电伴热带的选型

电伴热带的选型
电伴热带的选型

电伴热带的选型

在实际工程中如何选择电伴热带,要具体情况具体分析,不宜按油田区块划分,都选恒功率电伴热带,或都选自控温电伴热带,要从技术经济角度综合考虑,建议参照以下选型原则:

(1)在气分离缓冲罐及天然气分离器组成的油气分离区,地面油管道、油气分离缓冲罐排污管道、天然气分离器、液位计比较集中,对控制温度也较严,可以采用恒功率电伴热带,其中液位计采用单相恒功率电伴热带,其他采用三相恒功率电伴热带,这样可以用一套防爆配电箱、温控器进行统一控制,但配电箱、接线盒、温控器必须符合防爆要求。

(2)给水箱、给水管道一般远离防爆区,被伴热体不太集中,温度控制要求不高,只要使水温始终维持在一定范围内即可达到设计要求。因此,若采用自控温电伴热带,可以省去电伴热配件如配电箱、温控器等。

(3)在阀门弯头较多区域,可能出现交叉重叠式安装,因而不适宜安装恒功率电伴热带(有单独的电加热丝层),易选用自控温电伴热带。

(4)从设计、安装角度讲,恒功率电伴热带一般受节长限制,若切割时未能找准一个节长则该部分伴热带不起作用,这不仅影响管道的伴热效果,同时也造成成浪费;而自控温电伴热带可随意切割,能确保电伴热完整。

自控温电热带主要特征:

为产油管提供所需热量,使油温保持在含蜡原油和稠油的临界点之上。自调可变的输出功率使自控温伴热电缆设计达到最佳的经济效益。

自控温电热带性能使油管不会过热,不会产生过热点或由于井况的变化产生烧毁现象。自控温技术使伴热电缆每一点相应因被伴热体系每一点温度变化而都能自调功率。随着油管温度的增加,伴热电缆会自动地降低输出的热量,反之亦然。以此方式拌热电缆会不断地补偿温度的波动,而常规电热线(恒功率)易产生局部过热和烧毁等。

自控温电热带性能更能满足每口井的特殊要求,可连续或反复使用,也可因井况进一步节能的需要,特别是定期清蜡而间断使用。自控温电热带主要优点:

经济性:简便的安装和根据特定油井的设计取得最佳效益的加热系统。该系统以下列方式即刻对原油产量产生效应:

A、减少油管的堵蜡及频繁的刮蜡,以稳定产量。

B、提温降粘减小井筒的流动阻力增加泵效。

C、减轻了抽油机负荷,延长柱子泵周期。

便于控制:油井伴热电缆输出的热量可以根据需要自行变化,自控温电热带使运行费用达到最低值,在临时关井后,油管不会堵塞,可迅速恢复油井的生产能力。同时低流速的原油不会产生部分堵塞油管的现象。

安徽环瑞化工管道专用自限温电热带,防爆电热带,自控温电

伴热带施工要求较高,测温点的选取也非常关键。但电伴热的日常运行维护比较简单。与蒸汽伴热相比,故障率低,对熔点较高的物料的长距离输送,自限温电热带效果会更好。另外,如果需要的热补偿或者加热温度很高,推荐使用不锈钢护套加热电缆,即氧化镁绝缘MI 电缆。

伴热带说明书

伴热带 什么是电伴热带? 电伴热就是利用电伴热设备将电能转化为热能,通过直接或间接的热交换,补充被伴热设备通过保温材料所损失的热量,并采用温度控制,达到跟踪和控制伴热设备内介质的温度,使之维持在一个合理和经济的水平上。过去,蒸汽伴热始终是一种主要的保温方式。其工作原理是通过蒸汽伴热管道散热以补充被保温管道的热损失。由于蒸汽的散热量不易控制,其保温效率始终处于一个较低的水平。20世纪70年代,美国能源行业就提出用电伴热方案来替代蒸汽伴热的设想。70年代末80年代初,包括能源业在内的很多工业部门已广泛推广了电伴热技术,以电伴热全面代替蒸汽伴热。电伴热技术发展至今,已由传统的恒功率伴热发展到以导电塑料为核心的自控温电伴热 电热带、电伴热带、伴热带的工作原理 电伴热带电缆由导电高分子复合材料(塑料)和两根平行金属导线及绝缘护套构成的扁形带状电缆。其特性是导电高分子复合材料具有正温度系数“PTC”特性,且相互并联,能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。“PTC”特性即正温度系数效应,是指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。温控伴热电缆可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温热点及烧毁之虑。因此温控伴热电缆优点是: 温控电伴热带电缆相应被伴热体系具有自动调节输出功率,因此不会因自身发热而烧毁,却因实际需要热量进行补偿,因此为新一代节能型恒温加热器。 低温状态快速启动,温度均匀,每一局部皆可因其被伴热处的温度变化自动调节。 安装简便,维护简单,自动化水平高,运行及维护费用低。 安全可靠,用途广,不污染环境,寿命长。 PTC工作原理 1.PTC效应及PTC材料 PTC效应即正温度系数效应,是特指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。具有PTC效应的材料称为PTC材料,本电缆的高分子PTC材料是半晶高聚物与炭黑的共混物。 2.PTC工作原理 温控伴热电缆的电热元件,是在两根平行金属母线之间均匀的挤包一层PTC材料制成的芯带。PTC材料经熔融挤出、冷却定型之后,分散其中的炭微粒形成无数纤细的导电炭网络。当它们跨接在两根平行母线上时,就构成芯带的PTC并联回路。电缆一端的两根母线与电源接通时,电流从一根母线横向流过PTC材料层到达另一根母线形成并联回路。PTC层就是连续并联在母线之间的电阻发热体,将电能转化成热能,对操作系统进行伴热保温。当芯带温度升到相应的高阻区时,电阻大到几乎阻断电流的程度,芯带的温度将达到高限不再升高(即自动限温)。与此同时,芯带通过护套向温度较低的被加热体系传热,达到稳态时单位时间传递的热量等于电缆的电功率。电缆的输出功率主要受控于传热过程以及被加热体系的温度。 自控温电热带、自限温电热带的特点 自控温电热带、自限温电热带具有自动控温和自动限温的特性体现在: 它是由导电聚合物(塑料)和两根平行金属导线及绝缘护层构成。其特点是导电聚合物具有很高的正温度数"PTC"

电伴热工程方案详解

设计方案

1、采用标准 2、设备主要技术要求 3、设计依据 4、设计选型 5、管道电伴热保温设计 6、主要部件技术要求 7、电伴热保温材料 8、安装工艺 9、电伴热原理及产品阻燃性能 10、质量保证 11、工程材料表 12、售后服务承诺

1.采用标准 电伴热管道防冻技术是一种国外应用多年,在我国逐渐普及的成熟的水管道保温防冻施工工艺。其原理:管道伴热是将自控温发热电缆贴附在管道外侧通电发热,将热量传导给管道内液体,配合管道外保温层,补偿并保持管道内液体温度到达设计温度水平。 自控温发热电缆的芯带原料是具有正温度系数效应的PTC高分子导电聚合物,其特性是能根据环境温度自我调节发热功率(即温度越高功率越低),能够主动适应伴热主体的温度变化,保持伴热主体稳定地维持在设计温度,并且不会发生过热、烧毁等安全事故。 2.设备主要技术要求 海拔高度:≤1000米。 应用环境温度:-45℃~+105℃ 要求管道流体维持温度为4℃≤T ≤10℃,启动温度5℃,停止温度10℃; 3.设计依据 1、《工业设备及管道绝热工程设计规范》(GB50264-97) 2、《工业设备及管道绝热工程施工及验收标准》(GBJ126) 3、《电气装置安装工程施工及验收规范》GB50254-96 4、《管道和设备保温、防结露及电伴热》03S401

5、《伴热设备安装》03D705-1 6、《建筑消防设施设计规范》 7、《安全防范工程规范》 8、《消防安全设计规范》 9、《GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南》 4.设计选型: 备注:本次设计采用20W/M电伴热带,具体参数如下。 (1)设计标准及规范 1.项目水平面及立面图 2.管道和设备保温防结露及电伴热设计图集03S401(91-122页) 3.建筑设计防火规范GB 50016-2006 4.GB-T 19518.2-2004 爆炸性气体环境用电气设备电阻式伴热器第2部分设计、安装和维护指南。 (2)、电伴热带选型及技术参数 1、管道现场每根管道长度为在100米以内,电伴热带原设计使用长度限制(最大为100米),伴热系统电源点采用就近原则,提供一种电伴热带供参考低温自控温发热电缆:DBR-RZ-JZ-20W-220V. 2、电伴热带回路使用电压为220V±10% 3、电伴热带技术参数:

电伴热带使用说明书

电伴热带使用说明书 目录 第一章概述 (1) 第二章电伴热产品 (2) 型恒功率并联电热带 (2) 一、HC-BL-J 3 二、HC-BL-J 型单相、三相恒功率高温电热带 (5) 4 三、HC-XW系列自限温电伴热带 (6) 四、HC-CL型串联式电热带 (8) 五、HC-CR船用型电热带 (10) 六、集肤效应加热电缆 (11) 七、MI加热电缆 (12) 第三章电伴热带配套附件与安装附件 (15) 第四章控制系统 (20) 一、电源控制箱(柜) (20) 二、远程监控系统 (22) 第五章电伴热产品的设计计算方法及选型 (22) 一、管道及附件散热量的计算 (23) 二、罐体容器散热量的计算 (26) 三、有关公式介绍 (28) 四、选型方法 (28) 第六章安装与运行 (29) 第七章典型安装方式示意图…………………………………………………………

第一章概述 所谓电伴热是用电热来补偿被伴热体(容器、管道等)在工艺生产过程中的热量损失,以维持最合适的介质工艺温度,其温度高低以介质流动阻力最小、生产效率最高、耗电最少和综合费用最低为目的,以最佳传热分布及低功耗为原则,发热形式是沿长度方向或大面积均匀放热、温度梯度小、温度稳定,适合长期使用。产品是高新技术产品,是传统的热水伴热、蒸汽伴热的取代品,是绿色无污染的环保产品。 一、电伴热特点 ●节能显著、能耗低; ●体积小、可靠性高、寿命长、适用范围广; ●设计、安装、维护简单; ●无“跑”、“冒”、“滴”、“漏”等现象,无任何污染; ●伴热温度不受季节、介质等因素影响,根据要求自动调整; ●工程投资回收周期短; ●易于实现集中自动化控制。 二、节能效果 ●电伴热体积小、接触面积大、传输损失小,而蒸汽伴热和热水伴热需加伴热管线 接触传递热量,传输热损失大。 ●电伴热能保证首尾端发热均匀,而蒸汽和热水伴热为了保证尾端的热值,必须提 高首端的发热量,会使首端和沿途的热量出现过补偿,浪费大量热能。 ●电伴热能进行自动控制,而蒸汽和热水伴热难以按管道温度变化自动跟踪调节伴 热发热量,以适应季节和昼夜环境温度变化以及首尾端和沿途各处温度变化引起的过量热补偿。 ●电伴热综合热效率很高,据全国十大电厂统计,从电厂到用户(管道、容器等) 的综合效率为29.4-35%,电伴热器材的发热效率接近100%。 三、经济费用

电伴热设计初探

电伴热设计初探 摘要:本文对电伴热在化学工艺中的初次设计、安装和运行进行了小结以供有关人员借鉴和参考。 1、前言 化学工艺中,有许多地方需要进行防冻。如:浓碱、浓磷酸盐溶液在常温条件下就会结晶;在冬季,室外的取样管道、加药管道和水管道在气温低于零度时也会发生冻结;衬胶管道和设备在低于零度时会发生衬胶层龟裂而破坏等。这一切都需要采用加热防冻工艺。 近期出现的“自限温电伴热带”产品是一种很好的用于防冻的加热产品。但是,从工艺上来看,此技术是介于化学和电气之间的。这里,仅将我们经历的设计、运行以及在现场使用中发现的问题介绍给大家,以供有关人员参考和改进,而起到抛砖引玉的作用。 2、“自限温电伴热带”的产品特点 自限温电伴热带的外表很象300Ω的电视机天线馈线,扁扁的。但是,两条金属导线之间的材料可不是一般的塑料,是很特殊的,其性能很象热敏电阻材料。当此电伴热带本身的温度低时(如10℃),则电阻小,电流大,发热量也大(常用的一种约15W/m,另一种约35W/m,也有其它品种的)。当温度上升到85℃时(这是防冻常用的一种),则其材料的电阻急剧上升,电流下降到十几毫安,达到几乎无电力消耗效果。这样一来,不需要另加自动控制,它自身就能根据温度的高低来自动调节发热量的功率大小,从而达到自限温的效果。 我们将它使用在防冻的设备或管道上时,当温度低到10℃及以下时,自限温电伴热带则有大电流通过,加热管道。当电伴热带温度因加热而上升时,则“自限温电伴热带”的电流就下降使加热功率也下降,从而达到一定的平衡值。这样一来就达到了既防冻又安全不过热的效果。 3、使用范围 ●浓烧碱溶液(如40~50%)在温度低于15℃时防止溶液结晶。 ●浓磷酸盐溶液(近饱和,约10%)的常温下防止结晶。 ●水管道和/或设备(包括各种水管道、加药管道、取样管道以及其它的 化学低浓度溶液管道)的冬季防冻。 ●衬胶设备和/或管道防冬季发生龟裂而永远损坏。 ●储存离子交换树脂的设备防冻。

电伴热的基础知识

电伴热的基础知识 一,前言 我把有关电伴热的一些基础知识整理出来供刚刚涉足这个行业的朋友参考,也可以作为给用户的技术讲座参考资料使用。 (一)为什么要伴热 在工业生产过程中为了保证生产的正常运行和节约能源,大多数的设备和管道都要采取隔热(保温)措施。但是,在工艺介质的存储和传输过程中散热损失还是不可避免的。散热就意味着设备和管道中介质温度的降低。 介质温度的降低将会带来好多的问题。例如,设备和管道中水的温度的降低会造成冻结;食用油管道中食用油温度的降低会造成黏度增加,阻力增大,流动困难。三聚氰氨如果温度降低将会析出结晶造成设备和管道的报废。沥青如果温度降低将会凝固造成灌肠。这些问题的产生都将使得生产无法正常运行。 为了保证生产的正常运行和节约能源,在生产、存储和运输的过程中就必须从设备和管道的外部或内部给介质补充热量。这就是伴热的目的。 伴热和加热不同,伴热只是补充介质热量的损失,维持一定的温度,避免介质温度的降低带来的问题,一般维持温度都低于操作温度。加热则要求给介质提供大量的热量,使得介质温度高于原来的温度(如管道介质的进口温度)。因此加热比较伴热需要消耗更多的能量。 (二)传统的办法和缺点 传统的办法是以蒸汽、热水或导热油为热媒,用内外伴管、夹套管或内外盘管的方式向设备和管道提供所需的热量。导热油需要建造专门的系统,还要定期更换导热油,费用太高。工厂厂区内,蒸汽来源方便,而且蒸汽潜热大,所以大多数选择蒸汽为热媒。 但是,蒸汽的供汽、疏水、凝液回收系统复杂,安装的工程量大。蒸汽的温度很难控制难以满足不同介质对维持温度的不同需要。蒸汽系统的热效率低,能耗比较大,能量利用不合理。蒸汽系统的阀门和疏水器等容易泄露会造成能量的大量浪费同时还会影响环境。蒸汽系统的设备和管道还容易腐蚀,维修的费用也很高。另外蒸汽系统的运行成本也比较高。(三)电伴热的产生和优势 正是因为上述的原因,五、六十年代,国外着手研究用电能转换热能的新产品。各种电伴热产品逐渐出现。我国八十年代后期在石油化工企业开始大量采用电伴热产品。近二十年来电伴热在我国的工业中的应用越来越广泛,国内外的各种电伴热产品也竞相在市场上出现。 电伴热产品之所以受到欢迎,是因为它比较别的伴热方式有以下优点: 1、电伴热产品体积小、柔性好、系统结构简单、设计和施工方便、维护量小; 2、使用寿命长,可达15-25年; 3、维持温度的范围广泛,最高可达450℃以上; 4、热效率高,节约能源; 5、维持温度可以有效的控制,控制精度比较高; 6、在没有蒸汽供应的装置电伴热是唯一的选择; 7、电伴热产品比蒸汽系统的设备更耐腐蚀; (四)电伴热产品的种类 在市场上最初出现的电伴热产品是利用电流流过电阻体(电阻丝或管道自身的电阻)发热的原理来开发的。这类产品当电流、电压、电阻确定以后,单位长度的电伴热输出功率就是恒定的,所以称恒功率型。

管道及附件散热量的计算

管道及附件散热量的计算-电伴热 电加热是利用电伴热热产品所产生的热量来补偿被伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持其相应的介质温度来满足工艺要求。正确计算出管道、容器、罐体等工艺装置的散热量,对准确维持介质温度是至关重要的。 1. 工艺参数的确定为确保计算的准 电加热是利用电伴热热产品所产生的热量来补偿被伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持其相应的介质温度来满足工艺要求。正确计算出管道、容器、罐体等工艺装置的散热量,对准确维持介质温度是至关重要的。 1. 工艺参数的确定 为确保计算的准确性,在计算前应正确确定各项参数:他们是管道、容器、罐体等介质要求维持的温度 T。管道的直径d或容器的表面积S。保温材料的品种及厚σ、环境温度(最低平均温度)TH、敷设环境(室内或室外、地面或埋地)。并计算维持温度TW与环境温度TH之差。 2. 管道散热量的计算 Q=f x e x h x q Q—实际需要的伴热量 q—基准情况下单位长度管道的散热量q(根据工艺参数查表得到) f—保温材料系数(查表5-1) e—管材系数(金属为1,非金属为0.6-0.9) h—环境系数(室外为1,室内为0.9) 例1:某厂有一金属管线,管径为1/2 ,保温材料是硅酸钙,厚度10mm,管道中介质的维持温度10℃,冬季最低平均气温是℃(室外)。求管道每米热损失。

管道及附件散热量的计算-电伴热(2) 时间:2010-09-25 08:56 来源:沈阳瑞华特种电缆有限公司作者:郭莹莹点击: 311次 一:T=T w -T H =10℃-(-25℃)=35℃ 二:查表5-1,管径1/2,10mm保温层,因表中无T=35℃需采用插入法计算T 1 =30℃时,q 1 =11.0W/m T 2 =40℃时,q 2 =14.9W/m T=30℃时,q=q 1 +(q 2 -q 1 )/(T 2 -T 1 )x(T-T 1 一:ΔT=T w-T H=10℃-(-25℃)=35℃ 二:查表5-1,管径1/2,10mm保温层,因表中无ΔT=35℃需采用插入法计算ΔT1=30℃时,q1=11.0W/m ΔT2=40℃时,q2=14.9W/m ΔT=30℃时, q=q1+(q2-q1)/(ΔT2-ΔT1)x(ΔT-ΔT1)=11.0+(14.9-11.0)/(40-30)x5=12.95W/m 三:保温层采用硅酸钙,查”表5-1“ f=1.5 e=1 h=1 四:所需伴热量:Q=1.5x1x1x12.95=19.425(W/m) 自限式电热带应选用维持温度下的功率大于等于所需半热量的型号。 表-1

电伴热带选型和安装方法

电伴热带工作原理 1、概述 自控温电伴热带(或称自限温电热带)。它是一种电热功率随系统温度自调的带状限温伴热器。即电缆本身具有自动限温,并随着被加热体系的温度变化能自动调整发热功率的功能,以保证工作体系始终稳定在设定的最佳操作温区正常运行。 1.1 工作优点 —加热时能够自动限定电缆的工作温度; —能随被加热体系的温度变化自动调整输出功率而无需外加设备; —电缆可以任意裁短或在一定范围内接长使用,而上述性能不变。 —允许交叉重叠缠绕敷设而无过热及烧毁之忧。 1.2 工作优点 自控温电伴热带在用于防冻和保温时,具有如下优点: —伴热管线温度均匀,不会过热,安全可靠; —节约电能,稳态时,功率较小; —间歇操作时,升温启动快速; —安装及运行费用低; —安装使用维护简便; —便于自动化管理。

2、 PTC工作原理 2.1 PTC效应及PTC材料 PTC效应即正温度系数效应,是特指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。具有PTC效应的材料称为PTC材料,本电缆的高分子PTC材料是半晶离聚物与炭黑的共混物。 2.2 工作原理 自控温电伴热带的电热元件,是在两根平行金属母线之间均匀的挤包一层PTC材料制成的芯带。PTC材料经熔融挤出、冷却定型之后,分散其中的炭微粒形成无数纤细的导电炭网络。当它们跨接在两根平行母线上时,就构成芯带的PTC并联回路。电缆一端的两根母线与电源接通时,电流从一根母线横向流过PTC材料层到达另一根母线形成并联回路。PTC层就是连续并联在母线之间的电阻发热体,将电能转化成热能,对操作系统进行伴热保温。当芯带温度升到相应的高阻区时,电阻大到几乎阻断电流的程度,芯带的温度将达到高限不再升高(即自动限温)。与此同时,芯带通过护套向温度较低的被加热体系传热,达到稳态时单位时间传递的热量等于电缆的电功率。电缆的输出功率主要受控于传热过程以及被加热体系的温度。

电伴热计算公式

管道热损失计算公式:Q(w)=2 π * λ *L*(tr-tu)/ln(D/d) 式中: D(m)= 管道加保温层的外径( 单位m) d(m) = 管道外径( 单位m) π =3.14 λ = 绝热层导热系数(w/m. ℃) L(m)= 管道长度( 单位m) tr( ℃)= 管道内部流体要保持温度( 单位℃) tu( ℃)= 外界环境最低温度( 单位℃) 计算管道所需要的热负荷Qt Qt=Q(w)*n 式中:n 保温材料的保温系数(见下表): fsd 保温系数 导热常数(W/m ℃) 玻璃纤维 1.0 0.036 矿渣棉 1.06 0.038 矿渣毯 1.20 0.043 发泡塑料 1.17 0.042 聚氨酯 0.67 0.024

每个阀门需要的发热电缆长度等于每米管道所需要的电缆长度与散热系数的乘积。 各种阀门的散热系数如右表: 每个阀门需要的发热电缆长度等于每米管道所需要的电缆长度与散热系数的乘积。 闸门 1.3 蝶阀,节流阀 0.7 球阀 0.8 球心阀 1.2 各种阀门的散热系数如右表: Q=(To-Ta)/[0.5*D1*ln(D1/Do)/λ+1/αS] 式中:Q—以每平方米绝热层外表面积表示的热损失量,(W/ ㎡) To—罐体外表面温度(℃无衬里时,取介质的正常运行温度;有内衬时,按有外保温层存在的条件下进行传热计算确定; Ta—环境温度,(℃)运行期间平均气温; D1—绝热层外径(m) Do—罐体外经(m) λ—绝热层导热系数,(W/m* ℃) αS—绝热层外表面向周围环境的放热系数,(W/㎡*℃) αS=1.163*(10+6W )W为当地年平均风速,无风速时αS取11.63 箱体热损失量计算公式: Q=(To-Ta)/(δ/λ+1/αS)(W/㎡) 式中δ—绝热层厚度(m)其余同上。

电伴热带施工

自控电伴热带的施工方法 1、电伴热带的选型 在实际工程中选择电伴热带,要具体情况具体分析,选择恒功率电伴热带或者自控温电伴热带,要从技术经济角度综合考虑,参照以下选型原则。 对控制温度较严格,采用恒功率电伴热带; 温度控制要求不高,采用自控温电伴热带,可以省去电伴热配件如配电箱、温控器等; 在阀门弯头较多区域,可能出现交叉重叠式安装,因而不宜安装恒功率电伴热带(有单独的电加热丝层),宜选用自控温电伴热带; 从设计、安装角度讲,恒功率电伴热带一般受节长限制,若切割时未能找准一个节长,则该部分伴热带不起作用,若切割时未能找准一个节长,则该部分伴热带不起作用,这不仅影响管道的伴热效果,同时也造成浪费;而自控温电伴热带可以随意切割,能确保电伴热完成。 废水处理工艺管道宜选用并联自控温低温通用型电伴热带(DXW型),根据环境温度、许用电流值、单根敷设长度来确定伴热带的功率。 常用伴热带带规格型号和参数: 2、电伴热施工要点 电热带在储存、搬运、安装及使用时不许扭曲、打结、反复弯折、严禁损坏外护套、坏绝缘。

电热带在敷设前应进行外观和绝缘检查。绝缘电阻值应符合产品说明书的规定。施放电热带时不要打硬折或长距离在地面拖拉。 电热带接入电压应与其工作电压相符。 电热带应紧贴于管道下方,或缠绕于管道上。采用铝胶带粘贴每隔~0.8m用耐热胶带将电热带沿径向固定。沿管道平行敷设的电伴热带一般安装在管道下方,且与管道横截面的水平轴线呈45。角,若用2根电伴热带要对称敷设。 电热带安装时的最小弯曲半径不得小于其直径的5 倍。 接线时,电热带与附件要正确可靠连接,谨防短路。同时将编织网连接起来可靠接地。 仪表管路蒸汽吹扫时,必须在停电2h后进行,吹扫温度不宜长期超过200℃。如温度过高,可预先在管路外敷一层保温毯,再敷设电热带,以防高温将电热带烫坏。 电热带的安装必须在管路系统全部安装结束,并经水压试验合格后进行。保温层的施工必须在电热带全部安装、调试结束、试送电正常后进行。 完成上述安装后,应对其进行绝缘测试,测试电热带线芯与编织网或金属管道之间的电阻应符合产品说明书的要求。 管道或容器的表面应去毛刺和锐角,避免安装过程中对伴热电缆造成损坏。防锈防腐涂层要干透,电热带绝缘电阻应≥20MΩ(1000VDC)。不要强力拉扯电热带,避免脚踏或重物放置电热带上;电热带与所有配件的型号应与设计要求一致。每隔约50cm将电热带用玻璃纤维压敏胶带或铝胶带固定在干管道上,平时尽可能将电热带附在管道下45度下方。 在线路的第一供电点和尾端各预留lm长的电热带;在所有散热体如支架、阀门、法兰等处应预留一定长度电热带,以便随时拆除、维修、更换等。 在使用二通或三通配件处电热带各端端应预留40cm长,多根电热带应注意合理选择电源点,要便于维修。 保温层材料必须干燥,且要保证材料的质量和厚度,应加防水外罩,在保温层外加警示标签注明“内有电热带”。 在容器上安装时,电伴热带应缠绕在容器中下部,通常不超过容器高度的2/3,一般为1/3。

电伴热设计说明

1.电伴热设计说明 1.1 电伴热适用范围:适用于工业与民用建筑等行业众多场合,金属管道及设备工艺装置的保温和防冻。 1.2 由于电伴热工程目前暂无国家(或行业)规范(程)和产品标准可遵循,所以安装和调试应在供货方的指导下或严格遵循本手册及有关国家标准、图集和有关安全规范进行。 1.3 电伴热的设计和安装要求: 由于电伴热的电热带是安装在绝热层和管道(或设备)外壁之间,利用电热来补充输贮过程中所散失的热量,以维持在一定的温度范围内,达到保温和防冻的目的。所以电伴热仍需有绝热层、防潮层和保护层。绝热层的材质、厚度和结构的选择应先按保温和防结露要求的绝热层厚度计算和选择电热带功率,当功率过大时,再增加绝热层厚度。用于保温为目的的绝热设防潮层。只有在确保夏季管道、设备表面不结露的情况下才可不设防潮层。保护层的设置要求与非电伴热保护层的设置要求相同。 1.4 电热带分自控温和恒功率两种。 (1)自控温电热带是由导电聚合物和两条平行金属导线及绝缘层构成。其特点是导电聚合物具有很高的电阻正温度系数特性,且相互并联;能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温度点及烧坏之虑。一般情况下,可不配温度控制器,仅在温度控制精度要求很高场合才配温控器。温控器的选择和安装要求与恒功率电热带相同。自控温电热带分屏蔽型和加强型。腐蚀区应采用加强型。在保温层内金属管道上放热量曲线见电伴热编制说明(一);电热带规格及技术特性见科华产品样本;电器保护开关的选用见电伴热编制说明(二)。 (2)恒功率电热带是以金属电阻丝或专用碳纤维束串联或并联与导电线芯及绝缘材料结合而制成,由于其输出功率恒定,温度积累必须采取通断电控温,因此使用时必须配置温控器,不允许交叉、重叠及任意接长、剪断使用,否则会出现过热、过载、燃烧等恶性事故,因此恒功率电热带常用于非重要(非防爆)场合,功率需要较大、温度较高的加热场合。 ● 2.电伴热设计 2.1散热量计算 散热量计算有两种方法:一是查表法;二是按公式直接计算法。 (1)查表法 首先根据需要伴热的维持温度(T0)和环境最低气温(Ta)计算温差:

电伴热设计选型

电伴热设计选型 电加热是利用电伴热产品所产生的热量来补偿被伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持具有相应的介质温度来满足工艺要求。正确计算出管道、容器、罐体等工艺装置的散热量,对准确维持介质温度是至关重要的。一、管道及附件散热量的计算 、工艺系数的确定 为确保计算的准确性,在计算前应正确确定各项系数,它们是管道、容积、罐体等介质要求维持的温度T,管道的直径d,容器的表面积S,保温材料的种类及厚度,环境温度(最低平均温度)TH,敷设环境(室内或室外、地面或埋地)。并计算维持温度TW与环境温度TH之差△T,△T=TW-TH 2、管道散热量的计算 Q=q×f×g×h Q-实际需要的伴热量 q-基本情况下单位长度管道的散热量(根据工艺系数查表3-1) f-保温材料修正系数(查表3-2) g-管材修正系数(查表3-3) h-环境修正系数(查表3-4) 例1、某厂有一碳钢管线,管径为1",保温材料为硅酸钙,厚度是20mm,管道中介质的维持温度35℃,冬季最低平均气温是-25℃,室外冬季平均风速10m/s,求管道每米热损失。 △T=TW-TH=35℃-(-25℃)=60℃

查表3-1 d=1 s=20mm △T=60℃时 得到:q=19.6w/m 查表3-2,保温层采用硅酸钙修正参数为f=1.50 查表3-3,管材修正系数为:g=1 查表3-4,环境修正系数为:采用插入法计算得h=1.1 则所须伴热量Q=19.6×1.5×1×1.1=32.34w/m 表3-1 管道散热量q(w/m2) 散热量q,以瓦特/米(w/m)单位表示 表3-1中的散热量计算基于几个基本系数 保温材料:玻璃纤维 管道材料:金属 管道位置:室外,风速8.9米/秒,室内=室外×0.9

电伴热使用说明书

电伴热作业指导 一、目的 检验电缆在运输、存放、敷设过程中是否受到损伤,电缆头制作质量是否达到标准要求,保证电缆安全可靠地投入运行。 二、编制依据 (1)03S401《管道和设备保温、防结露及电伴热》 (2)GB/T 19835—2005 自限温电伴热带 (3)GB/T 20841—2007 额定电压 300/500V生活设施加热和防结冰用加热电缆 三、安装范围 管道电伴热用伴热电缆。 四、应具备的条件 1、电缆敷设到位,电缆头制作完毕。 2、环境相对湿度不高于80%,温度不低于-30℃。 3、试验所需仪器仪表配备齐全、在有效期内。 4、调试人员熟悉掌握试验方法、仪器的操作使用。 五、调试顺序与技术要求及标准: 安装的准备: 1)所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。2)电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。 3)安装前,应先按照电件热系统图,逐一核对管道编号,确认无误后,才能进行安装。4)没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。 5)电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或气密试验)检查合格。 a、施放电加热电缆口寸不要打硬折或长距离在地面拖拉。 b、安装电加热电缆碰到锐利的边棱要先垫上铝胶带将其锐利处打磨光滑,以防将电加热电缆外层绝缘划破。 c、电加热电缆最小弯曲半径应不小于其厚度五倍。 d、电加热电缆应紧贴管道表面,以利散热。 e、安装电加热电缆应采用铝胶带粘贴,一则增大散热面,有利于热传导;二则方便安装。其方法是:先清楚电加热电缆途径处的油污、水分,最好能用汽油揩清。首先每隔八十厘米,用固定胶带将电加热电缆径向固定,然后敷设复盖铝胶带,最后将胶带用力抹压,使电加热电缆平整粘贴在管道表面。 f、安装电加热电缆附件时,应将电加热电缆留有一定富裕量,以使下次检修重复使用。 g、安装恒功率电加热电缆时,由于恒功率电加热电缆在整个长度上是一段段发热节组合而成,剪切时须特别注意电热带上发热区确保发热部分控制在需伴热的部位。

电伴热设计.doc

电伴热设计 电伴热是利用电伴热产品所产生的热量来补偿需伴热的管道、容器、罐体等工艺装置所散耗的热量,以维持其相应的介质温度来满足工艺要求。所以正确计算出管道、容器、罐体等工艺装置的热耗散量,对伴热所需的介质温度是至关重要的。为此在计算热耗散量前,必须先找出有关的几个重要参数:如T A(管道、容器、罐体等介质维持温度)。T B(当地最低环境温度)、d(管道的外径)、do(管道内径)、S(容器或罐体表面积)δ(保温层厚度)。另外还需知道保温材料的名称和敷设环境(室内或室外、地面或埋地)。当知道了这些参数,再借助于有关的计算方式和表就能进行具体计算,从而得到所需的散热量。 管道及附件耗散热量的计算 确定管道的热耗散量 首先应知道管道的口径、保温层材料及厚度和所需维持温度之差△T,查管道散热量表,(乘以适当的保温系数),就能得到单位长管道的散热量,如果管子在室内则再乘以0.9。如果伴热的是塑料管道,因为塑料的导热性远低于碳钢(0.12:25),故可用0.6-0.7的系数对正常散热量加以修正。 例1:某厂有一管线,管径为1/2",保温材料是硅酸钙,厚度10mm,管道中流体为水,水温需保持10℃,冬季最低气温是-25℃,环境无腐蚀性,周围供电条件380V、220V均有,求管道每米热损失? 步骤一:△T = T A - T B =10℃-(-25℃)=35℃ 步骤二:查管道散热量表,管径1/2"。10mm保温层。 当△T =30℃热损失为11.0w/m,当△T =40℃热损失为14.9w/m,△T =35℃时,每米损失可采用中间插入法求得(因表中无Q B值)。

Q B=11.0w/m+(14.9w/m - 11.0w/m)[(35-30)÷(40-30)]=12.95w/m 步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1.4 Qr=1.4Q B×f=1.4×12.95w/m×1.50=27.195w 答案:管道每米损失热量27.195W 保温材料修正数表 确定管道阀体的散热量 闸阀散热量通常是相联口径管道每米热损失的1.22倍;如果是球阀,则可用0.7乘以闸阀热耗量,如果蝶型阀(节流阀),则乘以0.5;如果是浮式球阀,则乘以0.6。 确定所需的电伴热带长度 从产品规格中可知电伴热带的工作电压,功率值。如算出单位长度热损失大于电伴热带单位长度的发热额定值,则可用以下方法来弥补: ●采用两条或更多条的平等电伴热带。 ●采用卷绕法(如果用此法,则要先求出热损失对电伴热带发热功率的比值。如在2"管道上热损失是24w/m,而电伴热带功率20w/m,则比值=24/20是1.2倍,查电伴热带跨

电伴热的特点、优点、寿命、应用范围介绍

https://www.360docs.net/doc/c515513997.html,招专业人才上一览英才 一、电伴热的特点 我国工艺管线和罐体容器的伴热目前大多采用传统的蒸气或热水伴热。电伴热是用电热的能量来补充被伴热体在工艺流程中所散失的热量,从而维持流动介质最合理的工艺温度,它是一种高新技术产品。电伴热是沿管线长度方向或罐体容积大面积上的均匀放热,它不同于在一个点或小面积上热负荷高度集中的电伴热;电伴热温度梯度小,热稳定时间较长,适合长期使用,其所需的热量(电功率)大大低于电加热。电伴热具有热效率高,节约能源,设计简单,施工安装方便,无污染,使用寿命长,能实现遥控和自动控制等优点,是取代蒸汽,热水伴热的技术发展方向,是国家重点推广的节能项目。 二、电伴热的优点 电伴热与蒸汽(热水)相比,具有诸多优势如下: (1)电伴热装置简单、发热均匀、控温准确,能进行远控,遥控,实现自动化管理。 (2)热具有防爆、全天候工作性能,可靠性高,使用寿命长。 (3)电伴热无泄漏,有利于环境保护。 (4)节省钢材:它不需要蒸气伴热所需的一来一去二趟伴热管路。 (5)节省保温材料。 (6)节约水资源,不象锅炉每天需要大量的水。 (7)电伴热还能解决蒸气和热水伴热难以解决的问题。 (8)电伴热设计工作量小,施工方便简单,维护工作量小。 (9)效率高,能大大降低能耗。 有的项目,无论是一次性投资,还是年运行费用,电伴热带比蒸汽伴热带都要节省;有的项目电伴热带的一次性投资可能会略高于蒸汽热水伴热,但以年运行费用论,通常电伴热运行1-2年节省的费用就能收回投资。 三、电热带使用寿命 在正确维护下,电伴热系统使用寿命为8年或更长 四、电伴热产品的应用范围 电伴热产品可广泛用于石油、化工、电力、医药、机械、食品、船舶等行业的管道、泵体、阀门、槽池和罐体容积的伴热保温、防冻和防凝,是输液管道、储液介质罐体维持工艺温度最先进、最有效的方法。电伴热不但适用于蒸汽伴热的各种场所,而且能解决蒸汽伴热难以解决的问题,如:长输管道的伴热,窄小空间的伴热;无规则外型的设备(如泵)伴热;无蒸汽热源或边远地区管道和设备的伴热;塑料与非金属管道的伴热,等等。 主要应用场所举例如下: (1)、石油管线防凝、解蜡和伴热保温。 (2)、油田井口采油树的伴热防凝,提高产量。 (3)化工管道、罐体、仪表管线的伴热保温。 (4)、海上石油平台输油管线伴热和水管防冻。 (5)、油轮和船舶管线、容器的伴热保温。 (6)、发电厂重油管道的伴热保温和水管的防冻。 (7)、间歇输送介质管道的升温和伴热保温。 (8)、需要严格控制介质温度管线的伴热保温

电伴热带安装与使用说明书精选文档

电伴热带安装与使用说 明书精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

电伴热安装与操作安装的准备: 1)所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。 2)电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。 3)安装前,应先按照电件热系统图,逐一核对管道编号,确认无误后,才能进行安装。 4)没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。 5)电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或气密试验)检查合格。 第一章:温控伴热电缆的安装与测试 (一)设计图 (二)施工前应有一份完整的设计图,图中应包括以下各项资料: (三)1、线路编号,供电点用长方格表示。 (四)2、线路所需电热带型号及长度。(单位:米)

(五)3、每米管道长度所需电热带长度(单位:米)即缠绕系数。(六)4、每个阀门所需用电热带长度。(单位:米) (七)5、伴热系统配套材料附件清单。 (八)6、温控系统配件清单。

7、施工时所需材料清单。 8、设计考虑参数和所采用保温材料规格。 (二)施工前准备工作 (A)管道系统 1、管道系统与配备都已施工完毕。 2、防锈防腐涂层已干透。 3、管道系统施工规范与设计图中所示一致。 4、锉去所有毛刺和利角。 (B)电热带和配件 1、电热带表面有否损破。 2、电热带的绝缘性能良好(要求用摇表在1000VDC测试时绝缘电阻为≥20MΩ)。 3、电热带与所有配件的型号与设计要求一致。 (C)现场准备 1、将一卷电热带与卷筒放置于一支架上,并放置在线路其中一端附近。

自限温电伴热施工断路器的选择

自限温电伴热施工断路器的选择 1 引言 随着民用建筑工程的发展,对电伴热产品的需求也日益增加,例如室外给水、消防管道等。自限温电伴热带的电气特性与一般电阻负载不同,工程施工时如未考虑此因素无疑给工程带来一定问题。 某工程需要对地下车库的给水管道进行保温伴热施工,大厦拟定对车库给水管道进行电伴热保温。本文结合这一工程实例,分析并给出了电伴热施工过程需要注意的一些问题。 2. 问题的提出 该电伴热工程是工程结束后新增加项目,总电流容量已经固定(125A)。自限温电伴热带总长度为4500米左右,厂家施工时设一台总的电源控制柜,柜内设DZ47-60/1P-40A微型断路器,为末端电源箱提供电源,每个末端电源箱内设DZ47-60/1P-25A带300米的自限温电伴热带负载。瞬时脱扣整定值5In(In断路器的额定电流)。 末端电源箱自限温电伴热带的计算电流:Ij=(300m*15W/m)÷220V=20.45A;根据断路器的额定电流I n≥I j,选择25A的断路器。试运行时断路器启动瞬间脱扣,测线路绝缘均符合要求。 3问题分析 断路器脱扣,可能的原因如下: a.线路过负荷 b.绝缘破坏

c.短路 d.断路器故障 绝缘测试结果符合要求,断路器没有故障,无过负荷现象,排除以上4点原因。 自限温电伴热带的阻值随温度升高而升高,启动电流远大于运行电流,厂家提供的15W/m阻值是温度在10℃时的数据,本工程的工作环境温度仅在2℃左右,管道内介质的温度同环境温度。 经现场测量100米的自限温电伴热带启动电流85A,持续时间2秒,2秒后迅速下降,5秒后11A。 4断路器的选择方案 4.1末端电源箱的断路器选择 末端断路器为25A时带300米的自限温电伴热带,启动电流理论值为Iq=85A*3=255A。则n=I/In=255/25=10.2 图1 微型断路器DZ47-60电流特性曲线图2 塑壳断路器NM1-225S特性曲线

电伴热设计方案导则

中国石化集团兰州设计院标准 SLDI 333C06-2001 电伴热设计导则 2001-01-08 发布 2001-01-15 实施 中国石化集团兰州设计院

目录 第一章总则 第二章电伴热型式简介 第一节电热带 第二节挠性电热板 第三章电伴热设计和选型 第一节电伴热的应用范围 第二节电伴热的选用原则 第三节热损失计算 第四节电伴热产品选型及长度确定 第四章电伴热的安装 第一节电伴热带的安装 第二节挠性电热板的安装 第五章电热带的施工 第一节电热带施工的一般要求 第二节电热带施工前的准备 第三节电热带的施工 第四节保温工程 第五节施工注意事项 第六章挠性电热板的施工 第一节挠性电热板施工的一般要求 第二节挠性电热板施工前的准备 第三节挠性电热板的施工 第七章设计文件

中国石化集团兰州设计院实施日期:2001-01-15 第一章 总 则 第1.0.1条 本导则适用于石油化工装置中对伴热有特殊要求的场合。 第1.0.2条 电伴热仅适用于二区防爆场所和非防爆区域。 第1.0.3条 本导则与国标、部标有矛盾时,按国标、部标的规定执行。 第二章 电伴热型式简介 第一节 电热带 第2.1.1条 串联式电热带 串联式电热带如一般的两条发热的电阻丝一样,在每条电阻线上包有两层聚四氟乙烯树脂(铁弗龙树脂TEFLON -RESIN )绝缘材料,也可在其外围加不锈钢补强网。此种电热带绝缘性佳,且富有耐药品性及耐腐蚀性,本身重量轻,易于施工,可用于二区防爆危险场所。 但此种电热带是依其长度的长短而改变其输电功率的。现场施工配管的实际长度往往与配管设计长度不同,因此在电热带敷设前,必须确实地对此电热带的输电功率与现场配管的实际长度认真核实。这是选择此种电热带不便之处。 串联式电热带见图2.1.1 图2.1.1 串联式电热带构造图 第2.1.2条 并联式电热带 并联式电热带又称恒功率型电热带。此种电热带可避免串联式电热带在选用设计上的不便之处。并联式电热带又分为单相供电和三相供电方式。 单相并联式电热带是在两条平行的电源导线上,包覆一层电气绝缘性能佳且具有耐热性及柔软性的树脂,在其周围缠绕可发热的镍铬丝,再在其上加一层绝缘材料而成。电热丝与电源导线构成许多并联相等的单元发热节,从而形成一个连续的发热体。当接通电源后,电热带单位长度上功率相等,电热带长度愈长,输出电功率愈大。所以它消除了串联式电热带需预制长度的缺点,又能任意切割。 单相并联式电热带构造见图2.1.2-1。

电伴热带安装的基础知识

配套附件 一、防爆电源接线盒 防爆电源接线盒是电热带的配套附件,一般固定在管道上,它可作为电源电缆与一根或二根电热带的连接之用,该产品按增安型防爆电器要求设计和制造,与电热带等其它附件配套后可用于工厂一区、二区爆炸性气体环境T4组场所。 1、产品型号 2、性能参数 额定电压:220V /380V 防护等级:IP55 绝缘电阻:≥50MΩ 配用电缆外径:φ10.5φ12.8 允许电流:15A 防爆标志:ExeIIT4 外形尺寸:178× 80× 110 3、使用注意事项 1、发现接线盒有裂损应立即停止使用,并进行更换。 2、安装时应拧紧各紧固件,严禁各芯间及电阻丝的相互搭接,保证正常的电气间隙。 3、安装时各密封圈尺寸应分别与电源电缆及电热带尺寸相符,不可随意调换,以保证防爆性能。 4、多余接线孔必须用所附钢片堵住,以保证防爆性能。 二、防爆中间接线盒 防爆中间接线盒是电热带配套附件,其主要作用是电热带与电热带的相互连接,以增加电热带的使用长度或连接不同功率的电热带,以及用于中间三通管道的分叉场所,该产品按增安型防爆电器要求设计,可用于工厂一区、二区爆炸性气体环境T4场所。 1、产品型号

2、性能参数 额定电压:220V /380V 允许电流:15A 防护等级:IP55 防爆标志:ExeIIT4 外形尺寸:二通:165× 82× 45 三通:165× 105× 45 绝缘电阻:≥50M Ω 适用电热带:恒功率并联带 自限式电热带 3、使用注意事项 1、发现接线盒有裂损,应立即停止使用,并进行更换。 2、安装时应拧紧各紧固件,严禁各芯间及电阻丝的相互搭接,保证正常的电气间隙。 3、安装时各密封圈尺寸应与所配电热带型号一致。 4、多余接线孔必须用所附钢片堵住,以保证防爆性能。 三、防爆尾端接线盒 防爆电热带尾端接线盒是电热带配套附件,其作用是密封电热带尾部,使电热带芯与外界环境有效隔离,该产品按增安型防爆电器要求设计,可用于工厂一区、二区爆炸性气体环境T4组场合。 1、产品型号 2、性能参数

电伴热带安装与使用说明书

电伴热安装与操作 安装的准备: 1)所有伴热电缆均须进行电路连续性和绝缘性能的测试,不符合规定的不能使用。 2)电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。 3)安装前,应先按照电件热系统图,逐一核对管道编号,确认无误后,才能进行安装。 4)没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。 5)电伴热系统安装前,被伴热管道必须全部施工完毕,并经水压试验(或气密试验)检查合格。 第一章:温控伴热电缆的安装与测试 (一)设计图 施工前应有一份完整的设计图,图中应包括以下各项资料: 1、线路编号,供电点用长方格表示。 2、线路所需电热带型号及长度。(单位:米) 3、每米管道长度所需电热带长度(单位:米)即缠绕系数。 4、每个阀门所需用电热带长度。(单位:米) 5、伴热系统配套材料附件清单。 6、温控系统配件清单。

7、施工时所需材料清单。 8、设计考虑参数和所采用保温材料规格。 (二)施工前准备工作 (A)管道系统 1、管道系统与配备都已施工完毕。 2、防锈防腐涂层已干透。 3、管道系统施工规范与设计图中所示一致。 4、锉去所有毛刺和利角。 (B)电热带和配件 1、电热带表面有否损破。 2、电热带的绝缘性能良好(要求用摇表在1000VDC测试时绝缘电阻为≥20MΩ)。 3、电热带与所有配件的型号与设计要求一致。 (C)现场准备 1、将一卷电热带与卷筒放置于一支架上,并放置在线路其中一端附近。 2、沿管道布电热带,并避免: *将电热带放置于毛刺和利角上。 *用力拉扯电热带。 *脚踏或重物放置电热带上。 (三)单根电热带施工法 1、玻璃纤维压敏胶带或铝胶带每隔约50Cm处将电热带固定于管道上。 2、平敷时尽可能将电热带附在管道的下45度侧方。

相关文档
最新文档