电压切换继电器同时动作导致倒闸过程中出现PT二次反充电

电压切换继电器同时动作导致倒闸过程中出现PT二次反充电
电压切换继电器同时动作导致倒闸过程中出现PT二次反充电

0 引言

2015年8月11日,某厂双母线接线方式的220kV 开关站由于检修需要将II 母由运行转检修时,由于接线松动,#2变压器隔离开关常闭接点未反馈至电压切换装置,导致电压切换继电器同时动作。将母联开关由运行转热备用后,形成了I 母PT 二次回路向II 母PT 二次回路反充电而跳开I 母PT 二次回路空开的事件,本文详细介绍了此次事件的过程,原因分析及处理方式,并结合故障处理过程进行总结,期望对其他继电保护及运行人员有参考和借鉴意义。

1 案例简述

1.1 事件前运行方式介绍

如图1所示,某厂的220kV 开关站采用双母线接线方式。正常情况下,为了保证应急变压器的供电可靠性,该厂220kV 开关站采用双母线分裂运行的方式。#1变压器、#3变压器接至I 母,由#1进线供电;#2变压器、#4变压器接至II 母,由#2进线供电,母联开关处于热备用状态。该220kV 开关站作为应急电源,正常情况下4台变压器均为空载运行。

1.2 事件过程

根据预防性电气大纲的要求,电气专业申请将II 母线由运行转检修,开展预防性电气工作。在断开母联开关时,I 母、II 母母线PT 汇控柜内第二组保护PT 二次空开跳闸,运

行人员发现后台有异常报警后,现场核实发现,I 母线PT 汇控柜内二次空开MSCB10跳闸,后立即通知专业人员处理。

图1 倒闸操作前220kV 开关站运行方式

2 原因分析

检修人员核对报警信号发现,在进行#2变压器由II 母切换至I 母时,后台出现“#2变第二套PT 保护切换继电器同时动作”信号,而运行人员倒闸时忽略了该报警信号,并继续按照倒闸操作票执行后续操作。

该开关站#2装置和RCS-974AG 由CJX-11B 柜由cause protection, metering device pressure loss or threat to personal safety and so on. This article combines the case of our factory to carry on the in-depth analysis, formulates the corresponding solution, avoids the similar incident to occur repeatedly.

Key words : double bus connection; PT secondary reverse charging

关于一起倒母线操作引发电压切换继电器触点故障事件的分析与预防措施

关于一起倒母线操作引发电压切换继电器触点故障事件的分析与预 防措施 摘要:在进行双母线接线方式的变电站倒母操作中,相关保护装置需要进行对应的电压切换,而在此过程中,由于设备的内部的质量、特性差异等问题,往往存在导致电压切换异常的安全隐患,从而导致设备、人身等事故。本文基于作者亲身经历的一起110kV母线倒母线操作过程中,线路保护装置电压切换异常导致该保护装置电压切换继电器触点烧坏的事件,对其原因进行分析,结合倒母线操作中,电压切换回路的原理以及导致切换异常的各种设备内部因素等情况,在倒母线闸操作的过程中,对操作步骤的完善、优化上提出一定的见解和预防措施。 关键词:倒母线电压切换触点二次并列 0、引言 倒母线是一项在变电运行工作中十分典型刀闸操作,也是一项非常重要的操作技能,在进行双母线接线方式的倒母线操作中,往往在电压切换的过程中出现异常从而导致设备事故等问题,本文将基于电压切换回路的工作原理,从变电运行值班员本身对倒母线的操作方法的改进上,预防此类型事故的频繁发生,确保设备安全稳定运行。 1、事件经过 2011年6月13日,220kV河源站进行110kVⅡ母设备全部倒至Ⅰ母运行,110kVⅡ母由运行转检修的倒闸操作,当时220kV河源站正值综合自动化改造期间,110kVⅠ母电压互感器于三天前完成更换,当日准备更换110kVⅡ母电压互感器。220kV河源站110kV母线为双母带旁路接线方式,当时采用的倒母方法为,逐个单元倒换,当完成110kV河双线Ⅰ母侧11531刀闸合闸操作,检查一次设备合闸位置良好,二次电压切换继电器同时动作信号正常,保护装置Ⅰ、Ⅱ母电压指示灯均亮后,拉开110kV河双线Ⅱ母侧11532刀闸,此时110kV河双线1153保护装置发出告警、PT断线信号。检查发现110kV河双线保护装置告警灯亮,Ⅰ、Ⅱ母电压指示灯均灭。 图1 220kV河源站110kV母线正常运行方式 2、处理过程 1)合上110kV母联1012开关控制电源, 2)退出110kV母线保护屏互联压板

热继电器常见故障及处理

热继电器常见故障及处理 一.用电设备操作正常但热继电器频繁动作或电气设备烧毁但热继电器不动作。 1.产生原因: (1)热继电器整定电流与被保护设备额定电流值不符。 (2)热继电器可调整部件固定螺钉松动不在原整定点上。 (3)热继电器通过了巨大短路电流后,双金属片已经产生永久变形。(4)热继电器久未校验,灰尘聚积或生锈或动作机构卡住,磨损,胶木零件变形等。 (5)热继电器可调整部件损坏或未对准刻度。 (6)热继电器盖子未盖上或未盖好。 (7)热继电器外接线螺钉未拧紧或连接线不符合规定。 (8)热继电器安装方式不符合规定或安装环境温度与保护电气设备的环境温度相差太大。 2.处理方法: (1)按保护设备容量来更换热继电器。 (2)将螺钉拧紧,重新进行调整试验。 (3)对热继电器重新进行调整试验。 (4)清除灰尘污垢,重新进行校验,正常一年一次。 (5)修好损坏部件,并对准刻度,重新调整。 (6)盖好热继电器的盖子。

(7)把螺钉拧紧或换上合适的接线。 (8)将热继电器按规定方向安装并按两地温度相差的情况配置适当的热继电器。 二.热继电器动作时快时慢。 1.产生原因: (1)内部机构有某些部件松动。 (2)在检修中使双金属片弯曲。 (3)外接螺钉未拧紧。 2.处理方法: (1)将机构部件加固拧紧。 (2)用高倍电流试验几次或将双金属片拆下热处理,以去除热应力。 (3)拧紧外接螺钉。 三.热继电器接入后主电路不通。 1.产生原因: (1)热元件烧毁。 (2)外接线螺丝未拧紧。 2.处理方法: (1)更换热元件或热继电器。 (2)拧紧外接螺钉。 四.热继电器控制电路不通。 1.产生原因:

汽车继电器的接线方法和原理图

汽车继电器的接线方法和原理图很多车友在车上需要安装大功率的电器,譬如雾灯,一个灯泡就是50W,2个也100W了,在譬如一个车友要加装超大功率的警报器,竟然俩200W的喇叭,估计耗电怎么着也要100多瓦,等等很多,这样就必须加继电器了,他的作用就是用很小的电流来控制大电流, 你要是不加,可能也会正常工作,但是对车的控制电器是个很大的考验, 今天就俩车友问我这个问题,觉得很有必要详细的给大伙解释一下,这样就是不懂电器的车友也可以照葫芦画瓢,(电器改装有风险,需谨慎) 先来实物图 这就是通用型继电器和继电器座,购买不到座的话可以焊接在继电器引脚上,继电器铜线圈的好的10元到15, 那个座5元左右, 很好购买,去任何一个汽车配件说要五插继电器就行了(中国之大,方言众多,或许不一个叫法) 关于线径:85和86那个随意多大的线径都可,30脚和87脚的就需要看你的电器功率来选取了,最少不能小于2平方的

和继电器插接在一起 这是保险丝,这个是必须的,绝对不能少的!!!!切记 继电器上面的标号,他都是印刷在上面的,仔细看你会看到

85和86是继电器线圈,可以随便接 30电源输入端,87常开触点,他的作用就是继电器有电,就会接通,也就是一般咱们用到的 87A常闭触点,一般的不常用,他的作用就是继电器线圈通电,而断开,

知道上面那些了,那就可以来个接线图了,很简单,一看就会明白,这里说明一下,保险丝的选取一般的100w10a到15a,不过很多电器尤其是音频电器的标注不是实际功率的,譬如那个车友的警报器号称400W实际输入最多也就是100多瓦 控制来自于你的需要,譬如一个车友想开大灯雾灯亮,那么控制就接在大灯开灯有电的那根线上,譬如你想开小灯雾灯就亮,那么就接在小灯线上 那个想控制警报器的车友他的要求是开电锁警报器的电,关闭断电,那么控制端就可以接在点烟器上,最简单的办法就是直接压接在点烟器保险丝上,这是我推荐的解法,那个保险丝很好找,就在驾驶室内那组保险的最上面最里面那个就是

继电保护原理1—电压切换

第一章电压切换箱

第一节概述 电压切换箱用于母线电压的切换,根据母线的接线方式不同主要分为两大类:一类用于双母线接线方式;一类用于单母分段接线方式。 1.电压切换的作用 1.1在双母线系统中的作用及注意事项 1.1.1作用 对于双母线系统上所连接的电气元件,在两组母线分开运行时(例如母线联络断路器断开),为了保证其一次系统和二次系统在电压上保持对应,以免发生保护或自动装置误动、拒动,要求保护及自动装置的二次电压回路随同主接线一起进行切换。用隔离开关两个辅助触点并联后去启动电压切换中间继电器,利用其触点实现电压回路的自动切换。 1.1.2 注意事项 在设计手动和自动电压切换回路时,都应有效地防止在切换过程中对一次侧停电的电压互感器进行反充电。电压互感器的二次反充电,可能会造成严重的人身和设备事故。为此,切换回路应采用先断开后接通的接线。在断开电压回路的同时,有关保护的正电源也应同时断开。 1.1.2 手动切换与自动切换的优、缺点 手动切换,切换开关装在户内,运行条件好,切换回路的可靠性较高。但手动切换增加了运行人员的操作工作量,容易发生误切换或忘记切换,造成事故。为提高手动切换的可靠性,应制定专用的运行规程,对操作程序作出明确规定,由运行人员执行。 自动切换可以减轻运行人员的操作工作量,也不容易发生误切换和忘记切换的事故。但隔离开关的辅助触点,因运行环境差,可靠性不高,经常出现故障,影响了切换回路的可靠性。为了提高自动切换的可靠性,应选用质量好的隔离开关辅助触点,并加强经常性的维护。 1.2在单母分段系统中的作用及注意事项 1.2.1 作用 在母线不停电的情况下,将其中一台PT转为检修状态,而失去PT的母线二次还不失去电压。 1.2.1 注意事项 1)必须保证两段PT的二次回路无故障; 2)必须保证分段断路器在合闸位置;

电压切换回路相关反措

电压切换回路相关反措 2007年11月3日15时,中山小榄站220KV母差失灵保护RCS-915A动作,切除220kV1M、2M母线上所有开关,造成220kV 小榄站全站失压。事后调查发现,传统电压切换回路设计存在缺陷,若母线刀闸辅助开关常闭接点故障而不能接通(常开接点正常),可能造成I、II母电压切换回路中的双位臵继电器同时动作,致使I、II母PT于二次侧并接。若此时I、II母存在电势差,将在电压切换回路中形成很大的短路电流,烧毁电压切换继电器,甚至可能导致失灵保护动作。而传统的“切换继电器同时动作”信号采用串接于电压切换常开接点回路中的常规继电器,不能准确反映母线刀闸位臵接点状态,在某些特定条件下将无法对切换继电器同时动作准确报警。经与生产、设计部门共同研究,针对以上问题,拟采用以下措施避免同类事故发生。 1、在新建变电站或线路的回路设计时保护屏的电压切换回路中切换继电器同时动作信号应采用双位臵继电器接点,以便监视双位臵切换继电器工作状态。当保护屏的切换电压回路采用双位臵继电器接点时,如遇刀闸位臵异常或双位臵继电器本身故障引起了接点粘死,导致两组电压非正常并列的情况,以上信号会保持直至故障排除(见附图一)。对于已投运的设备,若原有回路利用单位臵继电器接点发信的,应利用本屏内已有的备用双位臵继电器接点,并接到原有的单位臵继电器同时动作的信号接点上,按附图二粗实线所示增加屏内端子间的配线。 —1—

2. 母线运行方式的判别应由断路器失灵保护完成。 3. 新建变电站断路器失灵保护功能应包含在母线保护内,此时电流检测由母差装臵提供,判别启动功能由断路器失灵保护完成。 4.各单位应在基建,扩建及改造工程中把好设计、调试、验收关,严格禁止不符合上述规定的设计方案投入运行。 5.对已在现场运行的设备请各单位结合定检按以上原则完成“切换继电器同时动作”信号回路的改造工作。为确保这一改造工作顺利有序的进行,改造工作应于施工前一周做好现场勘查、图纸核对、制定改造方案、继保专责审批方案等准备工作。 6.在未能完成改造前,各单位应修订现场运行规程。PT一次投运前安排运行人员在PT转接屏处分别检查两组PT的二次电压 —2—

热继电器的合理选择与使用

电动机保护用热继电器的合理选择与使用 1.前言 热继电器是一种传统的保护电动机的电器,它具有与电动机容许过载特性相同的反时限动作特性,主要用于三相交流电动机的过载保护与断相保护。从目前的情况来看,由于没有选择与使用好热继电器而引起电动机烧毁的事故,仍然时有发生。如何合理地选择与使用热继电器,也仍是一个值得关注的问题。我们从长期的实际工作中,全面总结出了这方面的经验,供大家参考。 2.热继电器类型的选择 从结构上来说,热继电器分为两极型和三极型,其中三极型又分为带断相保护和不带断相保护两种,其型号及其意义如下。 另外,从热继电器的产品目录上还有额定电压、额定频率、额定工作制、使用温度范围、安装类别、防护等级等有关数据。 三极型的热继电器主要用于三相交流电动机的过载与断相保护。当电动机定子绕组为星形接法时,可以选用一般的三极型热继电器。因为星形接法的电动机,相电流等于线电流,无论电动机是过载运行还是断相运行,串接在主回路中的热元件都会因电流过大而使热继电器触头动作,保护电动机;如果电动机定子绕组为三角形接法,一般需要选用带断相保护的热继电器。因为三角形接法的电动机,当其引出线上发生一相断线(常见的是熔断器熔断)而缺相运行时,线电流I L等于电机相电流I P的1.5倍(如图1),不再是倍的关系,使得线电流不能正确反映出相电流,即串接在主回路中的热元件不能准确反映电机绕组是否真正过载,此时如果选用不带断相保护的热继电器,就不能很好地起到保护作用。 图1 热继电器产品目录上的其它数据,在类型选择时,考虑一下与热继电器实际使用情况相一致就行。

图2 除了上述通用型热继电器的选择外,还有些专用型热继电器。如大容量电动机用的自带专用互感器的JR20-160及以上的热继电器;重载起动的电动机用的3VA型热继电器等等。只要按它们各自适用的情况选择就行了。 值得提醒的是,有些类型的热继电器,如JR0、JR9、JRl4、JRl5、JRl6—A、B、C、D 等,国家已下令淘汰,选择时就不应再考虑了。 3.热继电器电流的选择 热继电器电流的选择包括热继电器额定电流的选择与热元件额定电流的选择两个方面。 1)热继电器的额定电流,选择时一般应等于或略大于电动机的额定电流;对于过载能力较弱且散热较困难的电动机,热继电器的额定电流为电机额定电流的70%左右。如果热继电器与电动机的使用环境温度不一致时,应对其额定电流作相应调整:当热继电器使用的环境温度高于被保护电动机的环境温度15℃以上时,应选择大一号额定电流等级的热继电器;当热继电器使用的环境温度低于被保护电动机的环境温度15℃以上时,应选择小一号额定电流等级的热继电器。 2)热元件的额定电流,选择时一般应略大于电动机的额定电流,取1.1~1.25倍,对于反复短时工作、操作频率高的电动机取上限。如果是过载能力弱的小功率电机,由于其绕组的线径小,过热能力差,应选择其额定电流等于或略小于电动机的额定电流。如果热继电器与电动机的环境温度不一致(如两者不在同一室内),热元件的额定电流同样要作调整,调整的情况与上述热继电器额定电流的调整情况基本相同。 4.热继电器质量的检查 在确定了热继电器的类型与电流等级之后,购买热继电器时要对其质量进行检查。我们对热继电器进行了过流试验,发现有些热继电器的热元件动作不符合所要求的安秒特性;有些构件的配合间隙过大,当双金属片过热弯曲时不能推动导板使动断触头打开;还有些制造工艺较差,构件上存在着毛刺或凹凸不平的现象,使得动断时运动受阻。因此购买热继电器时不仅只作外观检查,还要看其内部的构件配合是否合理,动作是否灵活,电流调节旋钮是否起作用,连接片是否焊牢等;然后进行校验,即按技术要求给热继电器的热元件通以L 2、1.5或2倍的额定电流,看其动作是否符合技术性能的要求,校验的具体方法按相关资料或产品说明书进行。

铁路信号继电器说明书

JYJXC-220/220,有极加强接点继电器 1 用途 JYJXC-220/220型有极加强接点继电器(以下简称继电器)在信号电路中作道岔控制继电器。 2 适用环境 继电器的适用环境为: a) 环境温度:-40℃~+60℃; b) 相对湿度:不大于90%(温度+25℃); c) 气压:不低于70 kPa(相当于海拔高度3000m以下); d) 振动: 振频不大于15Hz,振幅不大于0.45mm; e) 工作位置:水平; f) 周围无引起爆炸危险的有害气体,并应有良好的防尘措施。 3 机械特性 接点组数:2DF、2DFJ; 鉴别销号码:15、54; 接点间隙:普通接点不小于 4.5 mm;加强接点不小于7 mm;

托片间隙:普通接点不小于0.35 mm;加强接点0.1 mm~0.3 mm; 普通接点压力:定位接点不小于150 mN;反位接点不小于150 mN;加强接点压力:定位接点不小于400 mN;反位接点不小于400 mN;接点齐度误差:普通接点与普通接点间及普通接点与加强接点间不大于0.2 mm,加强接点与加强接点间不大于0.1 mm。 定位或反位保持力不小于2 N; 3 电气特性(+20℃时) 线圈电阻: 线圈单独使用,使用1、23、4; 额定值:; 充磁值:; 转极值:正向10V~16V、反向10V~16V; 接点电阻:普通接点不大于0.05Ω;加强接点不大于0.1Ω。 5 绝缘耐压 在试验的标准大气条件下,继电器的绝缘电阻应不小于100MΩ。 在气压不低于86kPa条件下(相当于海拔高度1000m以下),继电器的绝缘耐压应能承受交流正弦波50Hz、2000V有效值电压,历时1min 应无击穿闪络现象,重复试验时的电压应为原试验电压值的75%。 6 电寿命 继电器普通接点通以DC 24V 1A 阻性负载;加强接点通以DC 220V 7.5A 、0.05H感性负载,

热继电器设置及操作

LRD系列热继电器安装设置实验报告 一、实验目的 1、了解LRD系列热继电器结构; 2、掌握LRD系列热继电器安装方法; 3、掌握LRD热继电器整定电流设置; 4、掌握LRD系列热继电器复位方式设置; 5、掌握LRD系列热继电器手动复位操作方法; 6、掌握LRDR热继电器STOP键特性。 二、实验设备 三、实验步骤及实验结果 1、LRD热继功能键及端子说明

LRD操作面板及接线端子如下图: 按键说明:RESET: 复位键 STOP: 手动停止 1-1.6A:电流设置 H/A:手动/自动复位端子说明:97-98 NO 95-96 NC 2/4/6 电机 LRD外观图左开盖板设置 2、LRD热继功能键及端子说明 LRD01~35C独立安装尺寸如下: LRD01~35C直接与接触器安装如下:

LRD接线柱将LRD接线柱直接安装在接触器端子 LRD09M7C ---LRD06C---LADN11安装示意图 3、LRD热继电流整定范围设置 设置LRD06C热继电流为1.3A

设置热继电流整定值1.4A 设定完成箭头指定1.4A方向4、LRD热继设置手动自动/自动复位 设置LRD06C为手动复位 设置LRD热继为手动复位设定完成按键指向H方向 5、LRD热继RESET 测试 测试LRD06C RESET键功能

设置LRD热继TEST 为T状态按蓝色键可复位T状态 6、LRD热继STOP停止键测试 手动测试LRD06C STOP键,测量97-98 96-97 输出 按红色按键测测量97-98 96-97 输出

四、实验注意事项 1、LRD热继设置是需选择合适工具; 2、安装热继时注意针脚的对齐;

RLJ漏电继电器说明书

RLJ-□F (S )型漏电继电器使用说明书 一、产品用途及特点 RLJ-□F (S )系列漏电继电器(以下简称继电器)适用于交流电压至660V ,频率为50Hz ,该继电器与分励脱扣器或失压脱扣器的断路器、交流接触器、磁力启动器等组成漏电保护装置,作漏电和触电保护之用,可配备蜂鸣器、信号等各种声光器件结合组成漏电报警装置。 体积小,安装使用方便,动作值固定分档可调,动作可靠,连续供电稳定,操作简易。能适应各地用户,可以用来对线路进行接地故障保护,防止由于接地故障电流引起的设备事故或电气火灾,也可用来对人体触电解除提供间接接触保护。 它适用于电源系统中心点直接接地或不直接地的低压配电系统。是安全使用的网改最新产品。该继电器的动作时间分快速型和延时型,配合使用时对干线和支线进行分级选择保护,完全可替代过去LLJ-□F (S )、LLJ-□H (S )、JD1及JD3系列漏电继电器。 二、 工作原理 该上海富继电气有限公司继电器是电子式电流动作型漏电继电器,主要由零序电流互感器、电子线路、试验回路及出口继电器组成其工作原理如下: 接线如图(1),穿入主线路的零序互感器,在主线路没有漏电的情况下,矢量和等于零或极微,当主线路上有漏电或人触电时,零序互感器就感应到一个不平衡的电流矢量和信号,零序电流互感器的电路发生对地漏电时iA+iB+iC ≠0。送入主机进行放大后, 检测漏电流是否超过整定值,并把结果送入执行机构来执行。此时零序电流互感器会产生一个感应信号,此信号经电子线路处理,当漏电电流达到动作值时,使可控硅导通触使继电器动作,利用继电器常开、闭点控制主线路断路器或接触器断开,切除故障线路达到保护的目的。试验回路由电阻与按钮等元件组成,按下试验按钮,有一电流流过互感器,相当于主线路有漏电电流,指示灯亮,出口继电器就应能动作。按下复归按钮,灯灭,出口继电器返回。 三、型号含义及技术参数 1、漏电继电器型号含 义 延时型(无为快速型)S 分离式 额定电流)漏电继电器 图、安装接线图1R L J -100F 漏电继电器 工作电源

继电器驱动电路原理及注意事项

继电器驱动电路原理及注意事项 默认分类2008-09-22 11:04:21 阅读1762 评论0 字号:大中小 继电器驱动电路原理及注意事项 家用空调器电控板上的12V直流继电器,是采用集成电路2003驱动,当2003输出脚不够用时才会用晶体管驱动,下面分别介绍这两种驱动电路。 1、集成电路2003电路原理图 左图1~7是信号输入(IN),10~16是输出信号(OUT),8和9是集成电路电源。右图是集成块内部原理图。 1.1 工作原理简介 根据集成电路驱动器2003的输入输出特性,有人把它简称叫“驱动器”“反向器”“放大器”等,现在常用型号为:TD62003AP。当2003输入端为高电平时,对应的输出口输出低电平,继电器线圈通电,继电器触点吸合;当2003输入端为低电平时,继电器线圈断电,继电器触点断开;在2003内部已集成起反向续流作 用的二极管,因此可直接用它驱动继电器。 1.2检修判断2003好坏的方法非常简单,用万用表直流档分别测量其输入和输出端电压,如果输入端1~7是低电平(0V),输出端10~16必然是高电平 (12V);反之,如果输入端1~7是高电平(5V),输出端10~16必然是低电平(0V);否则,驱动器已坏。 测试条件:1.待机;2.开机。 测试方法:将万用表调至20V直流档,负表笔接电控板地线(7812稳压块散热片),正表笔分别轻触2003各脚。 2. 晶体管驱动电路 当晶体管用来驱动继电器时,必须将晶体管的发射极接地。具体电路如下:

2.1工作原理简介 NPN晶体管驱动时:当晶体管T1基极被输入高电平时,晶体管饱和导通,集电极变为低电平,因此继电器线圈通电,触点RL1吸合。 当晶体管T1基极被输入低电平时,晶体管截止,继电器线圈断电,触点RL1断开。 PNP晶体管驱动电路目前没有采用,因此在这里不作介绍。 2.1 电路中各元器件的作用: 晶体管T1可视为控制开关,一般选取VCBO≈VCEO≥24V,放大倍数β一般选择在120~240之间。。电阻R1主要起限流作用,降低晶体管T1功耗,阻值为2 KΩ。电阻R2使晶体管T1可靠截止,阻值为5.1KΩ。二极管D1反向续流,抑制浪涌,一般选1N4148即可 能带动继电器工作的CMOS集成块 在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1 相同。

电压切换回路的启动方式“单位置”or“双位置“

电压切换回路的启动方式 为实现双母接线方式下,间隔运行方式倒换时母线电压的正常采集,需设置电压切换装置。通常情况下,该装置集成于断路器操作箱内,并与保护装置共用一组电源。 在国家电网继电保护六统一规定中,根据电压切换回路配置的数量不同,对于其启动方式的设计要求也分为两种:单位置启动与双位置启动。 本文将结合典型二次回路,讨论两种启动方式的差异,并分析各自的优缺点。 一、“单位置”启动方式 “六统一”文件规定,针对电压切换回路双重配置的间隔(操作箱双重化配置),宜采用单位置启动方式。即,由母线闸刀一副常开触点控制电压切换继电器的动作与返回,从而接通与断开间隔二次装置母线电压采集回路。具体情况如下图所示: 其中,G1、G2表示两段母线闸刀的常开辅助触点;1DK表示保护装置直流电源;1YQJ1~3、2YQJ1~3分别表示两段母线的电压切换继电器。

其中,1ZKK表示保护、测控装置的交流电压输入空开。 由图可知,当间隔母线闸刀G1合闸时,常开触点闭合,与其对应的电压切换继电器1YQJ1、1YQJ2、1YQJ3动作,相应二次回路的辅助触点闭合,对应母线电压经空开1ZKK输入间隔保测装置。母线闸刀G2合闸时,动作过程同上。 优缺点分析: 由以上分析可知,单位置启动方式的电压切换回路结构简单。同时,由于采用非自保持切换继电器,在进行倒母操作,拉开母线闸刀的过程中,不会出现两段母线二次电压回路并列的情况。避免了母联断路器断开时,二次电压回路的“非等电位连接”。 但是,也正是由于电压切换继电器的非自保持性。在切换回路直流电源失去后,继电器自动返回,其辅助触点断开,二次设备失去交流电压。

浅谈如何设置热继电器的电流整定值

浅谈如何设置热继电器的电流整定值 热继电器一般与接触器配合使用,用于电机的过电流发热保护。 关于热继电器电流整定值的设定,从始至终就一直有不同的说法。一种观点认为热继电器的电流整定值就设置在电机额定电流值附近,另一种观点认为热继电器的电流整定值设置要超出电机额定电流值,例如1.05-1.2倍额定电流值等。 电机上的额定电流值其实表征着电机的工作能力,也就代表着可以最大程度承受负载的力量要求,而这个能力其实也随着电机的运行慢慢变化着(基本是朝着衰弱的方向变化)。假设一台电机的额定电流是100A,预示着电机在未老化时,是可以在100A以内长时间工作的。很多人进行热继电器整定值设定时,是根据惯例,大致知道热继电器是在防止电流过大造成对电机的伤害,具体伤害是如何产生的不太清楚。 我们时常说的电机烧毁,为什么说是电机烧毁?电机在运行过程中伴随着电流在绕组上的穿行,而绕组是有一定的电阻的,电流在绕组上经过时间的积累产生热量,热量公式Q=I2Rt,随着负载的增大,电流值上升,热量也跟着上升。正常情况下,电机运行过程中产生的热量跟散发的热量会形成动态的平衡(这里面涉及到电机的温升跟绝缘等级这两个重要参数,有兴趣的可以自己了解一下)。大家得明白一个原理,在高于环境温度的情况下,比如物体温度从100℃降低到80℃的时间是比物体温度从60℃降低到40℃的速度快的,也就是说温度越高的情况下热量散发速度是越快的。我们来看电机的运行过

程:电机在低负载下运行,电流较低,产生的热量较少,电机温度升到一个较低的温度T1就能保证电机的产热量跟散热量平衡。当电机负载增加后,运行电流升高,产生的热量增加,此时电机的散热量不足以将产生的热量全部散发,造成电机温度升高,此时电机的散热量也增加,直到产热量与散热量重新平衡,此时电机的温度就是一个新的平衡温度T2。随着负载的不断增加,平衡温度T不断升高,直到T 超过绕组材料能承受的临界值T0,造成绕组损坏甚至烧毁。所以我们在使用电机过程中就得保证绕组平衡温度不能达到损坏材料的温度值,这样也就限定了电机长时间运行的最大电流值Id。而电机在实际生产中,标定的额定电流值Ie肯定会比Id小,以保证实际使用过程中的电流冗余。根据公式,热量的积累跟电流值、电阻值、以及电流在电阻上的时间积累都有关系。所以短时间超过Id的电流值是允许的。 我们为防止电机损坏,就得对电机的产生的热量进行限制。接下来说一下我们常用的电机保护元件,热继电器。热继电器的原理是流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过电流保护。我们设定热继电器的整定电流值,说是一个电流值,倒不如说是设定了一个使双金属片发生形变的热量值Qe。电机运行过程超过这个热量值就切断电气回路保护电机。这个热量值也是跟电流、电阻、时间有关,热继电器在整定电流值Ir设置后,根据公式Q=I2Rt,热继电器在以下情况是

“电压切换继电器同时动作”造成保护误动事故分析李伟刚

“电压切换继电器同时动作”造成保护误动事故分析李伟刚 发表时间:2018-09-06T12:48:19.247Z 来源:《河南电力》2018年5期作者:李伟刚王黎黎邹抄军[导读] 本文通过对一起因倒闸操作人员、值班监控人员、例行巡视人员均未及时发现处置“电压切换继电器同时动作 李伟刚王黎黎邹抄军 (国网博尔塔拉供电公司博乐 833400)摘要:本文通过对一起因倒闸操作人员、值班监控人员、例行巡视人员均未及时发现处置“电压切换继电器同时动作”异常信号而导致的继电保护误动事故进行详细分析,深入查找存在的问题及其原因,有针对性地提出杜绝此类事故重复发送的防范措施。关键词:值班监控;状态核对;例行巡视;TV断线前言 在当前变电站无人值班模式下,变电运维人员已从“24小时不间断现场监控变电一、二次设备”到定期和专项例行巡视,而变电设备一、二次缺陷随时都可能发生,严重及以上缺陷不及时发现及闭环应对处置,将严重影响一、二次设备可靠性,值班监控、例行巡视作用凸显。在变电运维人员例行巡视间隔内,值班监控人员能否及时发现并有效处置异常信号直接关系着电网和设备安全稳定运行。同时,现场倒闸操作时,只检查一次设备状态而漏核对二次设备,极有可能引发人员责任事故,而值班监控人员同步远程检查各类信号,对比倒闸操作前后信号变化情况,可防堵变电现场操作人员漏洞及时发现异常情况有效避免责任事故发生。 1 事故概况 1.1 事故经过 2016年5月19日14时46分46秒,因2号主变中压侧1102间隔异物搭挂,220千伏皇城变110千伏 II母发生B相接地故障,110千伏母线保护II母差动保护动作,分别跳开110千伏皇方线、110千伏皇岳线、皇南线、皇台线、皇开线、皇胜线、2号主变、1150母联,隔离110千伏II段母线。随后,110千伏I母TV空开跳闸,运行在110千伏I母上的110千伏皇园线因母线TV断线相间距离III段动作,距离III段动作同时闭锁重合闸,导致110千伏甘泉园区变、110千伏巴湖变、110千伏湾月变、35千伏白山变、35千伏国盛阳光甘泉光伏一电站、35千伏国盛阳光甘泉光伏二电站失压,扩大了停电范围。 图1-1 220千伏皇城变110千伏II母故障时断路器跳闸示意图那么,出现以下两个疑问:1)220千伏皇城变110千伏 II母故障,110千伏I母TV空开为什么会跳闸?2)母线TV断线,为什么只有110千伏皇园线相间距离III段动作? 1.2 事故前运行方式 220千伏皇城变110千伏运行方式:110千伏母线为双母线接线;110千伏皇广线、皇泵线、110千伏皇园线、110千伏皇域线、110千伏皇滨线、110千伏皇胜线、110千伏皇石线、1号主变在I母运行;110千伏皇方线、110千伏皇岳线、110千伏皇南线、110千伏皇台线、110千伏皇开线、110千伏皇滨线、110千伏皇定线、2号主变在II母运行;110千伏 I、Ⅱ母线并列运行。110千伏甘泉园区变运行方式:110千伏母线单母分段接线;110kV巴园线、1号主变在I母运行;110kV皇园线、2号主变在II母运行;110kV I、Ⅱ母线并列运行;35千伏、10千伏母线均为单母线接线,35千伏园白线、35千伏阳圣园光一线运行在35千伏I母。 2 保护动作情况分析 2.1 220千伏皇城变继电保护动作情况及波形图 2016年5月19日14时46分46秒281毫秒,220千伏皇城变110千伏II母发生B相接地故障,110千伏母线保护II母差动保护动作,选相B 相。 2016年5月19日14时46分49秒192毫秒,220千伏皇城变110千伏皇园线相间距离III段动作,故障相别ABC相。 220千伏皇城变继电保护动作信息如表2-1

热继电器选型及整定原则

https://www.360docs.net/doc/c513463202.html,/viewDiary.html?ownerid=18161&id=113641 热继电器选型及整定原则 热继电器是电流通过发热元件产生热量,使检测元件受热弯曲而推动机构动作的一种继电器。由于热继电器中发热元件的发热惯性,在电路中不能做瞬时过载保护和短路保护。它主要用于电动机的过载保护、断相保护和三相电流不平衡运行的保护及其它电气设备状态的控制。 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。 当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲

继电器的操作术语-冷切换详解

继电器的操作术语-冷切换详解 冷切换是用于描述开关(继电器)操作的术语,其中在继电器触点断开或闭合时,不存在显着的用户信号。热切换是继电器携带用户信号时,在触点闭合的瞬间有电流流过,当开关开路时,该电流将被中断。 机械继电器的冷切换比热切换显着减少,可以使继电器的使用寿命达到最大。对于固态继电器,冷热切换额定值通常没有区别。 冷切换也可以具有与热切换额定值不同(更高)的电压和电流额定值,因为不会在继电器触点引起电弧、金属迁移以及电弧引起射频干扰(RFI)。而热切换通过机械继电器切换高功率的应用中,可以产生电弧(等离子体),这增加了可能发生接触侵蚀的时间。如果负载或电源包含重要的电感元件,则电弧将会产生特别严重的影响,因为触点断开时可能会在一段时间内产生更多的电弧。 但是当必须严格控制从施加电压到进行测量之间的时间间隔时,就需要采用热切换。冷切换在一些设计中,如果施加的电压具有耦合到继电器控制系统的高电压上升率,则存在大的和快速的电压变化可能会干扰继电器控制系统。例如,在冷切换额定开关系统之外使用继电器可以产生非常高的电压变化率(1000W/s),其通过信号路径传播并耦合到控制系统。当使用冷切换额定值时,建议对电压上升时间进行管理以避免这些电压瞬变。所以,当涉及到数字逻辑时,由于即使瞬间中断信号,器件的状态也可能会发生变化,则通常就需要采用热切换。 对于相对较大的继电器,为了确保良好闭合,也可能必须采用热切换。如果没有电流通过触点的湿润作用,连接就可能是不可靠的。 冷切换可以延长触点寿命,最大时可将触点寿命提高10~100倍。冷切换避免了意外的先合后断问题(器件之间的瞬间短路)。在切换灵敏度负载(DUT或仪器)以及电容性负载时,它还能够减小瞬态。 机械继电器 冷切换比热切换显着减少,可以使继电器的使用寿命达到最大。不会在继电器触点引起电

热继电器选用计算

热继电器选用计算 (一)一般方法 保护长期工作或间断长期工作的电动机时热继电器的选用计算方法是: (1)一般情况下,按电动机的额定电流选取,使热继电器的整定值为(0.95—1.05)I N,I N为电动机的额定工作电流),或选取整定范围的中值为电动机的额定工作电流。 (2)保护Y—Δ起动电动机,当热继电器的3个热元件分别串接在Δ联结的各相绕组内,热继电器的整定电流应按电动机的额定电流整定。 (3)保护并联电容器的补偿型电动机,只有有功电流流经热继电器,热继电器的整定电流可按下式近似进行整定: 式中 It——热继电器整定电流.A; I N——电动机额定电流,A; cosφ——电动机功率因数。 (二)作图法 用于保护反复短时工作电动机的热继电器,每小时允许的操作次数,与电动机的起动过渡过程、通电持续率及负载电流等因素有关。复合加热的热继电器,在反复短时工作下每小时允许的操作次数,可按图1所示的速查曲线选用。 间接加热的热继电器每小时允许的操作次数,比按图1速查曲线选用的次数稍高。当电动机每小时的操作次数较高时,可选用带速饱和电流互感器的热继电器。图3—1及其应用方法是根据下列公式绘制和确定的。反复短时工作允许操作频率为 式中 f。——允许操作频率,次/h; Kc——计算系数,Kc=0.8—0.9; ts——电动机起动时间,s: Ks——电动机起动电流倍数(即其起动电流与其额定电流之比); K L——电动机负载电流倍数(即其负载电流与其额定电流之比): K1——热继电器额定整定电流与电动机额定电流之比: TD——通电持续率。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

热继电器常见故障

用电设备操作正常但热继电器频繁动作或电气设备烧毁但热继 电器不动作。 1. 产生原因: (1)热继电器整定电流与被保护设备额定电流值不符。(2)热继电器可调整部件固定螺钉松动不在原整定点上。 (3)热继电器通过了巨大短路电流后,双金属片已经产生永久变形。(4)热继电器久未校验,灰尘聚积或生锈或动作机构卡住,磨损, 胶木零件变形等。 (5)热继电器可调整部件损坏或未对准刻度。(6)热继电器盖子未盖上或未盖好。(7)热继电器外接线螺钉未拧紧或连接线不符合规定。 (8)热继电器安装方式不符合规定或安装环境温度与保护电气设备 的环境温度相差太大 . 处理方法: (1)按保护设备容量来更换热继电器。(2)将螺钉拧紧,重新进行调整试验。(3)对热继电器重新进行调整试验。 (4)清除灰尘污垢,重新进行校验,正常一年一次。(5)修好损坏部件,并对准刻度,重新调整。(6)盖好热继电器的盖子。7)把螺钉拧紧或换上合适的接线。 (8)将热继电器按规定方向安装并按两地温度相差的情况配置适当 的热继电器。 二.热继电器动作时快时慢。 1. 产生原因: (1)内部机构有某些部件松动。(2)在检修中使双金属片弯曲。(3)外接螺钉未拧紧。 2. 处理方法: (1)将机构部件加固拧紧。 (2)用高倍电流试验几次或将双金属片拆下热处理,以去除热应 力)拧紧外接螺钉。 三.热继电器接入后主电路不通。 1. 产生原因:(1)热元件烧毁。(2)外接线螺丝未拧紧。 2. 处理方法: (1)更换热元件或热继电器。(2)拧紧外接螺钉。四.热继电器控制电路不通。 1. 产生原因:(1)触头烧毁或动片弹性消失,动静触头不能接触。(2)由于刻度盘或调整螺钉转不到合适位置将触头顶开。 2. 处理方法:(1)修理触头和触片。(2)调整刻度盘或调整螺钉

无触点继电器说明书

无触点继电器使用说明书 ●产品概述: T系列无触点继电器是采用光电隔离型交流电过零触发技术和直流恒流源技术,主要器件全部采用原装进口,并严格生产检测工艺,确保其高可靠性,产品的主要特点是:防震﹑防潮﹑防腐﹑防爆﹑开关速度快﹑无噪音﹑寿命长﹑无火花,体积小(宽度仅为17mm),带负载能力强,可用于扩展PLC的带负载能力,可以驱动6~16通径的电磁阀和小功率直流电机等感性负载,特别适用于液压系统内控制电磁液压阀,完美地完成用微弱的电压信号控制较大的电流。可广泛应用在建筑陶瓷生产线﹑化工生产﹑机床机械加工﹑灯光控制﹑电加热控制﹑煤炭化工等现场环境恶劣,开关动作频繁的场合使用,是传统电磁式继电器的最佳更新换代产品。 专利号:ZL201520010075.8 ●外形尺寸:

●型谱: ●无触点继电器的特性: 1:无触点继电器内部全部采用贴片工艺生产,采用进口电子器件(无机械触点),增强了抗干扰性能,集成度高,体积小巧,结构紧凑,单片模块化,万能卡规安装,输入输出接线端子异侧排列,便于布线,拆装方便有利于减少控制箱的尺寸,降低成本。 2:集成翼型散热片,完全树脂灌封,焊接在电路板上,耐振动,耐潮湿和灰尘。3:输入输出之间完全隔离,输出端损坏对plc无影响,输入端采用恒流源技术,计算机可以直接控制,电流恒定不随电压的改变而改变(10ma左右)控制端电压适应范围宽涵盖5v,12v,24v。 4:超长使用寿命(可达数年不坏),使设备维护变得省心.

5:响应速度快,最高可达1KHZ,响应速度为纳秒级(电磁式继电器响应速度为 ms级),响应速度超过plc的速度,能准确执行plc的控制指令。提高设备的效 率。 6:通态压降最小0.15vDC ●无触点继电器接线示意图: *TM20D05和T44D05 输入端均采用恒流源电路,驱动电流很小,可以直接由光电开关或接近开关来驱动,当光电开关或接近开关信号线比较长时也能准确触发(电压在3.2-32VDC)。

各类继电器原理和引脚图

继电器的工作原理和特性 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。 固态继电器(SSR)的工作原理和特性 固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。 固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。 继电器主要产品技术参数 额定工作电压 是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。 直流电阻 是指继电器中线圈的直流电阻,可以通过万能表测量。 吸合电流 是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。 释放电流 是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。 触点切换电压和电流 是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。 继电器测试 测触点电阻 用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。 测线圈电阻 可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。

相关文档
最新文档