高考金钥匙数学解题技巧大揭秘3专题三 不等式及线性规划问题

高考金钥匙数学解题技巧大揭秘3专题三 不等式及线性规划问题
高考金钥匙数学解题技巧大揭秘3专题三 不等式及线性规划问题

专题三 不等式及线性规划问题

1.若a ,b ∈R ,且ab >0,则下列不等式恒成立的是( ). A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab

D.b a +a

b

≥2 答案:D [对于A :当a =b =1时满足ab >0,但a 2+b 2=2ab ,所以A 错;对于B 、C :当a =b =-1时满足ab >0,但a +b <0,1a +1b <0,而2ab >0,2

ab >0,显然B 、C 不对;

对于D :当ab >0时,由基本不等式可得b a +a

b

≥2

b a ·a

b

=2.] 2.若x ∈[0,+∞),则下列不等式恒成立的是( ). A .e x ≤1+x +x 2 B.

11+x

≤1-12x +1

4x 2

C .cos x ≥1-1

2

x 2

D .ln(1+x )≥x -1

8

x 2

答案:C [正确命题要证明,错误命题只需举一个反例即可.如A ,因为e 3>1+3+32,故A 不恒成立;同理,当x =13时,11+x >1-12x +1

4

x 2,故B 不恒成立;因为????cos x +12x 2-1′=-sin x +x ≥0(x ∈[0,+∞)),且x =0时,y =cos x +12x 2-1=0,所以y =cos x +1

2x 2-1≥0

恒成立,所以C 对;当x =4时,ln(1+x )<x -1

8

x 2,故D 不恒成立.]

3.设变量x ,y 满足约束条件?

?

x +2y ≥2,

2x +y ≤4,

4x -y ≥-1,

则目标函数z =3x -y 的取值范围是( ).

A .????-3

2,6 B.????-3

2,-1 C .[-1,6]

D.?

???-6,32 答案:A [

作出不等式组所表示的区域如图,由z =3x -y 得,y =3x -z ,平移直线y =3x ,由图象可知当直线经过点E (2,0)时,直线y =3x -z 的截距最小,此时z 最大为z =3×2-0=6,

当直线经过C 点时,直线y =3x -z 的截距最大,此时z 最小,由?????

4x -y =-1,

2x +y =4,

解得

?

????

x =12,y =3,此时z =3x -y =32-3=-3

2

,所以z =3x -y 的取值范围是????-32,6.] 4.若x ,y 满足约束条件? ?

x ≥0,

x +2y ≥3,

2x +y ≤3,

则x -y 的取值范围是________.

解析

记z=x-y,则y=x-z,所以z为直线y=x-z在y轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC区域所示.结合图形可知,当直线经过点B(1,1)时,x-y取得最大值0,当直线经过点C(0,3)时,x-y取得最小值-3.

答案[-3,0]

本部分内容高考主要考查以下几方面:

(1)考查利用基本不等式求最值、证明不等式等,利用基本不等式解决实际问题.

(2)考查以线性目标函数的最值为重点,目标函数的求解常结合其代数式的几何意义(如斜率、截距、距离、面积等)来求解.

(3)一元二次不等式经常与函数、导数、数列、解析几何相结合考查参数的取值范围,

以考查一元二次不等式的解法为主,并兼顾二次方程的判别式、根的存在等.

不等式部分重点掌握一元二次不等式的解法,特别是含有字母参数的一元二次不等式的解法,基本不等式求最值,二元一次不等式组所表示的平面区域,包括平面区域的形状判断、面积以及与平面区域有关的最值问题,简单的线性规划模型在解决实际问题中的应用.对不等式的深入复习要结合数列、解析几何、导数进行.

必备知识

一元二次不等式

(1)一元二次不等式的解集可以由一元二次方程的解结合二次函数的图象得来,不要死记硬背,二次函数的图象是联系“二次型”的纽带.

(2)对含参数的不等式,难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因,确定好分类标准(如最高次系数、判别式、根相等),层次清楚地求解.

(3)与一元二次不等式有关的恒成立问题,通常转化为根的分布问题,求解时一定要借助二次函数的图象,一般考虑四个方面:开口方向、判别式的符号、对称轴的位置、区间端点函数值的符号.

基本不等式

(1)基本不等式a 2+b 2≥2ab 取等号的条件是当且仅当a =b ;当且仅当x =y 时,x +y

2≥xy

(x >0,y >0)取等号.

(2)几个重要的不等式:①ab ≤????a +b 22

(a ,b ∈R );

a 2+

b 22≥a +b 2≥ab ≥2ab

a +b

(a >0,b >0); ③a +1

a

≥2(a >0,当a =1时等号成立);

2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立); |a |-|b |≤|a ±b |≤|a |+|b |.

(3)最值问题:设x ,y 都为正数,则有

①若x +y =s (和为定值),则x =y 时,积xy 取得最大值s 24;

②若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .

比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.

解决线性规划问题的一般步骤 (1)确定线性约束条件; (2)确定线性目标函数; (3)画出可行域;

(4)利用线性目标函数(直线)求出最优解;

(5)据实际问题的需要,适当调整最优解(如整数解等).

必备方法

1.解一元二次不等式ax 2+bx +c >0(a ≠0)或ax 2+bx +c <0(a ≠0),可利用一元二次方程、一元二次不等式和二次函数间的关系.

2.使用基本不等式以及与之相关的不等式求一元函数或者二元函数最值时,基本的技巧是创造使用这些不等式的条件,如各变数都是正数,某些变数之积或者之和为常数等,解题中要根据这个原则对求解目标进行适当的变换,使之达到能够使用这些不等式求解最值的

目的.在使用基本不等式求函数的最值、特别是求二元函数最值时一定要注意等号成立的条件,尽量避免二次使用基本不等式.

3.平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b 可知z b 是直线ax +by =z 在y 轴上的截

距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.

基本不等式的应用

常考查:①直接利用基本不等式求最值;②先利用配凑法等进行恒等变形,再利用基本

不等式求最值.近几年高考试题常考查实际应用题中基本不等式的应用,应引起我们的重视.

【例1】? (2010·重庆)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ). A .3 B .4 C.92 D.11

2

[审题视点] [听课记录]

[审题视点] 将已知式改写成y 关于x 的表达式,再代入x +2y 消元,整理成应用基本不等式的形式求最值.

B [∵x +2y +2xy =8,∴y =

8-x

2x +2>0,∴-1<x <8,

∴x +2y =x +2·8-x 2x +2=(x +1)+9

x +1-2≥2

(x +1)·9

x +1

-2=4,此时x =2,y =1,

故选B.]

当函数或代数式具有“和是定值”、

“积是定值”的结构特点时,常利用基本不等式求其最大、最小值.在具体题目中,一般很少考查基本不等式的直接应用,而是需要对式子进行变形,寻求其中的内在关系,然后利用基本不等式得出结果.

【突破训练1】 已知a >0,b >0,且a +2b =1.则1a +1

b 的最小值为________.

解析 1a +1b =a +2b a +a +2b

b =3+????2b a +a b ≥3+2

2b a ×a

b

=3+2 2. 即1a +1

b 的最小值为3+2 2. 答案 3+2 2 线性规划问题的解法

线性规划问题常考查有三种题型:一是求最值;二是求区域面积;三是知最优解情况或可行域情况确定参数的值或取值范围.同时,这也是高考的热点,主要以选择题、填空题的形式考查.

【例2】设x ,y 满足约束条件????

?

3x -y -6≤0,x -y +2≥0,

x ≥0,y ≥0.若目标函数z =ax +by (a >0,b >0)的

最大值为12,则3a +2

b

的最小值为( ).

A .256 B.83 C.11

3 D .

4 [审题视点] [听课记录]

[审题视点] 先由已知结合线性规划知识可以求得a ,b 的关系式,再由基本不等式求解.

A [不等式表示的平面区域如图所示阴影部分.

当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6.

所以2a +3b =????2a +3b ·2a +3b 6=136+????b a +a b ≥136+2=256

.]

线性规划的实质是把代数问题几何

化,即数形结合的思想.

需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错,比如上题中目标函数所对应直线的斜率-a

b

<0;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 【突破训练2】某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表

植面积(单位:亩)分别为( ).

A .50,0

B .30,20

C .20,30

D .0,50

答案:B [设黄瓜和韭菜的种植面积分别为x 亩,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y .

线性约束条件为

?????

x +y ≤50,

1.2x +0.9y ≤54,x ≥0,y ≥0,

即?????

x +y ≤50,

4x +3y ≤180,

x ≥0,y ≥0.

画出可行域,如图所示.

作出直线l 0:x +0.9y =0,向上平移至过点B 时,z 取得最大值,由?????

x +y =50,

4x +3y =180,

得B (30,20).]

不等式解法的考查

常考查:①含参不等式的求解;②已知含参不等式恒成立,求参数的取值范围,尤其是一元二次不等式的求解是高考重点考查的知识点之一,几乎涉及高中数学的所有章节,且常考常新,要注意解题的灵活性.

【例3】? 若不等式x 2-ax +1≥0对于一切x ∈(0,2]成立,求a 的取值范围. (1)若题中区间改为x ∈[-2,2],求a 的取值范围; (2)若题中区间改为a ∈[-2,2],求x 的取值范围. [审题视点] [听课记录]

[审题视点] 原题可利用分离法求解;(1)分离参数后,需分x =0,x ∈(0,2],x ∈[-2,0)讨论;(2)利用变换主元法求解.

解 原不等式可化为a ≤x 2+1x ,而x 2+1x ≥2x

x =2,

所以a 的取值范围是(-∞,2].

(1)因为x ∈[-2,2],而当x =0时,原式为02-a ·0+1≥0恒成立,此时a ∈R ;当x ≠0时,令f (x )=x 2+1x =x +1

x

则当x ∈(0,2]时,知a ∈(-∞,2],所以当x ∈[-2,0)时, 因为a ≥x 2+1x ,令f (x )=x 2+1x =x +1

x ,

由函数的单调性可知,

所以f (x )m ax =f (-1)=-2,所以a ∈[-2,+∞), 综上可知,a 的取值范围是[-2,2].

(2)因为a ∈[-2,2],则可把原式看作关于a 的函数, 即g (a )=-xa +x 2+1≥0,由题意可知,

?

????

g (-2)=x 2+2x +1≥0,

g (2)=x 2-2x +1≥0,解之得x ∈R , 所以x 的取值范围是(-∞,+∞).

本题考查了不等式恒成立问题,在给定自变量的取值范围时,解有关不等式问题时,往往采用分离变量或适当变形,或变换主元,或构造函数,再利用函数的单调性或基本不等式进行求解,在解答时,一定要注意观察所给不等式的形式和结构,选取合适的方法去解答.

【突破训练3】已知f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.

设F(x)=x2-2ax+2-a,则问题的条件变为当x∈[-1,+∞)时,F(x)≥0恒成立.∵当Δ=(-2a)2-4(2-a)=4(a+2)·(a-1)≤0,即-2≤a≤1时,F(x)≥0恒成立.又当Δ>0时,F(x)≥0在[-1,+∞)上恒成立的充要条件是

?????

Δ>0,F (-1)≥0,--2a 2≤-1

?????

?

a >1或a <-2,a ≥-3,a ≤-1

?-3≤a <-2.

故a 的取值范围是[-3,1]. 不等式的综合应用

不等式的综合应用主要体现在不等式与函数、方程、导数、数列等其它知识的综合应用.不等式作为一种工具经常与函数、方程结合在一起,用其研究函数和方程的有关题目;

再就是利用函数和方程的理论研究不等式.题目难度较大.

【例4】? 设函数f (x )=x 2+a ln(1+x )有两个极值点x 1,x 2,且x 1<x 2. (1)求a 的取值范围,并讨论f (x )的单调性; (2)证明:f (x 2)>1-2ln 2

4.

[审题视点] [听课记录]

[审题视点] 第(1)问基础常规,第(2)问要证明不等式,常规方法很难见效,转而构造函数,反复利用导数作工具研究函数的单调性,其中需要一定的探究能力.

(1)解 f ′(x )=2x +a

1+x =2x 2+2x +a 1+x (x >-1).

令g (x )=2x 2+2x +a ,其对称轴为x =-1

2

.

由题意知x 1、x 2是方程g (x )=0的两个均大于-1的不相等的实根,且x 1=-1-1-2a

2,

x 2=-1+1-2a 2

其充要条件为?????

Δ=4-8a >0,g (-1)=a >0,

得0<a <1

2.

①当x ∈(-1,x 1)时,f ′(x )>0, ∴f (x )在(-1,x 1)内为增函数; ②当x ∈(x 1,x 2)时,f ′(x )<0, ∴f (x )在(x 1,x 2)内为减函数; ③当x ∈(x 2,+∞)时,f ′(x )>0, ∴f (x )在(x 2,+∞)内为增函数.

(2)证明 当x ∈(x 2,+∞)时,f ′(x )>0, ∴-1

2

<x 2<0.a =-(2x 22+2x 2). ∴f (x 2)=x 22+a ln(1+x 2)=x 22-(2x 22+2x 2)ln(1+x 2).

设h (x )=x 2-(2x 2+2x )ln(1+x )?

???x >-1

2, 则h ′(x )=2x -2(2x +1)ln(1+x )-2x =-2(2x +1)ln(1+x ). ①当x ∈????-1

2,0时,h ′(x )>0, ∴h (x )在????-1

2,0上单调递增; ②当x ∈(0,+∞)时,h ′(x )<0, h (x )在(0,+∞)上单调递减.

∴当x ∈????-12,0时,h (x )>h ????-12=1-2ln 24. 故f (x 2)=h (x 2)>1-2ln 2

4

.

在确定函数的单调区间时,往往需要

对所求出的导数中的参数进行分类讨论来解决,不等式的证明常常借助构造函数,利用函数的单调性进行证明,从而使问题的解决变得简单、明快.

【突破训练4】 已知函数f (x )=x 3-3ax 2-9a 2x +a 3.若a >1

4,且当x ∈[1,4a ]时,

|f ′(x )|≤12a 恒成立,试确定a 的取值范围.

解 f ′(x )=3x 2-6ax -9a 2的图象是一条开口向上的抛物线,关于x =a 对称. ①若1

4

<a ≤1,则f ′(x )在[1,4a ]上是增函数,从而f ′(x )在[1,4a ]上的最小值是f ′(1)=3

-6a -9a 2,最大值是f ′(4a )=15a 2.

由|f ′(x )|≤12a ,得-12a ≤3x 2-6ax -9a 2≤12a ,

于是有f ′(1)=3-6a -9a 2≥-12a ,且f ′(4a )=15a 2≤12a . 由f ′(1)≥-12a ,得-13≤a ≤1,由f ′(4a )≤12a ,得0≤a ≤4

5.

所以a ∈????14,1∩????-13,1∩????0,45,即a ∈????14,4

5. ②若a >1,则|f ′(a )|=12a 2>12a . 故当x ∈[1,4a ]时,|f ′(x )|≤12a 不恒成立.

所以使|f ′(x )|≤12a (x ∈[1,4a ])恒成立的a 的取值范围是????

14,45.

把握好含参二次不等式的分类标准的四个“讨论点”

含参数的二次不等式的解法常常涉及到参数的讨论问题,如何选择讨论标准是学生不易掌握的地方.实际上,只要把握好下面的四个“讨论点”,一切便迎刃而解.

分类标准一:二次项系数是否为零,目的是讨论不等式是否为二次不等式; 分类标准二:二次项系数的正负,目的是讨论二次函数图象的开口方向; 分类标准三:判别式的正负,目的是讨论二次方程是否有解; 分类标准四:两根差的正负,目的是比较根的大小.

【示例】? (2012·汕头调研)已知函数f (x )=ax +b x +c (a >0)的图象在点(1,f (1))处的切线

方程为y =x -1.

(1)用a 表示出b ,c ;

(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围. [满分解答] (1)f ′(x )=a -b

x

2,

则有?????

f (1)=a +b +c =0,f ′(1)=a -b =1,

解得?

????

b =a -1,

c =1-2a .(4分)

(2)由(1)知,f (x )=ax +a -1x

+1-2a .

令g (x )=f (x )-ln x

=ax +a -1x +1-2a -ln x ,x ∈[1,+∞),

则g (1)=0, g ′(x )=a -a -1x 2-1

x

=ax 2-x -(a -1)x 2=a (x -1)x -1-a

a x 2.(8分)

①当0<a <1

2时,1-a a

>1.

若1<x <1-a

a ,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x .故f (x )≥ln

x 在[1,+∞)上不恒成立.(10分)

②当a ≥1

2时,1-a a

≤1.

若x >1,则g ′(x )>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x ,故当x ≥1时,f (x )≥ln x .

综上所述,所求a 的取值范围为1

2

,+∞.(12分)

老师叮咛:对不确定的根的大小关系不加区分,整体表现为不能有序地进行分类讨论,对于分类讨论的题目没有结论,这都是造成失分的原因,切记!

【试一试】 (高考题改编)解关于x 的不等式ax 2-(2a +1)x +2<0. 解 不等式ax 2-(2a +1)x +2<0, 即(ax -1)(x -2)<0.

(1)当a >0时,不等式可以化为????x -1

a (x -2)<0. ①若0<a <12,则1

a >2,

此时不等式的解集为???

?2,1

a ; ②若a =1

2

,则不等式为(x -2)2<0,不等式的解集为?;

③若a >12,则1

a <2,此时不等式的解集为????1a ,2. (2)当a =0时,不等式即-x +2<0, 此时不等式的解集为(2,+∞).

(3)当a <0时,不等式可以化为????x -1

a (x -2)>0. 由于1

a

<2,故不等式的解集为????-∞,1a ∪(2,+∞). 综上所述,当a <0时,不等式的解集为????-∞,1

a ∪(2,+∞); 当a =0时,不等式的解集为(2,+∞); 当0<a <1

2时,不等式的解集为????2,1a ; 当a =1

2时,不等式的解集为?;

当a >1

2时,不等式的解集为????1a ,2.

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

巧解高考数学选择题专题(绝版)

神奇巧解高考数学选择题专题 前 言 高考数学选择题,知识覆盖面宽,概括性强,小巧灵活,有一定深度与综合性,而且分值大,能否迅速、准确地解答出来,成为全卷得分的关键。 解选择题常见的方法包括数形结合、特值代验、逻辑排除、逐一验证、等价转化、巧用定义、直觉判断、趋势判断、估计判断、退化判断、直接解答、现场操作,等等。考生应该有意识地积累一些经典题型,分门别类,经常玩味,以提高自己在这方面的能力。下面主要就间接法分别举例说明之,并配备足够的对应练习题,每题至少提供有一种解法。 例题与题组 一、数形结合 画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。 【例题】、(07江苏6)设函数()f x 定义在实数集上,它的图象关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )。 A 、132()()()323f f f p p B 、231 ()()()323 f f f p p C 、213()()()332f f f p p D .321()()()233f f f p p 【解析】、当1x ≥时,()31x f x =-,()f x 图象关于直线1x =()|1|f x x =-的图象代替它也可以。由图知, 符合要求的选项是B ,

【练习1】、若P (2,-1)为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( ) A 、30x y --= B 、230x y +-= C 、10x y +-= D 、250x y --= (提示:画出圆和过点P 的直线,再看四条直线的斜率,即可知选A ) 【练习2】、(07辽宁)已知变量x 、y 满足约束条件20170x y x x y -+≤??≥??+-≤?,则y x 的取值范围是( ) A 、9,65?????? B 、[)9 ,6,5??-∞+∞ ???U C 、(][),36,-∞+∞U D 、[]3,6 (提示:把y x 看作可行域内的点与原点所在直线的斜率,不难求得答案 ,选A 。) 【练习3】 、曲线[]12,2)y x =+∈- 与直线(2)4y k x =-+有两个公共点时, k 的取值范围是( ) A 、5(0,)12 B 、11 (,)43 C 、5(,)12+∞ D 、53(,)124 (提示:事实上不难看出,曲线方程[]12,2)y x =∈-的图象为22(1)4(22,13)x y x y +-=-≤≤≤≤,表示以(1,0)为圆心,2为半径的上半圆,如图。直线(2)4y k x =-+过定点(2,4),那么斜率的范围就清楚了,选D )] 【练习4】、函数)1(||x x y -=在区间 A 上是增函数,则区间A 是( ) A 、(]0,∞- B 、?? ????21,0

高考数学线性规划专题练习

高考数学线性规划专题练习 1. “截距”型考题 在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.【20xx 年高考·广东卷 理5】已知变量满足约束条件,则 的最大值为( ) 2. (20xx 年高考·辽宁卷 理8)设变量满足,则的最大 值为 A .20 B .35 C .45 D .55 3.(20xx 年高考·全国大纲卷 理13) 若满足约束条件,则 的最小值为 。 4.【20xx 年高考·陕西卷 理14】 设函数,是由轴 和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5.【20xx 年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 ,x y 241y x y x y ≤?? +≥??-≤? 3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤?? ≤≤??≤≤? 2+3x y ,x y 1030330 x y x y x y -+≥??? +-≤??+-≥??3z x y =-ln ,0 ()21,0x x f x x x >?=?--≤?D x ()y f x =(1,0)2z x y =-D

和韭菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50 6. (20xx 年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克; 生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元, 每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、 3100元 7. (20xx 年高考·安徽卷 理11) 若满足约束条件:;则的 取值范围为. 8.(20xx 年高考·山东卷 理5)的约束条件24 41x y x y +≤??-≥-?,则目标函数z=3x -y 的取值范围是 A . [32-,6] B .[3 2 -,-1] C .[-1,6] D .[-6, 3 2 ] 9.(20xx 年高考·新课标卷 理14) 设满足约束条件:; 则的取值范围为 . 2 . “距离”型考题 10.【2010年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥?? ≥??≥?所表示的平面区域是 1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A. 285 B.4 C. 12 5 D.2 11.( 20xx 年高考·北京卷 理2) 设不等式组,表示平面区域为D , 在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A B A B A B ,x y 02323x x y x y ≥?? +≥??+≤? x y -_____,x y ,013x y x y x y ≥?? -≥-??+≤? 2z x y =-???≤≤≤≤20, 20y x

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

高三数学专题选择题集锦

[教育资源网 https://www.360docs.net/doc/c510988411.html,] 教学资源集散地。最大的免费教育资源网! 数学试题 选择题集锦 陕西特级教师 安振平 1. 满足不等式03329≥-?-x x 的x 的最小实数值是 (A) –1 (B) 0 (C) 1 (D) 3 2. 在ABC ?中, AB=5, ,3≤AC 7≥BC , 则

[教育资源网 https://www.360docs.net/doc/c510988411.html,] 教学资源集散地。最大的免费教育资源网! 5. 设22+-=z z z f )(,且),()(R y x yi x i f ∈+=+1,则)(i f -1等于 (A) yi x + (B )yi x -- (C )yi x +- (D )yi x - 6. 已知函数)(x f 是奇函数,当0+=a ax tg y θ的自变量x 从n 变到n+1(n ∈N )时,y 恰好从-∞变到+ ∞,则常数a 的值为 (A) 1 (B ) 2 (C) 2π (D) π 13. 某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调 查结果如下表: 表1 市场供给量 表2 市场需求量 根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间 ( A )(2.3,2.6)内 (B ) (2.4,2.6)内 (C) (2.6,2.8)内 ( D) (2.8,2.9)内 (A ) (B ) (C ) (D )

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

高考数学选择题专项训练(十)

高考数学选择题专项训练(十)1、平面α与平面β平行,它们之间的距离为d (d>0),直线a在平面α内,则在平面β内与直线a相距2d的直线有()。 (A)一条(B)二条(C)无数条(D)一条也没有2、互不重合的三个平面可能把空间分成()部分。 (A)4或9 (B)6或8 (C)4或6或8 (D)4或6或7或8 3、若a, b是异面直线,a?α,b?β,α∩β=c,那么c()。(A)同时与a, b相交(B)至少与a, b中一条相交(C)至多与a, b中一条相交(D)与a, b中一条相交, 另一条平行4、直线a//平面M,直线b?/M, 那么a//b是b//M的()条件。(A)充分不必要(B)必要而不充(C)充要(D)不充分也不必要5、和空间不共面的四个点距离相等的平面的个数是()。 (A)7个(B)6个(C)4个(D)3个 6、在长方体相交于一个顶点的三条棱上各取一个点,那么过这三点的截面一定是()。 (A)三角形或四边形(B)锐角三角形(C)锐角三角形或钝角三角形(D)钝角三角形7、圆锥底面半径为r,母线长为l,且l>2r, M是底面圆周上任意一点,从M拉一条绳子绕侧面转一周再回到M,那么这条绳子的最短长

度是( )。 (A )2πr (B )2l (C )2lsin l r π (D )lcos l r π 8、α、β是互不重合的两个平面,在α内取5个点,在β内取 4个点,这些点最多能确定的平面个数是( )。 (A ) 142 (B )72 (C )70 (D )66 9、各点坐标为A(1, 1)、B(-1, 1)、C(-1, -1)、D(1, -1),则 “点P 在y 轴”是“∠APD =∠BPC ”的( )。 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )不充分也不必要条件 10、函数y =1-|x -x 2|的图象大致是( )。 (A ) (B ) (C ) (D ) 11、若直线y =x +b 和函数y =21x -有两个不同的交点,则b 的取值范围是( )。 (A )(-2, 2) (B )[-2, 2] ( C )(-∞,-2)∪[2, +∞) (D )[1, 2)

近几年全国卷高考文科数学线性规划高考题

线性规划高考题 1.[2013.全国卷 2.T3]设,x y 满足约束条件10,10,3,x y x y x -+≥??+-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 2.[2014.全国卷2.T9]设x ,y 满足的约束条件1010330x y x y x y +-≥??--≤??-+≥? ,则2z x y =+的最大值为( ) A.8 B.7 C.2 D.1 3.[201 4.全国卷1.T11]设1,y 满足约束条件,1, x y a x y +≥??-≤-?且z x ay =+的最小值为7,则a =( ) A .-5 B. 3 C .-5或3 D. 5或-3 4. [2012.全国卷.T5] 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 5.[2010.全国卷.T11]已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 6. [2016.全国卷3.T13]设x ,y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则z =2x +3y –5的最小值为 7.[2016.全国卷2.T14]若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则z =x -2y 的最小值为 8.[2015.全国卷2.T14]若x ,y 满足约束条件50210210x y x y x y +-≤??--≥??-+≤? ,则2z x y =+的最大值为

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

高考数学客观题训练选择、填空题专题练习(一)新人教版

高考数学客观题训练选择、填空题专题练习(一)新人 教版 班级: 姓名: 1.已知全集U=R ,集合)(},02 1 |{},1|{N M C x x x N x x M U 则≥-+=≥= ( ) A .{x |x <2} B .{x |x ≤2} C .{x |-1b a 已知),(a b m ∈且0≠m ,则 m 1 的取值范围是: ( ) A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ? D.),1 ()1,(+∞?-∞a b 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是 4.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( ) A .2-=m B .3=m C .31=-=m m 或 D .23-==m m 或 5.命题“042,2 ≤+-∈?x x R x ”的否定为 ( ) (A) 042,2 ≥+-∈?x x R x (B) 042,2 >+-∈?x x R x (C) 042,2 ≤+-??x x R x (D) 042,2 >+-??x x R x 6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -?=,则该四边形一定是 A .直角梯形 B .矩形 C .菱形 D .正方形 7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球 的形状),则气球表面积的最大值为 A .2 a π B .22a π C .32a π D .42a π 8.若2 2 π βαπ < <<- ,则βα-一定不属于的区间是 ( ) A .()ππ,- B .?? ? ??-2,2ππ C .()π,0 D . ()0,π- 9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( )

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学线性规划题型总结

2010年高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-112 2y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1, 10,220x x y x y ≥??-+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件00 24x y y x s y x ≥??≥?? +≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0 003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

2018届高考数学选择、填空题专项训练(共40套,附答案)

三基小题训练一 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是 ( ) 2.△ABC 中,cos A = 135 ,sin B =53,则cos C 的值为 ( ) A. 65 56 B.-6556 C.-6516 D. 65 16 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( ) A.1 B.2 C.3 D.多于3 4.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( ) A.f (x ·y )=f (x )·f (y ) B.f (x ·y )=f (x )+f (y ) C.f (x +y )=f (x )·f (y ) D.f (x +y )=f (x )+f (y ) 5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( ) A.b ∥α,c ∥β B.b ∥α,c ⊥β C.b ⊥α,c ⊥β D.b ⊥α,c ∥β 6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( ) A.14 B.16 C.18 D.20 7.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( ) A.8种 B.10种 C.12种 D.32种 8.若a ,b 是异面直线,a ?α,b ?β,α∩β=l ,则下列命题中是真命题的为( ) A.l 与a 、b 分别相交 B.l 与a 、b 都不相交 C.l 至多与a 、b 中的一条相交 D.l 至少与a 、b 中的一条相交

相关文档
最新文档