑DP9插头;DP9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。 第三部分就是供电。15脚DNG、16脚VCC(+5v)。 下图为MAX232引脚图与接线图,带有转串口的电路。

串口通信:MAX232原理及应用

串口通信:MAX232原理、应用(另附:串口说明) 2009-7-2412:50:00 (图一、表一) MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的接口电路,使用+ 5v单电源供电。 其主要作用是用来将普通5V的TTL电平转为10V串口通信电平。 内部结构基本可分三个部分: 第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。 第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。 其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。 TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT 送到电脑DP9插头;DP9插头的RS-232数据从R1IN、R2IN输入转换成TTL /CMOS数据后从R1OUT、R2OUT输出。 第三部分是供电。15脚DNG、16脚VCC(+5v)。 (图二) 图二是典型的电路应用,这里的电容值需要根据不同的232芯片所决定,可以参见表一。 请注意: 1.对于MAX232后有字母A的型号,只需要使用104的瓷片电容即可,而没有A的型号,如商用的MAX232CPE,则一般只要105(1uF)的电容即可。 2.电容用于升压,只可以往大的取(如MAX232CPE用10uF的电容完全没有问题),否则会影响电平转换的效果。 再给个典型的电路连接:

RS232接口芯片双电荷泵电平转换器原理

RS232接口芯片双电荷泵电平转换器 原理 电子工业协会Electronic Industries Association Electronic Industries Association(EIA)电子工业协会(EIA) 1924年成立的EIA是美国的一个电子制造商组织。 EIA-232,就是众所周知的RS-232,它定义了数据终端设备(DTE)和数据通信设备(DCE)之间的串行连结。这个标准被广泛采用。 EIA-RS-232C电气特性: 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V RS-232-C电平采用负逻辑,即逻辑1:-3~-15V,逻辑0:+3~+15V。 注意,单片机使用的CMOS电平中,高电平(3.5~5V)为逻辑1,低电平(0~0.8V)为逻辑0。 单片机的SCI口要外接电平转换电路芯片把与TTL兼容的CMOS高电平表示的1转换成RS-232的负电压信号,把低电平转换成RS-232的正电压信号。典型的转换电路给出-9V和+9V。

典型的电平转换电路MAXx2xx系列芯片因单电源+5V供电,均有电荷泵电平转换器产生±10V电源,以供RS232电平所需。 一般是接4个泵电容,采用双电荷泵进行电平转换。标准接法如下图。 图1 芯片内带振荡器驱动双电荷泵,分双相四步工作,如下图。 图2电荷泵框图

第一步:S1、S3闭合,电源+5V向C1充电(图3)。C1电压最高可至5V。 图3 第二步:S2、S4闭合,C1所储电荷经S2、S4转移至C3,C3电压最高也可至5V。 C1电荷转移充电途径如红色虚线所示。 C3电压和电源+5V迭加起来提供10V的V+电源。 这时C1负端电位应等于电源+5V,所以C1负端电压波形应是0-+5V 的方波。 第三步:S5、S7闭合,C3所储电荷和电源+5V迭加经S5、S7向C2充电。 C2电压最高可至10V。充电途径如棕色虚线所示。 第二、三步实际同时进行(图4)。

MAX232中文资料(转)

MAX232资料简介 MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。 一、引脚介绍: 第一部分:是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。 第二部分:是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。 第三部分:是供电。15脚GND、16脚VCC(+5v)。 二、主要特点: 1、符合所有的RS-232C技术标准 2、只需要单一+5V电源供电 3、片载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+、V- 4、功耗低,典型供电电流5mA 5、内部集成2个RS-232C驱动器 6、内部集成两个RS-232C接收器下图为MX232双串口的连接图,可以分别接单片机的串行通信口或者实验板的其它串行通信接口:

三、max232应用电路,注意电容接法。 232是电荷泵芯片,可以完成两路TTL/RS-232电平的转换,它的的9、10、11、12引脚是TTL电平端,用来连接单片机的。 MAX232心得 MAX232DIP16封装现主要有这些型号:MAX232CPE、MAX232EPE。 下面对MAX232的型号标识进行解析: ①MAX232后缀第一个字母,表示应用级别。“C”:商业级;“E”:工业级。 例:MAX232CPE:商业级; ②MAX232后缀第二个字母,表示封装。P:PDIP封装;S:SOP封装。 例:MAX232CPE:DIP封装; ③MAX232后缀第三个字母,表示引脚数。E:16pin。 例:MAX232CPE:16脚。 MAX232CPE,MAX232EPE分别是DIP和SOP封装 MAX232MAX232A的区别是前者传输速率是120外部电容1uF;后者是200外部电容0.1uF; MAX232MAX232A两种IC都有DIP和SOP封装,所以不带A的应该是MAX232芯片。 MAX232A对应的是MAX232ACPE,MAX232AEPE。 但是实测MAX232和MAX232A用0.1uf1uf10uf电容都是可以工作的。 但是四个电容一定都要接上,曾以为只用一个串口,C4没接东西,结果死活下载不了程序,后来解决了,特写下总结……

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信 一、电平转换电路 下面来分析一下电路的设计思路: https://www.360docs.net/doc/c49782898.html,/BLOG_ARTICLE_244240.HTM 首先声明一下:这个电路是从3V3的角度考虑的! 1、接收通道 我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。 我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。同理,高电平分析是一样的。 逻辑转换完成了,那么就是电平的问题了。这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK! 2、发送通道 分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。 3、结论 其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。 二、电平问题: 单片机手册————电气特性 常用逻辑电平:12V,5V,3.3V; 1.TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

CMOS电平转换电路详解

CMOS电平转换电路详解 COMS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。 COMS电路的供电电压VDD范围比较广在+5~+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0。CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc.当输入电压高于VDD-1.5V时为逻辑1,输入电压低于VSS+1.5V(VSS为数字地)为逻辑0。 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑1,0V 等价于逻辑0,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H》2V,输入L《0.8V;输出H 》2.4V(3.4V),输出L《0.4V(0.2V)。 CMOS电平是数字信号还是模拟信号?CMOS电平是数字信号,COMS电路的供电电压VDD范围比较广在+5--+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V 时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,一般数字信号才是0和1 。 cmos电平转换电路1、TTL电路和CMOS电路的逻辑电平 VOH:逻辑电平1 的输出电压 VOL:逻辑电平0 的输出电压 VIH :逻辑电平1 的输入电压 VIH :逻辑电平0 的输入电压 TTL电路临界值:

TTL与RS232电平模拟转换电路及工作原理

1.先介绍电脑上与单片机进行通讯的接口的名称 (1)一般是用电脑串口来进行通讯的,平常大家说的电脑的串口是指台式电脑主机后面的九针接口,如下图 这个接口有个专业的名称,叫RS23接口,而RS232接口是串口通讯的一种,其实所谓的接口,我的理解就是一种通信协议,规定了传输电平,传输方式,及怎么传输数据等等。 协议标准规定采用一个25个脚的DB25连接器,还规定了连接器的每个引脚的信号内容,同时还对各种信号的电平加以规定。但随着设备的不断改进,出现了代替DB25的DB9接口,现在都把RS232接口叫做DB9。 (2)电脑上的RS232接口采用的是负逻辑电平: -15~-3表示逻辑1; +15~+3表示逻辑0; 电压值通常在7V左右 (3)我们可以使用串口电缆直接连接两台PC机的串口,实现两台PC机的串口通讯。但是PC 机和单片机的通讯却不能够用电缆直接进行连接,原因是PC机RS232串口的电平标准和单片机的TTL电平不一致,因此单片机和PC机之间的串口通讯必须要有一个RS232/TTL电平转换电路。通常这个电路都选择专用的RS232接口电平转换集成电路进行设计,如MAX232、HIN232等。 2.单片机串口输出的逻辑电平 单片机的串口输出电路采用的逻辑电平是TTL电平。这种电平信号由TTL器件产生的,一般的芯片,如运放,数字器件等... TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V; VIH>=2V;VIL<=0.8V 3.单片机与电脑串口的连接 首先解决的就是逻辑接口电平的问题,其次就是通信方法及方式的问题 (1)在这里我们可以使用集成芯片MAX232,这是一款专门用来进行信号电平的转换的芯片,使用起来简单方便,这里把电路贴出。

3.3V转5V的双向电平转换电路

3.3V转5V的双向电平转换电路 说说所有的电平转换方法,你自己参考~ (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母 T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种5V 逻辑器件,其输入是3.3V 电平,只要在选择器件时选择输入为TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法 算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。 那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~ 3.3V转5V 电平转换方法参考 电平转换

电平转换电路

3.1 应用举例-应用SN74LVC2G07实行电平转换 图6显示了SN74LVC2G07一个Buffer作1.8V到5V的转换,另一Buffer 作3.3V到1.8V的转换。 器件的电源电压为1.8V。它可以保证器件将输入最低的VIH识别为有效的高电平。输出上拉电阻的最小值取决于器件开漏脚的最大灌电流能力(maximum current-sinking capability Iol max)。而最大灌电流能力是受限于输出信号的最大允许的上升时间的。 Rpu(min)=(Vpu-Vol)/ Iol(max) 对于图6中的SN74LVC2G07,假设Vpu1=5V±0.5V,Vpu2=1.8V±0.15V,而且电阻的精度为5% Rpu1(min)=((5.5V-0.45V)/4mA)×(1/0.95)=1.33kΩ 最接近的标称值为1.5kΩ。 Rpu2(min)=((1.8V-0.45V)/4mA)×(1/0.95)=394.73Ω 最接近的标称值为430Ω。 图7显示了在不同上拉电阻值的情况下具有10pF容性负载情况下的输出波形。当上拉电阻值增大后,输出信号的上升时间也增加了。

3.2 不要在CMOS 驱动的输出端加上拉电阻

在电平转换时,系统设计者不能在CMOS器件的输出端加上拉电阻。这种作法有很多弊端,应该避免使用。一个问题是在输出为低时增加了功耗。当CMOS 驱动输出为高是也会产生另一个危害。高电平的电源会通过上拉电阻对低电平电源灌电流。此时,下部的N沟道晶体管是关闭的,上部的P沟道晶体管是导通的。电流灌入低电平的电源会产生无法预料的后果。 4 FET开关 TI的CB3T,CBT,CBTD和TVC系列的总线开关可以用作Level-shifter。FET开关非常适用于不需要电流驱动并有很短传播时延的电平转换应用。 FET开关的好处: ●很短的传播时延 ●TVC器件(或者将CBT 器件配置为TVC)不用方向控制就可以实现双向电平转换 TI的CB3T系列器件可以用于5V到3.3V转换。图9显示了CB3T器件用作双向电平转换的一些应用。

RS232和MAX232引脚定义及接口电路

9针串口(DB9)25 针串口(DB25) 针号功能说明缩写针号功能说明缩写 1 数据载波检测DCD 8 数据载波检测DCD 2 接收数据RXD 3 接收数据RXD 3 发送数据TXD 2 发送数据TXD 4 数据终端准备DTR 2 0 数据终端准备DTR 5 信号地 GND 7 信号地GND 6 数据设备准备好DSR 6 数据准备好DSR 7 请求发送RTS 4 请求发送RTS 8 清除发送CTS 5 清除发送CTS 9 振铃指示DELL 22 振铃指示 DELL 2.RS232C串口通信接线方法(三线制) 9针-9针 25针-25针 9针-25针 2 3 3 2 2 2 3 2 2 3 3 3 5 5 7 7 5 7 关于串口连接线的制作方法 在电脑的使用中往往会遇到各种各样的连接线。这些连接线外观上好像都差不多,但内部结构完全不同并且不能混用。如果在使用中这些连接线坏了,往往很多使用者都不知道应该怎么办,下面就给出这些常见的连接线的连线方法以便于修理或查找故障。在介绍之前先对一些市场常用名词做出解释。现在所有的接头都可以分为公头和母头两大类。 公头:泛指所有针式的接头。 母头:泛指所有插槽式的接头。 所有接头的针脚有统一规定,在接头上都印好了的,连接时要注意查看。 在接线时没有提及的针脚都悬空不管。 串口联机线的连接方法 串口联机线主要用于直接把两台电脑的com口连接。比较早一点的AT架构的电脑的串口有为9针,和25针两种,现在的ATX架构的电脑两个串口全部是9针。于是联机线就分为3种(9针对9针串口联机线,9针对25针串口联机线,25针对25针串口联机线)这些直接电缆连接线可以互换的连线方法如下表: 9针对9针串口连接 9针母头9针母头 2 —— 3 3 —— 2 4 —— 6 5 —— 5 6 —— 4 7 —— 8 8 —— 7 25针对25针串口连接 25针母头25针母头

电平转换电路

7.10 电平转换电路 在数字电路系统中,一般情况下,不同种类器件(如TTL、CMOS、HCMOS等)不能直接相连;电源电压不同的CMOS、HCMOS器件因输出电平不同也不能直接相连,这就涉及到电平转换问题。所幸的是目前单片机应用系统中的MCU、存储器、μP监控芯片、I/O扩展与接口电路芯片等多采用HCMOS工艺;另一方面74LS系列数字电路芯片已普遍被74HC系列芯片所取代。即数字电路系统中的门电路、触发器、驱动器尽可能采用74HC系列(或高速的74AHC系列)芯片、CD40系列或 CD45系列的CMOS器件(速度较HCMOS系列慢,但功耗比HC系列芯片低、电源电压范围宽。当电源电压大于5.5V时,CMOS数字逻辑器件就成了唯一可选的数字IC芯片),尽量不用74LS系列芯片(速度与74HC系列相同,但电源范围限制为5.0V±5%、功耗大、价格甚至比74HC系列高)与74系列(在74系列中,只有输出级可承受高压的7406、7407 OC门电路芯片仍在使用)。 根据CMOS、HCMOS芯片输出高低电平特征、输入高低电平范围,在电源电压相同,且不大于5.5V情况下,这些芯片能直接相连。因此,在现代数字电子电路中只需解决不同电源电压CMOS、HCMOS器件之间的连接问题。 7.10.1 高压器件驱动低压器件接口电路 高压器件驱动低压器件(如5V驱动3V或9V驱动5V、3V)时,一般不能直接相连,应根据高压器件输出口结构(漏极开路的OD门、准双向或CMOS互补推挽输出)选择相应的接口电路。 对于OD输出引脚,可采用图7-42(a)所示电路,上拉电阻R一般取 10K~510K之间,具体数值与前级输出信号频率有关:输出信号频率高,如1MHz以上方波信号,R取小一些;输出信号频率低,R可取大一些,以减小输出低电平时上拉电阻R的功耗。 对于CMOS互补推挽输出、准双向(如MCS-51的P1、P2、P3口)输出,须在两者之间加隔离二极管,如图7-42(b)所示,其中电阻R选择与图(a)相同,二极管D可采用小功率开关二极管,如1N4148。前级输出高电平时,二极管D截止,后级输入高电平电压接近电源电压。当前级输出低电平时,二极管D导通,后级输入低电平电压=+(二极管导通压降)。显然<1.0V,当后级电路为HCMOS、CMOS器件时,只要输入级N沟

RS232转RS485电路图

自制无源RS232-485转换器一、RS-232、RS-422与RS-485的简单介绍

RS-232、RS-422与RS-485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的。RS-232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。其传送距离最大约为15米,最高速率为20kb/s,并且RS-232是为点对点(即只用一对收、发设备)通讯而设计的。所以,RS232只适合于本地通讯使用。 RS-422由RS-232发展而来,它是为弥补RS-232之不足而提出的。为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到1200米(速率低于100kb/s时),并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用

范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以RS作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。 二、自制RS232-485转换器 电路图: RS232-485转换器主要包括了电源、232电平转换、485电路三部分。本电路的232电平转换电路采用了NIH232或者也可以直接使用MAX232集成电路,485电路采用了MAX485集成电路。为了使用方便,电源部分设计成无源方式,整个电路的供电直接从PC机的RS232接口中的DTR(4脚)和RTS(7脚)窃取。PC串口每根线可以提供大约9mA的电流,因此两根线提供的电流足够供给这个电路使用了。经实验,本电路只使用其中一条线也能够正常工作。使用本电路需注意PC程序必须使串口的DTR和RTS输出高电平,经过D3稳压后得到VCC,经过实际测试,VCC电压大约在4.7V左右。因此,电路中要说D3起的作用是稳压还不如说是限压功能。 MAX485是通过两个引脚RE(2脚)和DE(3脚)来控制数据的输入和输出。当RE为低电平时,MAX485数据输入有效;当DE为高电平时,MAX485数据输出有效。在半双工使用中,通常可以将这两个脚直接相连,然后由PC或者单片机输出的高低电平就可以让MAX485在接收和发送状态之间转换了。由于本电路DTR和RTS都用于了电路供电,因此使用TX线和HIN232的另外一个通道及Q1来控制MAX485的状态切换。平时NIH232的9脚输出高电平,经Q1倒相后,使MAX485的RE 和DE为低电平而处于数据接收状态。当PC机发送数据时,NIH232的9脚输出低电平,经Q1倒相后,使MAX485的RE和DE为高电平而处于数据发送状态。

逻辑电平转换器

逻辑电平转换器 在新一代电子产品设计中,TTL或5V CMOS电平已不再占据逻辑电路统治地位。随着低电压逻辑的引入,系统内部常常出现输入/输出逻辑不协调的问题,从而提高了系统设计的复杂性。例如,当1.8V的数字电路与工作在3.3V的模拟电路进行通信时,需要首先解决两种电平转换问题,本文介绍了不同逻辑电平之间的转换方法。 1 逻辑电平转换的必要性 型号I/O通道数单向/双向 Rx/Tx V L范围Vcc范围独立使能速率 MAX3001 8 双向,8/8 1.2V~5.5V 1.65V~5.5V Yes 4Mbps MAX3370 1 双向,1/1 1.65V~ 5.5V 2.5V~5.5V No 2Mbps MAX3371 1 双向,1/1 1.65V~ 5.5V 2.5V~5.5V Yes 2Mbps MAX3372/3 2 双向,2/2 1.2~5.5V 1.65V~5.5V Yes 230kbps MAX3374 MAX3375 MAX3376 2 单向,2/0 单向,1/1 单向,0/2 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3377 MAX3378 4 双向,4/4 1.2~5.5V 1.65V~5.5V Yes 230kbps MAX3379 4 单向,4/0 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3390 4 单向,3/1 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3391 4 单向,2/2 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3392 4 单向,1/3 1.2~5.5V 1.65V~5.5V Yes 16Mbps MAX3393 4 单向,0/4 1.2~5.5V 1.65V~5.5V Yes 16Mbps 随着不同工作电压的数字IC的不断涌现,逻辑电平转换的必要性更加突出,电平转换方式也将随逻辑电压、数据总线的形式(例如4线SPI、32位并行数据总线等)以及数据传输速率的不同而改变。现在虽然许多逻辑芯片都能实现较高的逻辑电平至较低逻辑电平的转换(如将5V电平转换至3V电平),但极少有逻辑电路芯片能够较低的逻辑电平转换成较高的逻辑电平(如将3V逻辑转换至5V逻辑)。另外,电平转换器虽然也可以用晶体管甚至电阻——二极管的组合来实现,但因受寄生电容的影响,这些方法大大限制了数据的传输速率。

3.3v和5v双向电平转换芯片

3.3v和5v双向电平转换芯片 74LVC4245,8位电平转换 74LVC4245A,8位双向 NLSX4373,2位电平转换 NLSX4014,4位电平转换 NLSX4378,4位电平转换 NLSX3018,8位电平转换 max3002,8路双向 TXB0104?(她好像有一个系列?0102?0104?0106?0108), ADG3308 74HCT245:三态输出的八路总线收发器 SN74AVCH2T45 SN74AVC16T245:具有可配置电压转换和3 态输出的16 位双电源总线收发器 SN74LVC2T45DCT:双位双电源总线收发器可配置电压转换和三态输出 SN74LVC4245A:8位 德州仪器宣布推出SN74LVC1T45、SN74LVC2T45、SN74AVC8T245及SN74AVC20T245四款新型双电源电平转换收发器。该新品能够在 1.5V、1.8V、2.5V、3.3V 与5V 电压节点之间进行灵活的双向电平转换,而且可提供全面的可配置性。如果采用AVC 技术,则每条轨可从 1.4V 配置为 3.6V;而采用LVC 技术时则可从1.65V 配置为5.5V。适用于便携式消费类电子产品、网络、数据通信以及计算应用领域。 日前,德州仪器(TI)宣布推出四款新型的双电源电平转换器--AVC1T45、AVC2T45、AVC16T245及AVC32T245,从而进一步扩展其电平转换产品系列。这些转换器能够在互不兼容的I/O之间进行通信。这四款器件均支持1.2V、1.5V、1.8V、2.5V与3.3V节点之间的双向电平转换。在混合信号环境中,可以使用这些电压电平的任意组合,从而提高这些器件的灵活性。 1位AVC1T45与2位AVC2T45可根据需要在电路板上集成单或双转换器功能,而不是通过较高位宽的器件进行路由,这有助于简化电路板布线作业(board routing),可适用于便携式手持应用的转换要求。AVC16T245与AVC32T245是TI当前16位与32位双电源转换功能的改进版本。这些器件能够提供较低的功耗(AVC16T245的功耗为25μA,而AVCA164245的功耗则为40μA)。该类器件的总线控制选件无需外部上拉/下拉电阻器。TI还提供全面的IBIS模型支持。 SN74AVC1T45与SN74AVC2T45以及总线控制版本SN74AVCH1T45与SN74AVCH2T45均采用NanoStar 与NanoFree芯片级封装。这些器件现已推出,并可提供样片。批量为千套时,预计1T45器件的最低零售单价为0.24美元,而2T45器件的最低零售单价为0.35美元。 SN74AVC16T245和总线控制版本SN74AVCH16T245采用56球栅VFBGA封装。该器件现已推出,并可提

相关文档
最新文档