市政道路路面平整度影响因素及质量控制

市政道路路面平整度影响因素及质量控制
市政道路路面平整度影响因素及质量控制

市政道路路面平整度影响因素及质量控制

摘要:市政道路路面平整度是路基平整度及各结构层平整度的综合反映,如何

做好路面平整度就至关重要。论文首先分析了市政道路路面平整度的重要性,并

综述了其影响因素,最后从施工的角度重点探讨了质量控制对策。

关键词:沥青路面平整度施工质量控制

Municipal road pavement smoothness influencing factors and quality control of

Lin Ying Ningbo Dongheng municipal garden construction company limited 315600 Abstract: municipal road pavement evenness is the smoothness and the subgrade

of evenness of the comprehensive report, how to do a good job of pavement evenness is crucial. The thesis first analyzes the importance of municipal road pavement smoothness, and summarizes its influence factor, finally from the angle of construction discusses the quality control measures.

Key words: the smoothness of asphalt pavement construction quality control 众所周知,路面平整度直接影响着车辆在路面上的行驶质量,如何保证市政

道路路面的平整度是关系到车辆行驶安全及日后整个公路的使用寿命的重点,可

见在公路建设和养护施工过程中对任何一个工序环节的忽视都将影响沥青混凝土

路面的平整度。

1市政道路路面平整度的重要性

路面平整度在作为路面评价和行驶舒适性的重要指标时,还涉及到行车安全性、行驶舒适性、经济性能等方面的影响。美国联邦公路局的研究表明路面平整

度与道路寿命有一定的关系,并把提高路面平整度作为重要研究课题。从这些方

面我们可以看出路面平整度的重要性。通过对北美地区大量调查和研究表明,轻

微提高路面初始平整度都会使路面长期性能得到显著提高,充分说明路面平整度

的重要性。通过延缓路面不平整度的发展,路面整个寿命周期费用和每年公路养

护费用也会得到显著降低。我国很多学者都进行了研究。吴九懿、匡志新等应用

和改进滑模摊铺机提高水泥混凝土路面平整度,同时我国2000年颁布了《公路

水泥混凝土路面滑模施工技术规程》,这标志着我国高速公路水泥混凝土路面滑

模施工技术已经走向成熟,并为建设更高平整度路面和更高质量路面提供技术力量。

2影响公路沥青路面平整度的主要原因

根据多年的经历及对实际情况的分析,导致路面不平整有以下几方面的原因。

1)基层施工质量的影响。以往“基层不平面层调,下层不平上层找”的老方法,对平整度要求很高的高速公路来说是根本行不通的。如路基的填料稳定性较差、

压实不充分,路基排水系统不完善等,均会造成路面的不均匀沉降。如规范允许

基层顶面偏10mm,当用沥青混合料将10mm 低洼处填平时,尽管表面是铺平了,但该处多出的 10mm 松厚经压实后仍会出现低洼现象,由此可见基层顶面的平整

度对沥青面层的平整度影响可谓举足轻重。

2)施工机械作业的影响。运输车辆:连接于拌合站和摊铺现场,运输车辆过

少或安排不合理会导致供料失去连续性,滑模摊铺机不得以而停机,停机再启动

使摊铺速度变化会影响路面平整度。运输车辆密封性差会导致漏浆现象,浆体的

流失使得水泥混凝土工作性受影响,从而影响平整度。

3)人员。施工人员的素质和数量、掌握施工技巧、具有足够的施工经验、上

班时间的缺勤等都对施工造成影响。

4)摊铺机及施工工艺。摊铺机及该施工工艺对路面的影响主要体现在以下几

沥青路面平整度的影响因素及解决方法

沥青路面平整度的影响因素及解决方法 摘要 :根据多年的沥青混凝土路面施工实践,对路基和路面平整度、沥青混凝土的拌合质量、摊铺机械及摊铺工艺、压实机械及碾压工艺、纵横施工缝的处理等进行了分析,提出了影响沥青混凝土路面平整度的因素及相应的解决处理方法。如今沥青混凝土结构层被越来越多的应用在高速公路和普通干线公路上。沥青路面的平整度是评定路面质量和使用性能的主要指标之一,公路等级越高,对路面平整度的要求也越高。路面平整度,不但直接关系到行车的安全、舒适,还会影响车辆的燃料消耗、轮胎磨损、运输时效及其它经济指标。而且路面不平整会导致车辆对路面冲击、振动,反过来加速路面的损坏。部颁《公路工程质量检验评定标准》(JTJ071-98)要求,用连续式平整度仪测定的路面平整度均方差δ<1.2mm。然而,影响沥青混凝土路面平整度的因素很多,每一个环节甚至微小失误都会造成平整度指标降低。笔者在这里主要从路面机械配置、施工工艺等方面对平整度影响因素作一简要分析并提出相应解决对策。 关键词: 沥青路面高速公路平整度影响因素方法对策 一、平整度的概述: (一)、路面平整度的定义 路面平整度指的是路表面纵向的凹凸量的偏差值。 (二)、路面平整度检测的指标 路面平整度是路面评价及路面施工验收中的一个重要指标,主要反映的是路面纵断面剖面曲线的平整性。当路面纵断面剖面曲线相对平滑时,则表示路面相对平整,或平整度相对好,反之则表示平整度相对差。较高等级公路则要求路面平整度也要好。 从路基平整度抓起。提高路基平整度的要求标准现大多采用提高路基成型时平地机刮刀自动找平能力,一般不用手动控制,而采用激光或声纳控制。刮刀上装有激光接收器或声纳锁定追踪器,可使路基平整度保持在较好水平。严格控制底基层、基层标高和平整度,高程严格控制,宁低勿高,以保证面层厚度。要求底基层、基层摊铺用摊铺机进行作业,以保证平整度分层提高。

平整场地计算公式

、平整场地:建筑物场地厚度在±30cm以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面 积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S底———建筑物底层建筑面积;L 外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计 算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式: (1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。 (2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长 度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计 算,交接重合出不予扣除。 基坑开挖: V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。

三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑 物被埋置部分的体积。 式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物等所占体积 2、室内回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积 主墙间净面积=S底-(L中×墙厚+L内×墙厚) 式中:底———底层建筑面积;L中———外墙中心线长度;L内———内墙净 长线长度。 回填土厚度指室内外高差减去地面垫层、找平层、面层的总厚度,如右图: 四、运土方计算规则及公式: 运土是指把开挖后的多余土运至指定地点,或是在回填土不足时从指定地点取土回填。土方运输应按不同的运输方式和运距分别以立方米计算。 运土工程量=挖土总体积-回填土总体积 式中计算结果为正值时表示余土外运,为负值时表示取土回填。 五、打、压预制钢筋混凝土方桩 1、打预制钢筋混凝土桩的体积,按设计桩长以体积计算,长度按包括桩尖的全 长计算,桩尖虚体积不扣除。计量单位:m3,体积计算公式如下: V=桩截面积×设计桩长(包括桩尖长度) 2、送钢筋混凝土方桩(送桩):当设计要求把钢筋砼桩顶打入地面以下时,打桩机必须借助工具桩才能完成,这个借助工具桩(一般2~3m长,由硬木或金属制成)完成打桩的过程叫“送桩”。计算方法按定额规定以送桩长度即桩顶面至自然地坪另加0.5米乘以横截面积以立方米计算,计量单位:m3,公式如下: V=桩截面积×(送桩长度+0.5m)

对影响沥青路面平整度各因素的分析

对影响沥青路面平整度各因素的分析 发表时间:2009-11-23T11:38:52.857Z 来源:《中小企业管理与科技》2009年6月上旬刊供稿作者:徐栋梁 [导读] 根据我国几年来的公路建设经验,本文对影响路面平整度的因素进行了分析总结并提出了相应的解决对策。 徐栋梁(辽宁省沈阳市公路勘测设计公司) 摘要:路面平整度是反映道路综合使用性能的重要指标,在追求高速、舒适的情况下对路面平整度的要求越来越高,提高路面平整度、为车辆提供一个良好舒适的运行环境是工程技术人员追求的目标之一。根据我国几年来的公路建设经验,本文对影响路面平整度的因素进行了分析总结并提出了相应的解决对策。 关键词:沥青路面平整度影响 0 引言 在高速公路建设中,由于沥青路面具有表面平整、行车舒适、耐磨抗滑、低噪声、施工周期短、维修简便等特点,而被广泛应用。人们乘车在高速公路上行驶,平整度能直接反映高速公路通车后的整体效果,是体现路面使用品质与行车舒适性的最直接的外观指标。 1 基层施工质量的影响 以往“基层不平面层调,下层不平上层找”的老方法,对平整度要求很高的高速公路来说是根本行不通的。如规范允许基层顶面偏差 10mm,当用沥青混合料将10mm低洼处填平时,尽管表面是铺平了,但该处多出的10mm松厚经压实后仍会出现低洼现象,其深度为10-(10/1.2)=1.7mm(1.2为沥青混合料平均压实系数)。如误差大于10mm则不平整度将更大,由此可见基层顶面的平整度对沥青面层的平整度影响可谓举足轻重。 1.1 重视基层平整,厂拌混合料摊铺机铺筑二灰碎石半刚性基层的施工,过去习惯采用平地机作业,它的缺点是高程、厚度难以控制,且反复找平表面容易离析,同时混合料浪费也多。对设计厚度超过30cm者可分二层铺筑,摊铺宽度控制在6~8m时平整度效果较好。 1.2 控制混合料的最大粒径及含水量为提高基层平整度及方便摊铺机铺筑,基层混合料集料最大粒径宜适当减小。因为集料粒径越大,混合料越易产生离析,且对搅拌、摊铺设备的磨损也大。因此,适当减小集料最大粒径,有利于摊铺机作业和基层顶面平整度的提高。 实践表明,提高沥青路面平整度必须从基层抓起,而提高基层施工质量的关键在于采用精良的施工机械,如好的稳定粒料厂拌设备与进口摊铺机。 2 施工机械作业的影响 2.1 摊铺机基准钢丝及装置的准确程度在施工中我们采用底面层“走钢丝”、中、上面层“走雪撬”的基准控制方法,收到了较好的效果。 底面层施工前,先要张拉好用于承托仪表传感器的基准线(2~3mm钢丝绳),然后设好各桩(桩距10m),根据测量的挂线高确定各桩位钢丝的高度。应精心测量、认真调整,并检查钢丝拉力不得小于784N。否则,由于测量不准、量线失误或拉力不够钢丝下挠等都会通过架设在钢丝上的仪表反映到摊铺路段上,造成路面波浪状起伏,影响平整度。 2.2 摊铺机仪表性能及微调器的正确使用路面标高的控制是靠仪表来实现的。摊铺机带全自动调平装置,能够根据自动找平仪的指令达到设计高程,这样铺筑的路面平整度好。 2.3 摊铺机熨平板加热及调整德国产ABG422型、ABG311型、VOGELE2000型、VOGELE1800型摊铺机。这四种摊铺机的熨平板加热装置中ABG型属于液化气加热,VOGELE型属于电加热。摊铺前,如果熨平板加热温度不够或加热不均匀,摊铺时会造成温度较高的混合料与温度较低的熨平板粘结,使得摊铺层面出现拉毛、小坑洞、深槽等不规则的凹凸不平。因此,摊铺前熨平板温度必须加热到85oC~90oC。 另外,摊铺前一定要认真检查熨平板的平直度,调整撑拉熨平板的拉杆长度,使熨平板下表面同属一坡度,以确保路面横向平整度。 2.4 摊铺机振捣器、夯锤对路面平整度的影响振捣器、夯锤的频率与摊铺速度、混合料级配、温度和厚度等有很大的关系,应按使用说明书规定认真选定合适的频率。如果摊铺较薄的上面层,振捣器、夯锤频率过大会造成熨平板共振,使摊铺机找平装置处于不稳定状态而影响平整度。 2.5 校正行驶方向引起路面不平整摊铺机行驶方向发生偏斜时,必须及时校正。此时,摊铺机履带一边前进,另一边缓慢前进,快的一边熨平板前方会有一个向前抬高的小台阶,慢的一边熨平板后端会有一个向后推挤的小台阶,影响路面平整度,应在碾压时采取措施予以消除。 3 压路机 路面平整度好坏的关键在摊铺机,但与压路机的碾压有着不可分割的关系。合理的碾压工艺与正确的碾压操作是保证路面平整度的重要手段。 3.1 碾压方式及碾压速度的控制碾压沥青混合料应采用组合碾压的方式,初压时首先采用双钢轮压路机,碾压2遍,速度为1.5~ 2km/h;复压紧接在初压后进行,应采用重型轮胎压路机,碾压4~5遍,速度为3.5~4.5km/h;终压采用双钢轮压路机,碾压2遍,速度为 2.5~ 3.5km/h。碾压时除按规范标准进行外,应注意碾压路线和方向不得突然改变,以免使混合料产生推移或发裂。 3.2 碾压温度的控制沥青混合料的温度控制是沥青路面施工过程中的关键,现场应有专人负责对来料车、摊铺后、碾压前、碾压中及碾压终了的温度进行测试。碾压应在混合料较高温度下进行最为有利,一般初压不低于120℃,复压不低于90℃,终压完成时不低于70℃。温度越高越容易提高路面的平整度与压实度,温度偏低导致沥青混合料颗粒间摩擦阻力加大,使沥青面层压实度不均匀,且容易形成局部松散和发裂,影响路面平整度。 3.3 压路机的正确使用轮胎压路机使用时,应注意检查各个轮胎的新旧程度和轮胎压力,必须做到新旧一致、压力相等。否则轮胎软硬不一,在碾压过程中形成轮迹,使沥青面层横向平整度超标。钢轮压路机应装雾状喷水装置以防混合料粘轮,轮胎压路机应有专人负责用1:3的油水混合液喷洒轮胎表面,防止碾压时将沥青混合料粘起形成路面不平整。 4 施工过程中其它因素的影响 4.1 沥青拌和站的生产能力应与摊铺能力相匹配实践证明,当沥青拌和站的生产能力与摊铺机的摊铺能力相匹配时,摊铺机能连续、均匀、不间断作业,此时路面平整度就好。但在低温季节施工,如供料不及时,摊铺机待料时间过长,虽然ABG型摊铺机装有防爬锁,但

沥青混凝土路面平整度的影响因素分析

沥青混凝土路面平整度的影响因素分析 发表时间:2017-07-24T14:56:02.750Z 来源:《基层建设》2017年第9期作者:齐文银 [导读] 摘要:从沥青混合料的质量、施工机械、施工方法、接缝的处理等方面分析了影响沥青混凝土平整度的原因,提出了相关措施。 身份证号码:37012519820623xxxx 摘要:从沥青混合料的质量、施工机械、施工方法、接缝的处理等方面分析了影响沥青混凝土平整度的原因,提出了相关措施。 关键词:路面平整度;影响因素;处理措施 路面平整度是高等级沥青路面的重要使用性能之一,良好的平整度能保证行车舒适、快速及路面的耐久。影响平整度的因素很多,结构层状况,混合料温度,施工机械及施工工艺都对其有较大影响,本文结合施工实践,对施工因素对路面平整度影响进行分析。 一、影响因素分析 l、摊铺机的性能及其作业 (l)沥青摊铺机的摊铺作业是通过浮动熨平板与热沥青混合料的相互作用进行的,当指令摊铺作业处于稳定工况下,作用在浮动熨平板的各外力对施点的力矩处于平衡状态,熨平板的位置保持稳定不变,摊铺厚度是一常值,上述力平衡关系的任何破坏都会导致熨平板位置的变化而影响摊铺路面的平整度。 (2)影响摊铺路面平整度的基本因素是摊铺阻力的变化,包括的它的大小和方向,引起摊铺阻力波动的主要原因是摊铺速度波动,其次则是混合料组成和温度的不均匀,这些都会引起混合料内部以及混合料与熨平板之间的摩擦力和粘性力的变化。 为了获得平整的摊铺表面,摊铺机的操作应尽可能地保持摊铺机稳定的摊铺速度、稳定的刮板输送器供料量、稳定的螺旋输送器送料量,以保持熨平板前方料堆大小和料位高度的恒定。 2、摊铺机调平基准 装有熨平板自动调平装置的摊铺机、调平系统的参考基准不可能是绝对准确,其误差也是引起铺筑路面不平的一个重要来源。用来建立摊铺机自动调平系统的纵向参考基准有固定在路面侧边的弦线基准、沿着接缝相邻路面滑动的调平滑靴基准和平衡粱式移动参考基准三种。 (1)弦线参考基准本身的误差主要来源于挂线支撑立杆的高程误差和弦线的挠度误差:前者包含了水准标尺的误差、测量读数的误差和立杆的安装误差;后者包含了弦线的张紧度传感器对弦线的压力及其在弦线上滑移引起的误差。 (2)调平滑靴基准,误差主要来源于滑靴支承表面不平整以及滑靴跳动等原因引起的误差。 (3)平均粱式移动参考基准误差的主要来源虽然与调平滑靴相同,但由于经过多次平均化处理、特别是现代的平均梁基准采用了多滑靴弹性浮动支承的结构和大大加长了平均梁的长度,极大地改善了参考基准的精度。 3、热拌混合料的影响 热拌沥青混合料的质量也是影响沥青路面平整度的一个因素,热拌沥青混合料的质量受以下几种因素的影响。 (1)由于拌合设备的意外故障,如计量装置失灵,使沥青泥合料级配不均匀或油石比不准;振动筛破裂,造成混合料中混有超规格的石料,使摊铺后松铺系数发生变化或引起摊铺面的裂痕,影响路面的平整度。 (2)沥青混合料的拌合温度对沥青路面平整度的影响。施工中,因拌合机的产量与摊铺机不匹配,往往采用多台拌和机联合供料。在供料过程中,每台拌合机的拌合温度不可能完全一致,再加远近不一,使摊铺机摊铺后的混合料局部温度产生变化,在碾压过程中,引起区域面积压实效果的变化,影响沥青路面的平整度。 (3)沥青混合料离析对沥青路面平整度的影响。沥青混合料在运输、摊铺过程中会产生一定程度的离析,离析后由于粗细料的压实系数不同,使压路机在碾压过程有明显摇晃,造成碾压效果不同而影响路面的平整度。 4、摊铺工艺的影响 摊铺机在操作过程中应注意下几个影响因素。 (1)摊铺应保持连续。必须配足与摊铺能力相匹配的混合料,尽量能够做到摊铺过程中不停机。尽管新型ABC摊铺机具有自锁装置,但热混合料在熨平板装置自重的作用下总会产生轻微下沉,摊铺机的重新启动也会产生局部微小不平整。摊铺机停机次数应减少,停机时间不宜过长。松铺层热混合料在熨平板装置的自重作用下会微微下沉。当混合料油石比偏大,温度偏高,级配偏细时,此现象将会加重,使铺面出现台阶。 (2)摊铺速度要保持缓慢均匀,一般摊铺速度要控制在每分钟1.5-2.Om,摊铺速度的不恒定会导致摊铺层初始密度不均,引起碾压后局部厚度的变化而影响平整度。 (3)在摊铺过程中,摊铺机螺旋送料器应均匀不停顿的转动,两侧应保持有不少于送料器高度2/3的混合料,并确保在摊铺全宽断面上不发生离析。摊铺后的混合料,原则上不应该用人工进行整修。 (4)料车卸料时不慎散落的混合料应及时清除,否则不能摊铺,以免两侧履带或轮胎因撒落料影响而产生接地标高与横坡不一致。 (5)摊铺机起动和熨平板振动要同步。沥青混凝土摊铺层属于薄铺层,用小振幅4-12mm即可,振动主要使混合料颗粒间易于重新集聚振实。 5、碾压工艺的影响 碾压工艺与碾压机具的合理组合对平整度影响很大。 (1)转向轮位置不当引起混合料推移。转向轮应该位于前进方向后面,有的司机为了驾驶方便,碾压时不碰挤路缘面,将转向置于前面,结果碾压时使压路机推进机和轮载的作用点移向滚轮中心偏向前,由于推力的作用,热混合料被挤压隆起。如果驱动轮在前,由于滚动旋转力的作用,混合料挤入滚轮下方,碾压中很少产生混合料推移和裂纹。 (2)碾压温度和遍数控制不严会使表面平整度达不到规定要求。碾压温度过高,始压时混合料易推移,终压时不成形,温度太低,密实度和表面平整度也不易保证。初压在较高温度下进行,以不产生推移、开裂为原则。初压温度应根据沥青稠度,压路机类型,摊铺初始密度等因素通过试铺确定。 (3)压路机应以慢而均匀的速度碾压,初压时主动轮在前防止热混合料被挤压隆起,碾压中从外侧向内侧,从低处向高处碾压,碾压过

浅谈沥青混凝土路面平整度的控制方法

浅谈沥青混凝土路面平整度的控制方法 浅谈沥青混凝土路面平整度的控制方法 【摘要】文章通过对高等级公路沥青路面的施工实践,分析可影响路面平整度的原因,并提出了控制沥青路面平整度的措施。 【关键词】沥青路面;平整度;控制 沥青路面的平整度是评定路面质量和使用性能的主要指标之一,不但直接关系到行车的安全,还会影响车辆的燃料消耗、轮胎磨损等。根据多年的实际工作经验,并参考大量参考文献,就如何控制沥青混凝土路面平整度进行了初步探讨。 1 、影响沥青路面平整度的因素 在沥青路面施工中,影响沥青路面平整度的因素主要有以下几个方面: (1)基层平整度对面层平整度的影响。 (2)沥青混合料的影响。 (3)摊铺作业的影响 (4)碾压作业的影响 (5)施工机械装备和人员素质影响。 2 沥青混凝土路面平整度控制措施 2.1 路面结构层施工控制 (1)垫层施工 垫层施工前一定要对所做路基进行标高检查,对超出规定范围的应进行修整,直到达到规定要求为止。 (2)底基层施工 在施工中应加强整平控制,采用多次放样,放样密度包括横向和纵向的越来越密集,以给平地机手提供更好的整平目标。在整平中,不断调整摊铺厚度,使碾压好的底基层料能达到预期的标高。 (3)基层施工 ①在路面工程施工中,对基层混合料及铺筑设备对路面平整度的影响至关重要,采用厂拌混合料,摊铺机进行摊铺,在施工中要注意

标高控制,碾压要到位,对设计厚度超过30cm者可分二层铺筑,摊铺宽度控制在6-8m时平整度效果较好。 ②控制混合料的最大粒径及含水量。为提高基层平整度及方便摊铺机铺筑,基层混合料集料最大粒径宜适当减小。因为集料粒径越大,混合料越易产生离析。因此,适当减小集料最大粒径,有利于摊铺机作业和基层顶面平整度的提高。 ③基层养护要到位。对于摊铺后的养护,要按规范要求,强度达到后方可铺筑面层,最少要达到七天养护。 ○4必须改变“基层标高不行面层调,基层不平整面层弥补”的观念。由于基层标高及不平整在施工中将引起摊铺设备技术性能改变和松铺厚度变化,从而对沥青面层的平整度会产生重大影响。 2.2 热拌沥青混合料质量的控制 (1)沥青混合料拌合站的生产能力及成品料的质量是影响路面平整度的第一环节。当沥青拌和站的生产能力与摊铺机的摊铺能力相匹配时,摊铺机能连续、均匀、不间断作业,此时路面平整度就好;拌合站的规模小,将直接影响到铺筑速度,使摊铺机频繁停机,直接影响路面的平整度;因此切忌摊铺机经常停机。拌合时间也很为关键,若拌和时间短,将造成混合料不均匀、离析现象,平整度很难保证。施工中当沥青混合料混入超大规格的石块并进入摊铺机作业时,对机械的摊铺和碾压都会带来不利影响,尤其是对路面平整度来讲。 (2)拌和料的温度。为了确保摊铺机连续、均匀、不间断地摊铺,每台拌和机产量必须达到一定的数量,否则必须采用多台拌和机联合供料,在联合供料的过程中,每个拌和机的拌和温度不可能完全一致,再加上料源的不一致,使得摊铺后的路面局部在碾压过程中碾压温度发生变化,引起压实效果的变化,影响到整个路面的平整度。解决这一问题的方法是不同拌和机生产的混合料要采取集中摊铺的 原则,安排专人负责收料,摊铺机前储存一定数量的混合料后再摊铺,不同拌和机生产的混合料不得互相掺和摊铺。 (3)混合料的离析。一般沥青拌和机均带有储料仓,混合料通过运料斗进入储料仓,再放入运输车辆,均会产生一定程度的粗细粒料离析,再加上传统习惯在施工过程中每车料摊铺结束时摊铺机接料

c影响水泥混凝土路面平整度的因素及其控制措施

c影响水泥混凝土路面平整度的因素及其控制措施

影响水泥混凝土路面平整度的因素及其控制措施 [摘要]对影响水泥混凝土路面平整度的因素进行分析,并提出提高水泥混凝土路面平整度的措施和控制办法。 [关键词]水泥混凝土路面平整度措施控制 一、影响水泥混凝土路面平整度的因素及其控制 (一)影响路面平整度的因素及其机理 在赤峰市松山区松山大街的施工过程中发现,做面工序结束后,用三米直尺检查平整度时无丝毫间隙,但混凝土终

凝后或次日检查,却又会出现间隙,有时甚至达1厘米左右。由此说明,决定路面平整度的因素,除做面工序自身的原因外,混凝土硬化过程中的收缩均匀与否,其它前期工序是否造成做面工序无法弥补的影响,都有密切的关系。那么上述做面工序以外的其它因素,是通过何种方式影响路面平整度呢?现分述如下: 1.混凝土硬化过程中不均匀收缩的因素 (1)产生不均匀的机理 众所周知,新拌混凝土在一定温度条件下,毛细孔水、游离子水等不断蒸发,使毛细孔水在逐渐下降过程中,弯液面曲率逐渐增大;在表面张力作用下,产生收缩力致使混凝土收缩。上述收缩现象主要发生在浆体。如果这种收缩是均匀进行的,对路面平整度不会产生什么影响或影响甚微。若新拌混凝土水灰比值偏大、水泥浆体偏多,而水灰比或浆体在拌合料中分布不匀,或拌合料拌合不均,混凝土振捣密实度不均匀,收缩亦随之不均匀,将致使成型路面的不平整。 (2)不均匀收缩的因素

如上所述,产生混凝土硬化过程中不均匀收缩的因素主要是水灰比、浆体含量或密实度分布不均匀所致,可能是某一种因素所致,也可能是几种因素同时影响的结果。一般有以下几种情况: (3)水灰比控制不严 混凝土在拌制过程中,水灰比控制不严,拌合料时稠时稀,摊铺不均匀。真空脱水时间不足,致使中部已达到塑性强度,边部却仍呈弹软状态,剩余水灰比分布不匀。有的施工单位往往疏忽大意,相邻吸面未重叠放置吸垫,造成漏吸,则次处混凝土不仅仍处在初始水灰比状态,甚至还易在该处产生裂缝,也有的施工单位,为省事另拌砂浆或找补做面,不仅会造成表层水灰比不均匀,甚至会出现网裂或破皮。 (4)浆体含量不均匀 混凝土拌制时间不足所致、拌合料组成成分的不均匀或运料过程中产生离析现象,摊铺时又未重新翻拌,致使混合料中浆体不均匀分布,出现浆体或骨料集中现场。振捣不足或振捣过度所致、浆体不上泛或浆体上泛过多、骨料下沉集中的分层离析,也会造成浆体含量的不均匀。骨料集中处浆

影响沥青路面平整度原因分析与对策

影响沥青路面平整度原因分析与对策 根据沥青道路路面施工技术规范要求,在沥青道路面层的施工中,总结出了质量的控制点,路面平整度施工控制,以及施工中的对策。 标签:平整度拌和料摊铺碾压施工工艺人员素质及配合 随着城市道路的迅速发展,对路面平整度的要求也越来越高,由于沥青路面具有表面平整、行车舒适、耐磨抗滑、低噪声、施工周期短、维修简便、具有足够的强度、稳定性、抗滑性和尽可能低的扬尘性等特点,而被广泛应用。路面平整度,不但直接关系到行车的安全、舒适,还会影响车辆的燃料消耗、轮胎磨损、运输时效及其它经济指标。路面不平整会导致车辆对路面冲击、振动,反过来加速路面的损坏。 一、工程概况 在奎屯市新建的托里路、沙湾路、喀什路道路改造工程中,设计路面结构形式为,基准层:20cm,5%水泥稳定天然砂石级配料,下封层:乳化沥青,下面层:5cmAC-20Ⅱ型中粒式沥青料,上面层:3cmAC-13I型细粒式沥青料。路面宽16m,计算行车时速40Km/小时,设计最大荷载:汽车—50T。基层质量的好坏直接影响路面的平整度,为了保证路面的质量,在路面施工中,从选材到施工工艺、现场施工都加以严格的控制。根据施工实际经验,以及对道路出现的坑凹、接缝台阶、波浪、碾压车辙、桥涵与路面接茬不平、跳车等路面不平整现象,从沥青混合料生产、路面机械配置、施工工艺等方面,结合这几条道路施工实践,就影响沥青路面平整度的原因进行分析,并提出相应对策。 二、沥青路面不平整产生的主要原因 在道路沥青路面的施工中,影响沥青路面平整度的因素主要有八个方面:①路基与底基层平整度对面层平整度的影响;②、水泥稳定基层对面层平整度的影响;③沥青混合料的影响;④运料车辆与摊铺机的配合对道路平整度的影响;⑤路面摊铺作业影响,摊铺机的操作及本身的调整对摊铺质量影响较大;⑥施工缝(纵、横)对平整度的影响;⑦碾压作业的影响;⑧施工设备和人员素质影响。施工人员素质、路基施工质量、桥头涵洞两段的处理、路面施工机械的选用及路面材料的质量,是影响路面平整度的主要原因。 三、沥青混凝土路面平整度控制措施 (一)、路基与底基层平整度对沥青混凝土面层平整度的影响及对策 1、沥青混凝土路面的平整度,不是由最后一道面层所完全确定的。如果路基、底基层、基层、分层面层平整度相差较大,各层铺出的松铺厚度也不等,碾压后各层表面就会出现不平整。即使自动找平装置可以消除一部分误差,但摊铺

平整场地计算规则

平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点 ⑴、计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线,中心线计算起来比较麻烦(同平整场地)。 ⑵、中截面面积不好计算。 ⑶、重叠地方不好处理(同平整场地)。 ⑷、如果出现某些边放坡系数不一致,难以处理。 4、大开挖与基槽开挖、基坑开挖的关系 槽底宽度在3m以内且长度是宽度三倍以外者或槽底面积在20m2以内者为地槽,其余为挖土方。

毕业论文——沥青路面平整度的分析

摘要 随着市场经济的快速发展,高速公路建设也突飞猛进,沥青路面机械化施工 设备已经配套,施工工艺较完善,路面平整度是评价路面使用性能的一个重要指标,它的改善和提高一直作为沥青路面施工中的一项关键技术而受到了国内外公路科技界关注、重视和研究. 本文全面分析了影响沥青混凝土路面平整度的因素,并提出了相应的解决措施,例如基层平整度、改进碾压及摊铺等施工工艺等一些具体的路面平整度控制措施,以提高沥青路面平整度,保证路面工程质量,改善道路的使用性能.本文还通过对我国几年来的公路建设经验,对沥青路面的影响度进行了分析。 关键词:公路、沥青路面、平整度、影响因素、控制措施

目录 1 引言 (1) 1.1 沥青路面平整度问题的提出 (1) 1.2我国公路的现状 (1) 1.3 现行平整度相关规范标准 (2) 1.3.1《公路沥青路面养护技术规范》(JTJ073. 2-2001)的规定 (3) 1.3.2《公路工程质量检验评定标准》(JTG F80/1-2004)的规定 (3) 1.4 公路沥青路面平整度现状小结 (4) 2 沥青路面平整度影响因素分析 (5) 2.1 路基不均匀沉降对路面平整度的影响 (5) 2.2 基层不平整对路面平整度的影响 (7) 2.3 桥梁涵洞两边的跳车对平整度的影响 (7) 2.4 材料及沥青混合料的影响 (8) 2.5 施工工艺及其他因素的影响 (11) 3 公路沥青路面平整度的治理措施 (15) 3.1 路基不均匀沉降的控制 (15) 3.2 基层平整度的控制 (19) 3.3 混合料的质量控制 (21) 3.4 桥梁涵洞的影响控制措施 (23) 3.5 施工工艺的控制 (24) 4 沥青路面平整度的评价指标 (29) 4.1平整度的检测指标 (29) 4.2 平整度的检测方法 (30) 5 结论 (32) 6参考文献 (33)

沥青路面产生不平整的原因及处理(一)

沥青路面产生不平整的原因及处理(一) 1 前言 随着高等级公路的迅速发展,对于路面平整度要求越来越高,路面平整度的合格率既反映了行车舒适程度,又反映了施工队伍的水平。近三年,我单位所施工的G312线眉苋段、G312线凤眉段及S304线安蔺段沥青路面工程,不同程度的出现了坑凹、接缝台阶、波浪、碾压车辙、桥涵与路面接茬不平、跳车等路面不平整现象,本人就出现的某些现象借此分析、初探沥青路面产生不平整的原因。 2 沥青路面不平整产生的主要原因 沥青路面的施工,影响因素很多,单是路面平整度,就与施工人员素质、路基施工质量、桥头涵洞两段及桥梁伸缩缝的处理、路面底基层及基层的施工、路面施工机械的选用及路面材料的质量有关,而这些恰恰就是影响路面平整度的主要原因。 2.1 路基不均匀沉降,造成已铺筑路面出现坑凹 路基是路面的基础,路基不均匀沉陷,必然会引起路面的不平整,分析其原因,不外乎: ⑴路基填料控制不好,如眉苋段平凉城区路段为平凉市政府所实施的,路面形成高低不平,养护人员挖开路面后,发现部分路段路基是由建筑垃圾、工业垃圾填筑的,安蔺段由于土质原因,采用高液限粘土填筑的路段,不同程度的出现了路基不均匀沉降。

⑵半挖半填路基的接合部处理不当、、路基的压实度不足,如平华路属于旧路改建项目,半挖半填路基较多,当路面完成后,出现了沉陷、沉陷和裂缝,是由于路基填料的含水量大,施工单位力量不够,未能按规范要求挖台阶施工,造成路基于填料接缝接合部产生裂缝和沉降,路基压实机具不足,使路基土壤的密实度偏低,土体透水性增强,造成水分集聚和侵蚀路基,使路基土软化而产生不均匀沉降。 ⑶特殊地基路段、路基防护排水不完善,如凤眉段的部分路基沉陷,是由于对原地基勘探不祥,有部分路基修筑在软土地段,因软土的压缩性大,在自重的作用下产生沉降,部分路段是由于路基的防护、排水系统不完善,造成湿陷性黄土的不均匀沉陷、水流不畅,引起路基变形。 2.2 桥梁涵洞两端及桥梁伸缩缝的跳车,严重影响着路面整体平整度 桥梁、涵洞两端的路基病害,是一个比较普遍的现象,也是最常见的公路病害之一,无论在安蔺段二级路,还是在凤眉段管理比较严的一级路,都不同程度的出现一些问题,主要表现在: ⑴桥梁、涵洞的台背填土,由于压实机械的作业面狭小而是压实不到位,通车后,引起路基的压缩沉降。 ⑵台背填料与台身的刚度差别大,造成沉降不均匀。 ⑶在桥梁、涵洞与路基结合处,常会产生细小缩裂缝,雨水渗入后,使路基产生病害,导致该处路基发生沉陷。 ⑷桥梁伸缩缝在选型和施工时考虑不周和处理不当,产生跳

场地平整施工方法

场地平整施工方法 场地平整就是将天然地面改造成工程上所要求的设计平面,由于场地平整时全场地兼有挖和填,而挖和填的体形常常不规则,所以一般采用方格网方法分块计算解决. 平整场地前应先做好各项准备工作,如清除场地内所有地上、地下障碍物;排除地面积水;铺筑临时道路等。 选择场地设计标高的原则是:①在满足总平面设计的要求,并与场外工程设施的标高相协调的前提下,考虑挖填平衡,以挖作填;②如挖方少于填方,则要考虑土方的来源,如挖方多于填方,则要考虑弃土堆场;③场地设计标高要高出区域最高洪水位,在严寒地区,场地的最高地下水位应在土壤冻结深度以下。 平整施工场地有两个目的,一是通过场地的平整,使场地的自然标髙迖到设计要求的高度,二是在平整场地的过程中,建立必要的、能够满足施工要求的供水、排水、供电、道路以及临时建筑等基础设施,从而使施工中所要求的必要条件得到充分的满足。施工现场的实践证明,施工场地的平整绝不是简单平整一下而已,在这个过程中有大量的基础工作需要一一落实,结合场地平整将场地内的基础设施落实的越细致,越有利于即将开始的正式工程的顺利施工。 在建设区域内,为建筑施工创造条件,按设计要求进行的填挖土石方作业。平整场地前应先做好各项准备工作,如清除场地内所有地上、地下障碍物;排除地面积水;铺筑临时道路等。

施工测量根据施工区域的测量控制点和自然地形,将场地划分为轴线正交的若干地块。选用间隔为20~50米的方格网,并以方格网各交叉点的地面高程,作为计算工程量和组织施工的依据。在填挖过程中和工程竣工时,都要进行测量,做好记录,以保证最后形成的场地符合设计规定的平面和高程(见工业建设施工测量、工业建设竣工测量)。 土石方调配通过计算,对挖方、填方和土石方运输量三者综合权衡,制定出合理的调配方案。为了充分发挥施工机械的效率,便于组织施工,避免不必要的往返运输,还要绘制土石方调配图,明确各地块的工程量、填挖施工的先后顺序、土石方的来源和去向,以及机械、车辆的运行路线等。 施工机械选择根据具体施工条件、运输距离以及填挖土层厚度、土壤类别,作下列选择:①运距在100米以内的场地平整以选用推土机最为适宜。②地面起伏不大、坡度在20°以内的大面积场地平整,当土壤含水量不超过27%,平均运距在800米以内时,宜选用铲运机。③丘陵地带,土层厚度超过3米,土质为土、卵石或碎石碴等混合体,且运距在1.0公里以上时,宜选用挖掘机配合自卸汽车施工。 ④当土层较薄,用推土机攒堆时,应选用装载机配合自卸汽车装土运土。⑤当挖方地块有岩层时,应选用空气压缩机配合手风钻或车钻钻孔,进行石方爆破作业。 填方压实土石方的填筑作业分为土工构筑物和回填土两类。其应共同遵循的原则是:填方要有足够的强度和稳定性;土体的沉陷

s影响水泥混凝土路面平整度的因素及其控制措施

s影响水泥混凝土路面平整度的因素及其控制措施

影响水泥混凝土路面平整度的因素及其控制措施 [摘要]对影响水泥混凝土路面平整度的因素进行分析,并提出提高水泥混凝土路面平整度的措施和控制办法。 [关键词]水泥混凝土路面平整度措施控制 一、影响水泥混凝土路面平整度的因素及其控制 (一)影响路面平整度的因素及其机理 在赤峰市松山区松山大街的施工过程中发现,做面工序结束后,用三米直尺检查平整度时无丝毫间隙,但混凝土终

凝后或次日检查,却又会出现间隙,有时甚至达1厘米左右。由此说明,决定路面平整度的因素,除做面工序自身的原因外,混凝土硬化过程中的收缩均匀与否,其它前期工序是否造成做面工序无法弥补的影响,都有密切的关系。那么上述做面工序以外的其它因素,是通过何种方式影响路面平整度呢?现分述如下: 1.混凝土硬化过程中不均匀收缩的因素 (1)产生不均匀的机理 众所周知,新拌混凝土在一定温度条件下,毛细孔水、游离子水等不断蒸发,使毛细孔水在逐渐下降过程中,弯液面曲率逐渐增大;在表面张力作用下,产生收缩力致使混凝土收缩。上述收缩现象主要发生在浆体。如果这种收缩是均匀进行的,对路面平整度不会产生什么影响或影响甚微。若新拌混凝土水灰比值偏大、水泥浆体偏多,而水灰比或浆体在拌合料中分布不匀,或拌合料拌合不均,混凝土振捣密实度不均匀,收缩亦随之不均匀,将致使成型路面的不平整。 (2)不均匀收缩的因素

如上所述,产生混凝土硬化过程中不均匀收缩的因素主要是水灰比、浆体含量或密实度分布不均匀所致,可能是某一种因素所致,也可能是几种因素同时影响的结果。一般有以下几种情况: (3)水灰比控制不严 混凝土在拌制过程中,水灰比控制不严,拌合料时稠时稀,摊铺不均匀。真空脱水时间不足,致使中部已达到塑性强度,边部却仍呈弹软状态,剩余水灰比分布不匀。有的施工单位往往疏忽大意,相邻吸面未重叠放置吸垫,造成漏吸,则次处混凝土不仅仍处在初始水灰比状态,甚至还易在该处产生裂缝,也有的施工单位,为省事另拌砂浆或找补做面,不仅会造成表层水灰比不均匀,甚至会出现网裂或破皮。 (4)浆体含量不均匀 混凝土拌制时间不足所致、拌合料组成成分的不均匀或运料过程中产生离析现象,摊铺时又未重新翻拌,致使混合料中浆体不均匀分布,出现浆体或骨料集中现场。振捣不足或振捣过度所致、浆体不上泛或浆体上泛过多、骨料下沉集中的分层离析,也会造成浆体含量的不均匀。骨料集中处浆

路基路面实验报告

路基、路面实验报告 姓名: 学号: 专业: 土木工程学院道桥实验室 2015年10月

目录 实验一:路面回弹弯沉实验(贝克曼梁法).......................... 错误!未定义书签。实验二:路面平整度实验.. (4) 实验三:压实度实验 (7) 实验四:马歇尔稳定度实验(选做) (12)

实验一:路面回弹弯沉实验(贝克曼梁法) 日期: 学时:指导老师: 一、实验目的 弯沉试验是基于高速公路、桥梁隧道等路基施工的控制检测,通过对不同路段和不同土质的路基、路面进行贝克曼梁试验检测,判断路面的总体强度是否满足设计及规范要求。 二、实验仪器 贝克曼梁(5.4m)、百分表(量程1cm)、反力架和千斤顶(代替测试汽车)、皮尺 三、方法步骤 1、试验准备 (1)检查贝克曼梁是否完好,贝克曼梁前臂(接触路面)与后臂(装百分表) 长度比为2:1。 (2)在反力架上安装千斤顶,通过千斤顶的顶托作用,模拟汽车轴重。 (3)测定千斤顶的接地面积,精确至0.1cm2;。 (4)检查百分表的灵敏情况。 (5)记录测量时的路表温度。 (6)记录测试路基、路面的材料、结构、厚度、施工及养护等情况。 2、实验步骤 (1)在模拟测试路段布置测点,测点应布置尽量靠近千斤顶。 (2)将两套千斤顶并排使用,两千斤顶之间的缝隙对准测点后约3 ~ 5cm 处的位置上。 (3)将弯沉仪插入两千斤顶之间的缝隙处,梁臂不得碰到千斤顶,弯沉仪测头置于测点上,并安装百分表于弯沉仪的测定杆上,百分表调零,用手指轻轻

叩打弯沉仪,检查百分表是否稳定回零。 (4)测定时先用千斤顶顶托反力架,加力大小从0增加到1kN,百分表随路面变形的增加而持续向前转动。当表针转动到最大值时,读取初读数L1。 (5)初读数读取完毕后千斤顶卸载至0.5kN,表针反向回转,待表针回转稳定后读取终读数L2。 四、数据处理 L T=(L1-L2)×2 式中:L T--在路面温度T时的回弹弯沉值(0.01mm); L1--车轮中心临近弯沉仪测头时百分表的最大读数(0.01mm); L2--汽车驶出弯沉影响半径后百分表的最终读数(0.01mm)。 五、实验记录 序号检测部位 初读数 (mm) 终读数 (mm) 弯沉值 (mm) 检测 点数 平均值 (mm) 代表值 (mm) 合格率

平整场地计算公式

、平整场地:建筑物场地厚度在±30cm以的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面 积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S底———建筑物底层建筑面积;L 外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计 算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式: (1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。 (2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长 度。. 其中外墙基槽长度以外墙中心线计算,墙基槽长度以墙净长计算, 交接重合出不予扣除。 基坑开挖: V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。

三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑 物被埋置部分的体积。 式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物等所占体积 2、室回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积 主墙间净面积=S底-(L中×墙厚+L×墙厚) 式中:底———底层建筑面积;L中———外墙中心线长度;L———墙净长线 长度。 回填土厚度指室外高差减去地面垫层、找平层、面层的总厚度,如右图: 四、运土方计算规则及公式: 运土是指把开挖后的多余土运至指定地点,或是在回填土不足时从指定地点取土回填。土方运输应按不同的运输方式和运距分别以立方米计算。 运土工程量=挖土总体积-回填土总体积 式中计算结果为正值时表示余土外运,为负值时表示取土回填。 五、打、压预制钢筋混凝土方桩 1、打预制钢筋混凝土桩的体积,按设计桩长以体积计算,长度按包括桩尖的全 长计算,桩尖虚体积不扣除。计量单位:m3,体积计算公式如下: V=桩截面积×设计桩长(包括桩尖长度) 2、送钢筋混凝土方桩(送桩):当设计要求把钢筋砼桩顶打入地面以下时,打桩机必须借助工具桩才能完成,这个借助工具桩(一般2~3m长,由硬木或金属制成)完成打桩的过程叫“送桩”。计算方法按定额规定以送桩长度即桩顶面至自然地坪另加0.5米乘以横截面积以立方米计算,计量单位:m3,公式如下: V=桩截面积×(送桩长度+0.5m)

相关文档
最新文档