铝电解电容的失效分析

铝电解电容的失效分析
铝电解电容的失效分析

应用铝电解电容器必须考虑的问题

铝电解电容器的失效

一、铝电解电容器失效的最主要原因

电解液干涸!

电解液干涸的原因

电解液自然挥发

电解液的消耗

电解液自然挥发

电解液的挥发速度随温度的升高而变快;

电解液的挥发速度与电容器的密封质量有关,无论在高温还是在低温条件下都要有良好的密封性。

电解液的消耗

漏电流所引起的电化学效应消耗电解液;

铝电解电容器的寿命随漏电流增加而减少;

漏电流随温度升高而增加:250C时漏电流仅仅是850C时漏电流的不到十分之一;

漏电流随施加电压升高而增加:耐压为400V的铝电解电容器在额定电压下的漏电流大约是90%额定电压下的漏电流的5倍。

电解液干涸的时间就是铝电解电容器的寿命

影响铝电解电容器寿命的因素(温度1)

根据铝电解电容器的电解液的不同,铝电解电容器的最高工作温度可分为:

一般用途:850C;

一般高温用途:1050C:

特殊高温用途:1250C:

汽车发动机舱:140∽1500C;

影响铝电解电容器寿命的因素

(额定寿命小时数)

按寿命小时数铝电解电容器可以分为:

一般用途(常温,3年以内):1000小时;

一般用途(常温,希望比较长的时间):2000小时以上;

工业级:更长的寿命小时数。

影响铝电解电容器寿命的因素

(温度2)

温度每升高100C,寿命小时数减半;

影响铝电解电容器寿命的因素

(电解液)

电解液的多与寡决定铝电解电容器的寿命;

影响铝电解电容器寿命的因素

(应用条件)

高温缩短铝电解电容器寿命;

高纹波电流缩短铝电解电容器寿命;

工作电压过高缩短铝电解电容器寿命;

二、影响铝电解电容器寿命的参数与应用条件

工作电压与漏电流的关系

工作电压与漏电流的关系

CDE生产的450V/4700Uf/850C铝电解电容器的漏电流与施加电压的关系:

温度与漏电流的关系

CDE生产的450V/4700Uf/850C铝电解电容器的漏电流与环境温度的关系:

温度、电压、纹波电流共同作用对寿命的影响以EPCOS的B43697电子镇流器用铝电解电容器为例

在不同的电压与温度条件下的铝电解电容器寿命不同。

铝电解电容器的寿命与温度、纹波电流的关系

三、铝电解电容器寿命推算方法:

简单寿命推算

根据ESR、热阻、纹波电流推算寿命

根据温度、纹波电流与寿命的关系推算寿命

简单寿命推算方法1

不含有纹波电流工作状态的铝电解电容器的推算:基本依据为“100C法则”,即环境温度每上升100C寿命减半,反之亦然,这个“100C法则”是在零纹波电流条件下适用。在铝电解电容器流过比较大的纹波电流时不一定适用。

简单寿命推算方法2

国产某些品牌铝电解电容器推荐的方法

日本品牌铝电解电容器推荐的方法

基本思路

在额定电压下,铝电解电容器的寿命可以由以下公式计算。

其中,L和L0分别为:实际环境温度T时的寿命和额定最高温度T0时的寿命。可以看到,铝电解电容器的使用寿命随温度下降没100C,寿命增加一倍,即所谓100C法则。因此,无论是使用还是储存,铝电解电容器均应在尽量低的环境温度下为好。例如,850C/1000小时的铝电解电容器在450C使用寿命为16000小时,折合为1年零10个月;290C时为48000小时,折合为5年零6个月;而1000小时折合为42天。可以看到,降低温度对延长铝电解电容器寿命的重要性。

图解计算

存在的问题

上述三种推算方法仅适用于存储状态和无纹波电流(很小纹波电流)的工作状态(如隔直流电容、小信号电路的旁路电容)。对于明显含有纹波电流的工作条件时,上述方法不一定适用,这时应将纹波电流的效应考虑在应用条件中。

考虑纹波电流时的寿命推算方法

铝电解电容器的发热由于内部等效串连电阻(ESR)引起,其产生的损耗为:

5.16

其中I和R(ESR)分别为:纹波电流(A)和等效串联电阻(Ω)。由于发热引起的温升为:

5.17

其中ΔT、I、A、R(ESR)、H分别为:电容器中心的温升(0C)、纹波电流(A)、电容器的表面积(cm2)、ESR(Ω)、散热系数{(1.5∽2.0)×10-3W/(cm2×0C)}。

公式(5.17)表示了电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着ΔT值的大小,一般情况下,ΔT<50C。

铝电解电容的温度测试

利用测试结果,并考虑到环境温度和纹波电流时的寿命公式:

5.18

其中,L、L0、K、T0、T、ΔT分别为:实际使用寿命、直流工作电压下的使用寿命、纹波电流系数(实际纹波电流有效值与额定纹波电流有效值之比,K=2时,纹波电流在允许的范围内,K=4时为超过纹波电流范围)、最高使用温度、工作温度、中心温升。

电容器工作在额定的纹波电流和上限温度时,电容器可通过转化(5.18)式得到,如下:

5.19

其中,L0、ΔT0分别为:工作在额定纹波电流和最高工作温度下的寿命(小时)、最高工作温度下的电容器中心容许温升。

实际上式(5.18)和式(5.19)所表述的是在测试到电容器壳的温度后所得,而并不知道纹波电流的大小,如果知道纹波电流的大小,可以将式(5.19)改为:

5.20

其中,I0、I分别为:最高工作温度下的额定纹波电流(A):实际的纹波电流(A)。

问题

按照式(5.17)存在的问题就是散热系数的确定,生产厂商不给出用户就无法精确计算,如果粗略估算将会产生至少30%的偏差。由于直接测量电容器的内部温升存在着困难,可以利用下表列出表明温度和芯片温度的换算关系。

铝电解电容器芯包与外壳温度的关系

问题

以上的寿命的推算公式,原则上适用于周围环境温度为+400C到最高工作温度范围内,但由于封口材料的老化等因素,实际的推算寿命时间一般最大为15年。

式5.17到式5.20的表述与计算均非常麻烦,而且由于测试以及个体电容器的导热差异而使推算结果很不准确,仅能作为近似估计值。

问题

如果想得到比较准确的推算结果,最好的方法是利用电容器生产厂商所给的温度寿命曲线。比较负责的国外铝电解电容器厂商均给出铝电解电容器寿命与环境温度及纹波电流的关系曲线。

根据ESR、热阻、纹波电流推算寿命

EPCOS的B43550规格的铝电解电容器与温度、纹波电流的关系

EPCOS的每一个系列铝电解电容器均带有温度、纹波电流与寿命关系曲线

RIFA的寿命推算方法

根据功率损耗、热阻、实际的ESR推算寿命

为计算铝电解电容器的工作寿命(LOP),必须知道:

工作电压(Uapplied),

流过铝电解电容器的纹波电流的有效值(IRMS)

环境温度(Ta)

热阻(Rth)

相关公式

推算方法

首先,在ESR矩阵中,查出不同频率及芯包温度(Th)时对应的“ESR”值,然后计算出纹波电流IRMS流过铝电解电容器时产生的“功率损耗(PLOSS)”。若IRMS由多次谐波构成,则需计算每次谐波产生的功率损耗并依次相加。电容绕组芯包至环境温度的“热阻值”可以在“热阻矩阵”查出,由此可以计算出实际“芯包温度(Th)“,若此实际值与先前选取ESR 值时的假设值Th不符,则需修正假设,重新查出ESR值,重复迭代计算,直至结果吻合。

这种推算是最准确的!

需要的条件:

电容器的热阻参数

ESR参数

不同厂商的铝电解电容器的热阻是不同的!

四、开关电源中的铝电解电容器

1、输入整流滤波

2、输入旁路

3、输出整流滤波

(一)、输入整流滤波电容器的作用

1、平滑整流后电压,需要足够的电容量、吸收来自于整流输出的纹波电流

2、平滑并支撑PFC输出电压

3、为后面的逆变器提供低阻抗,旁路来自于逆变器高频纹波电流

(二)、输入整流滤波电容器需要多高耐压?

85∽264V交流输入对应最高整流输出电压约370V可以选择耐压为400V的铝电解电容器。带有PFC的整流滤波输出电压380∽420V,可以选择耐压为450V的铝电解电容器。

为什么不能用400V耐压的铝电解电容器?

主要考虑的是高温下在额定电压或高于额定电压尽管铝电解电容器可以工作,不会击穿,但是由于在高温下漏电流的高幅值漏电流会明显缩短电解电容器的寿命。

(三)工频输入整流滤波电容器的选择

从整流滤波角度考虑滤波电容器

整流滤波所需要的电容量;

对于一般的开关电源对整流输出电压纹波电压要求考虑:

220V交流输入条件下,需要滤波电容器为1Uf/W;

85∽264V交流输入条件下,需要滤波电容器为3uF/W。

差一页内容

滤波电容器吸收的纹波电流

对于电容输入式滤波,滤波电容器吸收的纹波电流有效值大约为整流输出平均值的2∽3倍!大约为15∽20mA/W。

不同的电路拓扑所产生的开关频率的纹波电流是不一样的。

反激式开关电源约为12mA/W;单管正激式开关电源约为10mA/W;桥式、推挽式开关电源约为7mA/W。

电解电容器能够承受的纹波电流

一个400V/100uF爪式引脚电解电容器允许流过的纹波电流在0.5∽0.7A左右,其额定纹波电流承受值仅能满足60W以下的开关电源的滤波要求;

一个400V/470uF爪式引脚电解电容器允许流过的纹波电流在1.7A左右,仅能满足150W 以下的开关电源的滤波要求。

对于220V输入电压等级,按1uF/W的选择将不能满足电容器所能承受的纹波电流要求,至少要达到3uF/W。

也可以采用多只小容量电容器并联来满足纹波电流要求。例如3只400V/100uF爪式引脚电解电容器的纹波电流承受能力将比400V/470uF爪式引脚电解电容器大。

(四)DC/DC变换器输入旁路电容器作用

(五)输出整流滤波电容器需要注意的问题

输出整流滤波电容器

对输出滤波电容器的基本要求:

1、在不太高的开关频率时,为了滤除开关频率下的纹波电压/纹波电流,需要考虑足够的电容量,这时只能选择电解电容器;

2、为了滤除更高频率的纹波电压/纹波电流,要求输出整流滤波电容器应具有尽可能低的ESR、ESL。

常规电解电容器存在的问题

低ESR铝电解电容器的提出:

常规铝电解电容器的ESR太高,以1000uF/16V铝电解电容器为例,其ESR大约为0.25Ω,在50KHz时的容抗为3.18mΩ,远低于ESR值,从滤除交流成分角度考虑,电解电容器已经成为“电阻”,决定滤波效果将不再是电容量而是ESR!

针对上面问题,低ESR铝电解电容器和钽电解电容器问世。

低ESR铝电解电容器

低ESR铝电解电容器的ESR可以比常规铝电解电容器低一个数量级,因而滤波效果可以改善一个数量级;

低ESR铝电解电容器同样存在寿命问题特别是高温条件下寿命更短的问题。

输出滤波电容器与电路拓扑的关系

1、反激式开关电源的输出滤波电容器

反激式开关电源的输出整流二极管的电流波形

输出滤波电容器的电流波形

相关公式

流过输出整流器的峰值电流与平均值电流的关系:

流过输出整流器的有效值电流与峰值电流的关系:

流过整流器的有效值电流与平均值电流的关系:

输出整流器的最大导通占空比约为0.5输出整流器的电流峰值与输出平均值电流之间的关系

有效值电流与输出电流平均值的关系为:

设计实例与分析

某反激式开关电源的技术参数为:

电路图拓扑:反激式;

输入电压:85∽264VAC;

工作频率:65KHz;

输出:12V/5A;纹波电压:50mV;CLC滤波。

第一级滤波电容器的选择

对于输出电流5A对应的峰值电流为20A、有效值电流为14.14A,其中大部分流入滤波电容器。按最高温度的纹波电流2倍选用电容器,滤波电容器的纹波电流之和至少要7A。25V/1000uF低ESR铝电解电容器的额定纹波电流约为1A,需要7只并联。如果非要5只并联甚至4只并联,也是可以运行的,但是不具有长期可靠性。

250C温度下,25V/1000uF低ESR铝电解电容器的ESR约为0.09Ω。7只并联对应的ESR为129mΩ、5只并联为180mΩ、4只并联为225mΩ。由电流变化在ESR上产生的峰值电压分别为2.59V、3.60V、4.50V。除此之外,滤波电容器的ESL还会在整流二极管开通时由于电流的跃变而产生感生电势,这个感生电势同样会加到滤波电容器上,因此,滤波电容器上的峰值电压将不只是上述的2.59V、3.60V、4.50V。

电压波形如图

第二级LC低通滤波器的设计与参数选择

第二级需要考虑的是如何将不能满足要求纹波电压经过LC滤波使其满足要求。通常滤波电感可以选择30∽100uH,输出滤波电容器不仅要考虑输出纹波电压是否可以满足要求,还要考虑拟制负载电流的变化,在这里可以选择1000uF/25V。

2、正激式开关电源的输出滤波电容器

包括单端正激开关电源和桥式、推挽式开关电源。

单端正激开关电源由于是电感输入式滤波方式,流入滤波电容器的电流远小于反激式开关电源。

在开关频率为50KHz或以下时,可以按每输出1A电流470∽1000uF考虑。

更高的频率时,主要考虑的是输出滤波电容器能否满足对纹波电压和尖峰电压的要求。这时滤波电容器的ESR将成为更主要的参数。

4、各类铝电解电容器可以承受的纹波电流

5、结论

开关电源输出滤波电容器首先需要考虑电路拓扑与流过电容器纹波电流的关系; 滤波电容器必须能够承受纹波电流;

滤波电容器的ESR 决定滤波效果。

五、铝电解电容器的失效

铝电解电容器失效模式及其失效因素。

铝电解电容器正级、负极引出电极和外壳都是高纯铝,铝电解电容器的介质是在正极表面形成的三氧化二铝膜,真正的负极是电解液,工作时相当一个电解槽,只不过正极表面的阳极氧化层已经形成,不再发生电化学反应,理论上电流为零,由于电极与电解液杂质的存在,会引起微小的漏电流。从现象上看,铝电解电容器常见的失效现象与失效模式有:电解液干涸、压力释放装置动作、短路、开路(无电容量)、漏电流过大等。

铝电解电容器应用环境

如果铝电解电容器在质量上没有问题,失效问题的出现就是出现在应用环境中。铝电解电容器设计应用环境主要有:环境温度、散热方式、电压、电流参数等。对电容器的应用者而言,短路、开路属于“灾难性的失效”,或曰“致命的失效”,使其完丧失了电容器的功能。其他几类失效模式(即由第二类因素造成的失效),一般归为“劣化失效”,或曰“耗尽失效”。

耗尽失效(1)

通常电解电容器寿命的终了评判依据是电容量下降到额定(初始值)的80%以下。由于早期铝电解电容器的电解液充盈,铝电解电容器的电容量在工作早期缓慢下降。随着负荷过程中工作电解液不断修补被杂质损伤的阳极氧化膜所致电解液逐渐减少。到使用后期,由于电解液挥发而减少,粘稠度增大的电解液就难遇充分接触经腐蚀处理的粗糙的铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,即阳极、阴极铝箔容量减少,引起电容量急剧下降。因此,可以认为铝电解电容器的容量降低是由于电解液挥发造成。而造成电解液的挥发的最主要的原因就是高温环境或发热。

耗尽失效(2)

由于应用条件使铝电解电容器发热的原因是铝电解电容器工作在整流滤波(包括开关电源输出的高频整流滤波)、功率电炉的电源旁路时的纹波(或称脉动)电流流过铝电解电容器,在铝电容器的ESR产生损耗并转变成热使其发热。

当铝电解电容器电解液蒸发较多、溶液变稠时,电阻率因粘稠度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显上升,损耗角增大。例如对于105度工作温度的电解电容器,其最大芯包温度高于125度时,电解液粘稠串联电阻会产生更大热量,造成电解液的更大挥发。如此循环往复,铝电解电容器容量急剧下降,甚至会造成爆炸。

耗尽失效(3)

漏电流增加往往导致铝电解电容器失效。

应用电压过高和温度过高都会引起漏电流的增加

压力释放装置动作

为了防止铝电解电容器中电解液由于内部高温沸腾的气体或电化学过程而产生的气体而引起内部高气压造成铝电解电容器的爆炸。为了消除铝电解电容器的爆炸,直径8毫米以上的铝电解电容器均设置了压力释放装置,这些压力释放装置在铝电解电容器爆炸的危险压力前动作,泄放出气体。随着铝电解电容器的压力释放装置的动作,铝电解电容器即宣告失效。

电容失效分析详解

陶瓷电容失效分析: 多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。 多层片状陶介电容器具体不良可分为: 1、热击失效 2、扭曲破裂失效 3、原材失效三个大类 (1)热击失效模式: 热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象: 第一种是显而易见的形如指甲狀或U-形的裂縫 第二种是隐藏在内的微小裂缝

第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。 第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的 区别只是后者所受的张力较小,而引致的裂缝也较轻微。第一种引起的破裂 明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。 (2)扭曲破裂失效 此种不良的可能性很多:按大类及表现可以分为两种: 第一种情况、SMT阶段导致的破裂失效 当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。由定中爪集中起来的压力,会造成很大的压力 或切断率,继而形成破裂点。

这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。 真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。 另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。 第二种、SMT之后生产阶段导致的破裂失效 电路板切割﹑测试﹑背面组件和连接器安装﹑及最后组装时,若焊锡组件受到扭曲或在焊锡过程后把电路板拉直,都有可能造成‘扭曲破裂’这类的损坏。 在机械力作用下板材弯曲变形时,陶瓷的活动范围受端位及焊点限制,破裂就会在陶瓷的端接界面处形成,这种破裂会从形成的位置开始,从45°角向端接蔓延开来。

电容式触摸屏项目可行性研究报告

电容式触摸屏项目可行性研究报告 xxx实业发展公司

摘要 消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动安全的法规和要求,符合相关行业的相关标准。项目承办单位所选择的产品方案和技术方案应是优化的方案,以最大程度减少建设投资,提高项目经济效益和抗风险能力。项目承办单位和项目审查管理部门,要科学论证项目的技术可靠性、项目的经济性,实事求是地做出科学合理的研究结论。 该电容式触摸屏项目计划总投资16320.82万元,其中:固定资产投资12503.57万元,占项目总投资的76.61%;流动资金3817.25万元,占项目总投资的23.39%。 达产年营业收入35355.00万元,总成本费用28215.53万元,税金及附加320.03万元,利润总额7139.47万元,利税总额8444.25万元,税后净利润5354.60万元,达产年纳税总额3089.65万元;达产年投资利润率43.74%,投资利税率51.74%,投资回报率32.81%,全部投资回收期4.55年,提供就业职位572个。 项目基本情况、项目背景、必要性、项目调研分析、产品规划、项目建设地方案、土建工程说明、工艺可行性分析、环境保护可行性、项目职业保护、项目风险情况、项目节能评价、项目实施方案、项目投资估算、项目经济评价分析、总结评价等。

电容式触摸屏项目可行性研究报告目录 第一章项目基本情况 第二章项目承办单位基本情况 第三章项目背景、必要性 第四章项目建设地方案 第五章土建工程说明 第六章工艺可行性分析 第七章环境保护可行性 第八章项目风险情况 第九章项目节能评价 第十章实施进度及招标方案 第十一章人力资源 第十二章项目投资估算 第十三章项目经济评价分析 第十四章总结评价

铝电解电容失效分析报告

400V47电解电容失效分析报告 客户供应商问题发生处 市场反馈品 产品名/型号 400V47uF 部品名铝电解电容器收到反馈 品 时 间 Discipline1 组织成员 ***(技术部长)*** ( 品保部长) *** (工艺工程师) *** (材料工程师)***(制造部长)***(品质主管) 日期/时间:2009年12月29日 Discipline2 问题描述 收到***司400V47uF市场反馈品(14只,见下图1)。 图1 Discipline3 原因分析 一.外观质量: 1.不良品生产年代分类情况: 序号 套管线号 生产时间 数量 NO1 U-5 2006年 1 NO2 V-3 2007年 10 NO3 W-H 2008年 3 从以上不良品套管表面标识可知,反馈产品为本司2006年-2008年生产产品, 与前几次市场反馈品为同时期生产产品。

43.7nF 95.7 837 33.37nF 261.6 1540 测试结论:容量小、损耗及漏电流大。 有引线产品X线图片 断引线产品图片

透视检查结论: 以上X线透视检查结果表明:反馈品除芯包鼓凸外,其他内部结构无异常。 四、解剖电容器内部结构: 解剖电容器内部结构:橡皮塞老化变形、表面局部有电解液残余(图3),芯包发热干 枯、电解液挥发,但铝壳内壁无击穿打火痕迹(图4)。进一步展开检查芯包内部结构,电 解纸发热局部部位呈焦黄色、阳极箔片脆干,但电解纸及箔片表面无击穿点,而且引线与 箔片铆接质量良好(图5)。 图3 图4 图5 五、原因分析: 以上测试、解析结果表明:此次反馈不良品大部分为同时期生产产品,而且不良现象基本相同,均为典型的长时间使用后的发热失效品。根据电容器发热失效机理,以及我们对该产品的材料工艺配套和制程的进一步追溯分析、组织相关部门的多方讨论意见等,我们分析认为造成该产品多次市场失效的可能原因是: 1.该产品生产时间偏长。虽然 08年才开始陆续使用,存在一定的装机、储存、发运或后续

关于投产高压金属化薄膜电容器的可行性报告 薄膜CB80高压电容

关于投产高压金属化薄膜电容器的可行性报告 薄膜CB80高压电容 关于投产高压金属化薄膜电容器的可行性报告 一.高压金属化薄膜电容器发展状况及市场状况 随着电力、电子技术的普及和提高,高频脉冲电容器、直流高压电容器、高压并联电容器等特种电容器的需求量越来越大。其用途主要有以下几个方面。 1.高压并联电容器:该电容器是为输压、变压线路使用的高压开关柜专门配套的高压电力电容,以改善线路功率因素为目的。 2.高频脉冲电容器:该电容器功能是利用电容器储存的能量产生脉冲大电流。主要用于电磁加速器、核聚变、脉冲激光电源等性能试验装置。 3.直流高压电容器:该电容器主要在高电压大容量电压换流电源中作滤波电容器用。 二、国外、国内高压金属化薄膜电容器的发展状况及市场状况 近几年来,国外一些厂家开发、研制出的该类型电容器已形成批量生产和投放市场使用。而我国虽然有众多的电容器生产厂家,但该类型的电容器在生产方面还刚刚起步,其品质也无法与

国外一些厂家生产的产品进行比较,其品质差别和市场占有率主要如下; 1.国外该类型电容器的发展及市场状况:现在国外具有先进水平的生产厂家有ABB、GE、METAR等公司,这些公司生产的电容器主要特点是在恒定容量和恒定电压下,其尺寸和重量均为国产的一半,其使用寿命确保在20年以上。现METAR公司已开发、研制出50万伏高压并联电容器并投入使用,现占领国内100%市场。 2.国内该类型电容器的发展及市场状况:现在国内的生产家生产的同类型电容器产品其尺寸和重量均比国外的产品要大得多和重得多,其使用寿命在5年到10年之间。30到50万伏的高压并联电容器还在研制中,未能进行批量生产并投入使用。 三、投产电容器的目的及项目: 1.投产目的:为了满足国外、国内市场对具有高电压、大电流负载承受能力、高安全性的金属化薄膜高电压电容器越来越大的市场需求,对该类型的电容器的开发、研制和对现有电容器生产设备及工艺技术的改造也势在必行。针对此现像,公司经研究自身在国际上的销售网 络优势,决定出资引进国外先进设备,以满足国外、国内市场对该类型电容器越来越大的需求,填补国内空白、不足之处。 2.电容器项目及其用途如下: 2.1 高电压并联电容器:该电容器是为30到50万伏输压、变压线路使用的高压开关柜专门配套的高压电力电容,全世界需

MLCC的质量控制与失效分析

无源元件(passive component) 在电子产品中占有十分重要的地位。虽然很多无源元件在整个电子产品中所占的物料价值并不高,但任何一个微不足道的元器件的失效都可能导致整个系统的失效。一般电子产品中有源元器件(IC)和无源元件的比例约为1:10-20。从该数据可以看出无源元件质量控制的重要性。 无源元件的类型很多,多层陶瓷电容器(MLCC)是其中最重要,也是用量最大的产品之一。MLCC的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结 Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞 (Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹 (firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层 (delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为:

电解电容寿命分析

电解电容寿命分析: 以下均为简要说明,如有不同看法,请直接点评,同时也为众多LED电源制造商找到一个长寿命的理由。哪些地方不对,请多指教! 我们说一个电解的额定寿命多少小时,都是在其额定参数相同的工作环境下的实际寿命。同时也是设计寿命。 主要影响电解电容寿命的因素有以下几点:环境温度、电压、纹波电流、频率。 1、频率,首先请断定,使用的电解电容为高频电解电容。保证在频率一项不影响您电源的实际工作频率。 2、纹波电流:这个参数在电解规格书里可以查到额定的纹波电流,按照电源本身的纹波电流来选用合适的电解。 以上2项要考虑参数的余量,一般按照1.5倍计算足以。 下面是影响寿命的主要参数 3、环境温度:按照目前最普遍的电容寿命估算方法,实际工作温度比电容额定温度低10度,寿命增加1倍的理论。 额定温度105度,而实测温度为65度105-65=40度也就增加4倍。我们选用额定1万小时的电解电容,即95度时2万小时,85度时4万小时,75度时 8万小时,65度时16万小时,这16万小时暂时先记在这里。 4、工作电压:我们选用的电解额定为63V,实际工作37.2V,我们可以肯定寿命比额定要长,至于长了多少,我们先不管。 以上参数均为我公司的电解选用原则。 再分析一下电解电容的性能衰减特性。 我们说的一个电解电容的寿命结束了,其实并不是所有功能全部失效,而是开始衰减,直到满足不了电解在电路中所起到的作用。那么我们就要看电解在实际电路中所起到的作用,我先说2种用途,1是在PFC电路中,一个是在电源输出端做滤波使用,当电解性能衰减时,PF值会降低,但是即使降低到0.5(不加PFC电路),电源也是一样在工作,输出电流和电压丝毫不会受到影响。而做在输出端作为处理纹波的情况也是一样,只是输出纹波不断增大而已,而这个纹波对LED的确有很大影响,但是绝对不会立刻使LED失效。 所以,综上说述,我们做电源的要做到以下2点: 1、选用正品知名品牌的电解电容 2、设计电路时,充分考虑实际工作参数与电解参数的余量(转载)

关于投产高压金属化薄膜电容器的可行性报告.doc

关于投产高压金属化薄膜电容器的可行 性报告 关于投产高压金属化薄膜电容器的可行性报告一.高压金属化薄膜电容器发展状况及市场状况随着电力、电子技术的普及和提高,高频脉冲电容器、直流高压电容器、高压并联电容器等特种电容器的需求量越来越大。其用途主要有以下几个方面。 1.高压并联电容器:该电容器是为输压、变压线路使用的高压开关柜专门配套的高压电力电容,以改善线路功率因素为目的。 2.高频脉冲电容器:该电容器功能是利用电容器储存的能量产生脉冲大电流。主要用于电磁加速器、核聚变、脉冲激光电源等性能试验装置。 3.直流高压电容器:该电容器主要在高电压大容量电压换流电源中作滤波电容器用。 二、国外、国内高压金属化薄膜电容器的发展状况及市场状况近几年来,国外一些厂家开发、研制出的该类型电容器已形成批量生产和投放市场使用。而我国虽然有众多的电容器生产厂家,但该类型的电容器在生产方面还刚刚起步,其品质也无法与国外一些厂家生产的产品进行比较,其品质差别和市场占有率主要如下; 1.国外该类型电容器的发展及市场状况:现在国外具有先进水平的生产厂家有abb、ge、metar等公司,这些公司生产的电容器主要特点是在恒定容量和恒定电压下,其尺寸和重量均为国产的一半,其使用寿命确保在20年以上。现metar公司已开发、研制出50万伏高压并联电容器并投入使用,现占领国内100%市场。 2.国内该类型电容器的发展及市场状况:现在国内的生产家生产的同类型电容

器产品其尺寸和重量均比国外的产品要大得多和重得多,其使用寿命在5年到XX年之间。30到50万伏的高压并联电容器还在研制中,未能进行批量生产并投入使用。 三、投产电容器的目的及项目: 1.投产目的:为了满足国外、国内市场对具有高电压、大电流负载承受能力、高安全性的金属化薄膜高电压电容器越来越大的市场需求,对该类型的电容器的开发、研制和对现有电容器生产设备及工艺技术的改造也势在必行。针对此现像,公司经研究自身在国际上的销售网 络优势,决定出资引进国外先进设备,以满足国外、国内市场对该类型电容器越来越大的需求,填补国内空白、不足之处。 2.电容器项目及其用途如下: 2.1 高电压并联电容器:该电容器是为30到50万伏输压、变压线路使用的高压开关柜专门配套的高压电力电容,全世界需求量非常大。我国在此方面尚属空白。如:中国的三峡工程、平顶山,沈阳和西安高压开关厂为50万伏输压、变压线路项目配套的开关柜采用电容全部从国外进口。 2.2 小型化高频脉冲电容器及直流高压电容器:可用于电磁加速器、核聚变脉冲激光电源等性能试验装置及冲击电压、电流发生装置。 四、高压金属化薄膜电容器投产后市场预测: 因国内对金属化薄膜高电压并联电容器、高频脉冲电容器、直流高压电容器的需求量越来越大且其现在供给状况为全部依靠进口,故如该类型产品在国内生产,将具备很强的市场竞争力。其市场销售预测为: 1.高电压并联电容器:现国内为50万伏输变线项目配套采用该电容100%全

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

触摸屏产业发展分析精编版

触摸屏产业发展分析公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

触摸屏产业发展分析 近几年消费性电子信息产品的市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。 一、前言: 近几年消费性电子信息产品之市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。如<图一>所示,即为全球触控面板技术的应用市场类别,主要为公共信息查询系统、商业应用、便携式专业运算以及消费性应用等,左图为1998年,右图为2004年。若根据触控面板大厂MicroTouch Systems 预测,2003年触控面板市场值将达20亿美元,约为1998年的4倍。另外,根据富士通预测,2004年全球市场更可达25亿美元。由右图2004年的市场应用分布得知,触控式面板的最大应用市场为消费性产品(占触控面板产值60%),相较于1998年仅占13%大幅提升,而此更为众多厂商所寄望的市场大饼。在消费性电子产品以外市场的应用比例亦将降低,预估2004年所占比例分别为商业应用20%、便携式专业运算12%、公共信息查询系统8%。 图一、全球Touch Panel市场产品应用类别 资料来源:富士通

薄膜电容的国内外应用现状及性能分析

薄膜电容的国内外应用现状及性能分析 随着现在全球倡导低碳环保,绿色出行,新能源电动汽车的发展越来越迅速,而薄膜电容凭借自己的优势——优于一般的工作性能和让其他电容难以企及的可靠性为新能源电动汽车发展带来了发展的机遇。 标签:绿色;薄膜;新能源 Abstract:With the global promotion of low-carbon environmental protection and green travel,new energy electric vehicles are being developed more and more rapidly. And the thin film capacitors,with their own advantages superior to the general performance and reliability other capacitors fail to reach,have brought new opportunities for the development of new energy electric vehicles. Keywords:green;thin film;new energy 1 国内外现状 在全世界有很多的薄膜电容制造商,但是能被称为世界级的也就日本的Nichicon,德国的Wima,意大利的ICEL,美国的CDE等。其中,WIMA的产品方向主要用于制造高品质的音响,Nichion的产品主要在电子产品方向,而CDE 则是做专业的变频器薄膜电容。世界上薄膜电容器除了以上说的那些,还有一些也是做的比较好,像日本NISSI、荷兰飞利浦虽不如上面那些声名赫赫,但也有些名气,而如台湾凯励、昱电、华容等稍逊一些公司也有一些市场份额。而在产量方面来说,全球薄膜电容的大半部分则是日本松下电工和德国EPCOS、美国Kemet一起占据着。作为全球的前五大薄膜电容器厂商——法拉电子公司,也在积极大力拓展变频家电和新能源市场,因为这些市场上薄膜电容器的缺口还是很大的。目前它生产的交流薄膜电容器可以应用于像新能源混合动力汽车、风电能、太阳能等现在发展方向大好多个领域,也在竞争激烈的薄膜电容器中分得一杯羹。现在市场需要高频、大容量、大电流、低阻抗、高电压、高dv/dt的薄膜电容,所以这为以后薄膜电容器的发展提供了方向。 通过查阅大量的资料来看,我认为国家将在电网建设、电气化铁路建设、节能照明及混合动力汽车等方面会投入大量的资金和技术支持。消费类电子产品的快速发展和不断更新换代的速度不容小觑,將会推动数字化、信息化及网络化建设的进一步快速发展,使我国科技永远走在前列,而薄膜电容器也变得越来越重要、越来越不可或缺。 聚酯薄膜在我国原先应用于磁带、计算机记录带等磁性材料方面,现在大多用于食品包装和电子部件、光学部件、电容器方面,这是一种进步也是一种新的发展趋势,证明我国越来越能发现其的多种用途。而现在中国大陆的电容器产能大量,但多数还是为低端产品。中国电子元件行业协会电容器分会秘书长潘大男就指出:“现如今国内的电容器企业应顺应市场的变化,同时也密切关注前瞻性

陶瓷电容MLCC漏电失效分析

MLCC漏电失效分析 1. 案例背景 客户端在老化实验测试阶段发现MLCC出现漏电失效,其不良比率不详,该MLCC焊接工艺为回流焊接工艺。 2. 分析方法简述 通过外观检查OK样品与NG样品表面未见明显异常。 通过X射线透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。 将OK样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLCC内部结构,NG样品电容内 部存在镍瘤及热应力裂纹,而OK样品未见异常。 通过对样品剖面SEM/EDS分析, NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%),此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。 3. 分析与讨论 失效模式分析: 多层陶瓷电容器(MLCC)本身的内在可靠性十分优良,可长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。陶瓷多层电容器(MLCC)失效的原因一般分为外部因素和内在因素。内在因素包括: 陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。 1)陶瓷介质内的孔洞 所谓的陶瓷介质内的孔洞是指在相邻电极间的介质层中存在较大的孔洞,这些孔洞由于内部可能含有水汽或离子,在端电极间施加电压时,降低此处的耐压强度,导致此处发生过电击穿现象。 2)介质层分层 多层陶瓷电容的烧结为多层材料堆叠共烧,烧结温度在1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。值得一提的是,某些分层还可能导致陶瓷介质内部产生裂纹,或在介质层内出现断续的电极颗粒等,这些都与电容器的生产工艺有关。分层的直接影响是绝缘电阻降低,电容量减小。 3)热应力裂纹 实际使用中各种温度冲击往往容易产生热应力,热应力产生的裂纹主要分布区域为陶瓷靠近端电极的两侧,常见的表现形式为贯穿瓷体的裂纹,有的裂纹与内电极呈现90°。需要强调的是,这些

电容式触摸屏行业分析

目录 一、本文思路...................................................................... . (4) 二、电容式触摸屏应用日趋广泛 (4) 2.1、触摸屏应用日趋广泛 (4) 2.2、电容式触摸屏占据天时、地利、人和 (5) 三、苹果公司“杀手级”产品iPhone 和iPad 引爆全球电容式触摸屏产业 (7) 3.1、触摸屏智能手机:跟随iPhone 的成长脚步 (7) 3.2、平板电脑:iPad 惊艳登场 (8) 3.3、示范效应推动“平板电脑”时代来临 (10) 四、电容式触摸屏产业链和iphone、 iPad 供应链 (11) 4.1、电容式触摸屏产业链 (11) 4.2、iPhone 和iPad 供应链 (12) 4.3、TPK 为苹果公司iPhone 和iPad 电容式触摸屏最大供应商 (12) 五、2011 年全球电容式触摸屏供求状况分析 (13) 5.1、全球电容式触摸屏供给分析 (13) 5.2、2011 年中小尺寸电容式触摸屏仍将供不应求 (14) 5.3、2011 年大尺寸电容式触摸屏供求关系分析 (14)

六、几种电容式触摸屏生产技术比较 (15) 6.1、in cell 与on cell (16) 6.2、glass-based 和film- based (16) 6.3、双面结构和单面结构 (17) 七、重点分析台湾TPK、胜华公司、莱宝高科和长信科技 (18) 7.1、台湾地区电容式触摸屏产业整体情况分析 (18) 7.2、TPK:电容式触摸屏全球龙头 (19) 7.3、胜华科技:相比TPK 仍有一定差距 (20) 7.4、莱宝高科:苹果核心供应商,扩产进展屡超预期 (21) 7.5、长信科技:沿着莱宝高科的足迹,进军电容式触摸屏 (21) 图表目录 图表 1 :目前触摸屏主要应用领域 (4) 图表 2 :触摸屏应用领域日趋泛 (5) 图表 3 :电容式触摸屏工作原理示意图 (5) 图表 4 :电阻式触摸屏工作原理示意图.......................................... (5) 图表 5 :不同技术触摸屏性能比 较.............. . (6) 图表 6 :2009 年不同技术触摸屏市场份额情况 (6) 图表 7 :电容式将逐渐取代电阻式触摸屏 (7)

电解电容寿命分析

电解电容寿命分析 像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。 其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。 影响电解电容寿命的因素可分为两大部分: 1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。 2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。 电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。 1 、寿命评估方式 电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示: 2 、环境温度与寿命的关系 一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ): 环境温度函数 f(T ) : 在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算: L OP=LoXf(t)

电容器行业发展现状及前景趋势分析

电容器行业发展现状及前景趋势分析 资料来源:前瞻网:2013-2017年中国电容器行业产销需求与投资预测分析报告,百度报告名称可查看报告详细内容。 电容器,简称电容,顾名思义,是“装电的容器”,是一种容纳电荷的器件。电容器是电子产品不可或缺的关键基础元件,被广泛应用于消费类电子产品、通信产品、电脑产品、仪器仪表、自动化控制、汽车工业、光电产品、铁路及军工等领域。 电容器行业发展现状: 近年来,随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。中国电容器无论从数量上、质量上,还是服务上,都能够满足电子整机及家用电器发展的需要,并带动了相关材料、设备行业的发展,已经成为全球电容器生产大国。 2011年我国电容器销售总额达67亿美元,在2010年的基础上增长了5%。陶瓷电容器为2011年的主流产品,占电容器总销量的60%,销售额达40亿美元。铝电解电容器占25%,其它钽电容器和薄膜电容器占15%。 2012年,我国电容器进口额为85.25亿美元,同比增长5.8%;进口量为7874.64万千克,同比减少8.9%;进口平均价格为108.25美元/千克,同比增长16.2%。 电容器行业前景趋势分析: 自改革开放以来,日本、韩国及中国台湾地区将电容器制造业转向中国内地,世界电子信息整机制造业在中国内地设厂,跨国公司在中国内地采购,国内市场整机生产所需的电容器有较大增长,中国越来越成为全球电容器消费的重要市场。另外,电容器的应用领域也在不断扩大,电容器行业在未来数年内存在较大的发展空间。 前瞻网:2013-2017年中国电容器行业产销需求与投资预测分析报告,共十二章。首先介绍了电容器的定义、种类、特性等,接着分析了国内电容器行业的现状,并对中国电容器及其配套设备制造行业的财务状况进行了详实的分析,然后具体介绍了电解电容器、片式多层陶瓷电容器、薄膜电容器、超级电容器、电容器技术的发展。最后分析了国内重点电容器制造企业的经营状况。 (复制转载请注明出处,否则后果自负!)

(整理)陶瓷电容失效分析

多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结 Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U 等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞 (Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹 (firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层 (delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

电子元器件失效模式总结

元器件的失效模式总结 Beverly Chen 2016-2-4 一、失效分析的意义 失效分析(Failure Analysis)的意义在于通过对已失效器件进行事后检查,确定失效模式,找出失效机理,确定失效的原因或相互关系,在产品设计或生产工艺等方面进行纠正以消除失效的再次发生。 一般的失效原因如下: 二、失效分析的步骤 失效分析的步骤要遵循先无损,后有损的方法来一步步验证。比如先进行外观检查,再进行相关仪器的内部探查,然后再进行电气测试,最后才可以进行破坏性拆解分析。这样可以避免破坏性的拆解破坏证据。拿到失效样品,首先从外观检查开始。 1. 外观检查:收到失效样品后,首先拍照,记录器件表面Marking信息,观察器件颜色外观等有何异常。 2.根据器件类型开始分析:

2.1贴片电阻,电流采样电阻 A: 外观检查,顶面覆盖保护层有针状圆形鼓起或黑色击穿孔->内部电阻层烧坏可能->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁可能->可能原因:过电压或过电流烧毁—>检查改电阻的稳态功率/电压或者瞬时功率/电压是否已超出spec要求。 Coating 鼓起并开裂黑色击穿点 ●可失效样品寄给供应商做开盖分析,查看供应商失效报告:如发现烧毁位置位于激光切 割线下端,可确定是过电压导致失效。需要考虑调整应用电路,降低电压应力,或者换成能承受更大应力的电阻。 激光切割线 去除coating保护层后,可以看到烧毁位置位于激光切割线旁边,该位置电应力最集中。 B: 外观检查,顶面底面均无异常->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁或者电极因硫化断开或阻抗增大->检查改电阻的稳态功率或者瞬时功率是否已超出spec要求,如有可能是过电压或过功率烧毁;应力分析在范围内,考虑硫化->失效样品寄给供应商分析。查看供应商失效报告: ●如发现烧毁位置位于激光切割线下端,可确定是过电压导致失效。需要考虑降低应用电 路中的电压应力,或者换成能承受更大应力的电阻。 ●如果测试发现保护层附近电极硫元素含量高且电极沿保护层边缘发生断裂情况,可确认 是应用中硫化物污染导致银电极被硫化生成AgS而断开需确认应用环境是否硫含量比较高。如果有必要,更换为抗硫化电阻。

液态铝电解电容器的失效机理及可靠性研究

液态铝电解电容器的失效机理及可靠性研究 摘要:简述了液态铝电解电容器的结构与制造工艺流程,归总了其失效模式。 从制程和应用两个方面﹐探讨了液态铝电解电容器的失效机理及导致原因。使用 环境温度及纹波电流是影响液态铝电解电容器寿命的主要因素,文中阐述了温度 及纹波电流影响寿命的机制。应用Arrhenius方程的形式描述了液态铝电解电容 器的寿命估算方法。 关键词:液态铝电解电容器;失效模式分析;寿命 铝电解电容器是被广泛应用的分立元件之一,目前全球每年产量近1000亿只,并以15%年增长率持续发展,在电源滤波,信号耦合/去耦,杂波旁路及谐振选频等电子线路中发挥着重要功效。相对其他种类的电容器而言,铝电解电容器的寿 命较短,可靠度较低,因而探讨其失效机理以指导其可靠性的改进是必要的。本 文中,作者从制造和应用两个方面阐述了导致铝电解电容器诸类失效的机理与原因。如果能够准确地计算出电子元件在整机中的使用寿命,则对整机的可靠性设 计是极为有利的;本文也述明了环境温度及纹波电流对铝电解电容器的影响机制,并给出了估算寿命的Arrhenius方程。 1.液态铝电解电容器的结构与制造工序简介 铝电解电容器的构成材料有:阳极铝箔、阴极铝箔、电解纸、电解液、导针、铝壳、胶盖及胶管;其结构如图1及图2所示。 适当宽度的铝箔和电解纸,以阳极铝箔、电解纸、阴极铝箔、电解纸的顺序由里及外依 次层叠,卷绕而成圆柱状,称之为铝电解电容器的芯子。可以形象地将芯子比作铝电解电容 器的心脏,一旦其经由含浸工序注入血液——电解液,就可以表征出电解电容器的基本功能。经由将含浸过的芯子密封于铝壳和胶盖的腔体中的组装工序得到的半成品称为裸品,其目的 在于防止电解液的挥发,潮解及污染,以保证铝电解电容器长期发挥其效用。裸品经由老化 工序以达到稳定产品特性之目的。 2.液态铝电解电容器的失效机理探讨 2.1液态铝电解电容器的失效模式[ 液态铝电解电容器主要有以下几种失效模式﹕短路、断路、电容量衰减、损耗因子增大、漏电流增大、电解液泄漏、铝壳防爆纹开裂。对电容器的应用者而言﹐断路和短路属于“灾难 性的失效”,或曰“致命的失效”,由于其完全丧失了电容器的功能。正常来说,应用者遭遇短 路和断路失效现象的机会较为稀少,这是由于铝电解电容器制造流程中的老化环节可以筛除 这类“致命不良”。其他几类失效模式属于“劣化失效”,或曰“耗尽失效”,是由铝电解电容器 的组成材料的物理特性决定的,随着其使用或存放时间的增长而必然要表现出来的,与此不 同的是,“灾难性的失效”从理论而言是可以避免的,其出现并非必然的、也无明确的规律性。 2.2液态铝电解电容器的失效机理 导致铝电解电容器诸种失效模式的原因主要集中于制造和应用两个方面,表1汇总了液 态铝电解电容器的典型失效机理及导致原因。 3.液态铝电解电容器的寿命与可靠性 如同其他任何在使用过程中无专门维护的电子元器件一样,铝电解电容器的失效率(l) 随时间的变化趋势亦为典型的“浴盆”曲线(如图4所示)。 诸如环境温度,湿度,机械振动,纹波电流(RC)等因素都会对液态铝电解电容器的寿 命产生影响,但其中以环境温度,纹波电流及直流电压的影响最为显著。 3.1环境温度因素 固态电容在等效串联阻抗表现上相比液态电容有更优异的表现。据测试显示,固态电容

补偿电容器故障原因分析

补偿电容器故障原因分 析 Revised by Petrel at 2021

补偿电容器故障原因分析 摘要:电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。对造成电容器损坏进行了分析,不论从设计、安装、运行管理、产品质量等各个方面都存在一定问题,应引起重视。 关键词:补偿电容器;故障;分析 宜宾电业局从1997年开始在电网中投入补偿电容器,现在已有城中、竹海、叙南、吊黄楼、九都、方水、龙头等7个变电站共12组补偿电容器在网运行。几年来的运行情况其损坏是比较严重的,电容器损坏率在15%~20%,严重地影响电网的安全运行和造成较大的经济损失。电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。究其原因,造成电容器损坏的原因大致有以下几个方面。 1?谐波的影响 宜宾电网的谐波问题是比较突出的,1990年电科院曾将宜宾电网列为全国的谐波监测点之一。一般认为三次谐波在变压器二次侧的三角形接线中流通,不会进入电容器组,因此,主要是抑制五次谐波及以上的谐波分量,由此而选用6%电容器组容抗量的串联电抗器。但实际运行中发现,变压器的三角形结线不能完全消除三次谐波,不能阻止三次谐波穿越变压器,主要是因为变压器电源侧三相谐波分量不平衡,其次是变压器二次侧除电容器外还带有谐波发生源的电力负荷,按前述所配置的6%串联电抗器对于三次谐波仍然呈容性,三次谐波进入电容器后将被放大,这对电容器组定有较大的影响。为此,为抑制三次谐波的一个办法,根据计算装设感抗为13%电容器容抗值的串联电抗器,加大串联电抗器的感抗,以阻止三次谐波进入电容器,但这将使电容器的端电压增高15%,这是正常运行所不允许的。由此必须更换更高耐受电压的电容器,这将增加较大投资。另一办法是装设三次谐波滤波器,它既可以减少谐波对电容器的影响又可以避免三次谐波侵入电网,同时使电网的电压质量得到改善。但是如果谐波来自变压器的电源侧电网,则三次谐波将穿越变压器,通过滤波器后使谐波放大,这对电网电压质量及对变压器运行带来不利影响。电容器允许的1.3(1.35)倍的额定电流下连续运行,如果电容器装有6%串联电抗器来限制了五次及以上的谐波分量,那电容器中只通过基波及三次谐波,电容器中电流的有效

触摸屏产业发展分析

触摸屏产业发展分析 近几年消费性电子信息产品的市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。 一、前言: 近几年消费性电子信息产品之市场快速成长,配合“人机接口”的设计概念,趋向人机互动模式,因而带动了触控面板(Touch Panel)的蓬勃发展,最明显的应用市场以信息家电IA,以及各种个人化以及小型化的便携式电子产品如PDA、e-Book、Handheld PC等为最大宗。如<图一>所示,即为全球触控面板技术的应用市场类别,主要为公共信息查询系统、商业应用、便携式专业运算以及消费性应用等,左图为1998年,右图为2004年。若根据触控面板大厂MicroTouch Systems预测,2003年触控面板市场值将达20亿美元,约为1998年的4倍。另外,根据富士通预测,2004年全球市场更可达25亿美元。由右图2004年的市场应用分布得知,触控式面板的最大应用市场为消费性产品(占触控面板产值60%),相较于1998年仅占13%大幅提升,而此更为众多厂商所寄望的市场大饼。在消费性电子产品以外市场的应用比例亦将降低,预估2004年所占比例分别为商业应用20%、便携式专业运算12%、公共信息查询系统8%。 图一、全球Touch Panel市场产品应用类别 资料来源:富士通

二、触控面板技术与市场应用: 就现今全球在触控面板的技术,依结构大致可分为以日本厂商领军的电阻式(Film on Glass),以及以美国厂商为首的电容式、音波式、红外线式等,如<图二>所示。而其中以4线电阻式最为广泛应用,挟其薄型化、成本低之优势,在信息相关产品市场上随处可见。以下即针对此4种技术,作一简介以及比较。 图二、触控面板技术 (一)电阻式: 目前市场上曝光率较高的第2代触控面板技术(第1代为纯玻璃技术)主要以电阻式为主,其主要组成包括一片氧化铟锡导电玻璃ITO Glass,以及一片ITO Film导电薄膜,中间以间隔球Spacer 分开,加上Tail软式排线、控制IC组成,如<图三>所示。作用原理为当面板受到外力接触使薄膜与玻璃接触时导通而传递信号。由于借由压力使两片导电材料接触,触控介质不需导体,可以连续接触,感应速度很快,在需要书写的环境最适用,目前PDA市场均采用电阻式触控面板。 图三、电阻式触控面板的结构简图 资料来源:突破光电

相关文档
最新文档