污泥水泥的协同处置

污泥水泥的协同处置
污泥水泥的协同处置

1污泥水泥窑协同处置典型工艺

(1)废气热干化污泥水泥窑协同焚烧

主要包括直接接触干燥和间接换热干燥工艺。其中直接接触干燥工艺完全利用生产废气干化污泥,干污泥入窑替代燃料利用,典型工艺应用于广州越堡水泥厂污泥水泥窑协同处置工程;间接换热干燥工艺利用生产过程烟气加热,依靠换热锅炉加热导热油作为热源,采用涡流薄层干燥工艺干化污泥,干污泥入窑替代燃料利用,典型工艺应用于北京水泥厂污泥水泥窑协同处置工程。典型工艺流程有:①含水率80%的污泥运输到水泥厂先烘干再治理臭气,达到含水率30%~40%后入窑焚烧。②含水率80%的污泥运输到水泥厂先烘干再治理臭气、恶臭冷凝水,达到半干污泥(25%~30%)后入窑焚烧。③污泥经预处理脱水至含水率10%~40%后入窑焚烧。

(2)水泥窑直接处置污泥

将含水率80%的污泥直接运输到水泥厂,然后泵送入窑,典型工程包括拉法基集团南山水泥厂生活污泥水泥窑协同处置工程。

2污泥水泥窑协同处置原则

为了更好地促进城镇污泥水泥窑协同处置行业的发展,规范行业发展,污泥水泥窑协同处置过程中应遵守以下原则:

(1)必须建立污泥处置成本最优化原则,同时保证水泥工业自身的经济效益不受影响。

(2)确保污染物的排放不高于采用传统燃料的污染物排放与污泥单独处置污染物排放总和。

(3)水泥窑产品必须达到品质指标要求,并应通过浸析试验,证明产品对环境不会造成任何负面影响。

(4)污泥水泥窑协同处置时,应保证建立起污泥从产生到处置的记录,在全处置过程确保污染物的达标排放和相关人员健康和安全,确保符合所有要求。

3目前污泥水泥窑协同处置存在的问题

污泥水泥窑协同处置行业优势明显,应用前景广阔,但是与大多数污泥处理处置工艺一样,污泥水泥窑协同处置行业也存在着“成长中的烦恼”,主要表现

在以下几方面。

(1)污泥水泥窑协同处置工程资金落实难度大

我国城镇污水处理厂建设存在严重的“重水轻泥”现象,污泥处理处置设施投资严重不足。“十一五”期间,污泥处理的投资比例只有20%~30%,污泥水泥窑协同处置更是缺乏跨行业的长期发展规划,相关项目建设资金落实难,且缺乏行业导向性政策。

(2)污泥水泥窑协同处置不当易产生臭气污染我国水泥行业协同处置污泥主要包括干化焚烧和直接焚烧两种工艺形式,其中的干花焚烧工艺易产生臭气污染。污泥焚烧所产生的臭气中含有大量的氮氧化合物、硫氢化物、三甲胺、氨、CO、醛、酮和稠环碳氢化合物等,并含有微量的二噁英,危害巨大。

(3)水泥窑协同处置受困于污水处理厂出泥含水率较高

由于我国大部分污水处理厂在污泥脱水过程中采用投加絮凝剂+机械脱水的方式,使得脱水污泥含水率普遍偏高,故污泥在水泥窑协同处置中能耗需求升高,给污泥水泥窑协同处置带来不必要的压力。未完全干化污泥中的水分在水泥窑协同处置过程中蒸发时体积会大幅膨胀(正常情况下体积膨胀倍数超过1000),给窑尾排风机带来负面影响。

(4)污泥水泥窑协同处置项目利润率低

水泥窑协同处置污泥项目在运行过程中生产和折旧成本相对较高,尤其是在处理含水率80%以上的湿污泥时更明显。

(5)污泥水泥窑协同处置项目面临投资与收入失调的问题

全面解析水泥窑协同处置污泥方案

全面解析水泥窑协同处置污泥方案 1.城市污泥处理的必要性和难度 随着城市人口的不断增加及生活污水处理率的提高,市政污水污泥的产出量也随之不断增加。市政污泥的环境污染已成为广大市民关注的焦点。市政污泥是一种由有机残片、细菌菌体、无极颗粒、胶体等组成的极其复杂的非均质体,含有大量病原菌、寄生虫(卵),铜、锌、铬、汞等重金属、盐类,以及多氯联苯、二恶英、放射性核素等难降解的有毒有害物。污泥还含有很高的附着水和结合水,尽管污水处理厂已采用真空过滤或离心脱水等机械脱水,污泥含水率仍达80%以上。由于污泥所具有的物理化学性质,污泥的彻底无害化处置 极其困难,已成为当今世界难题。目前所采用的填埋、农用、焚烧等处置方式均存在很高的环保风险.要真正达到彻底无害化处置需要付出极高的成本。 2.利用水泥窑处置污泥的可能性 广州市江苏绿森水泥有限公司(下称江苏绿森公司)从2007年就开始研究建设利用水泥窑无害化处置污泥项目。由于水泥窑处置污泥具有处理温度高、焚烧空间大、焚烧停留时间长、处理规模大、无二次渣排放问题等显着优点,来自污水处理厂的污泥含水率约80%,在水泥厂配套建设一个烘干预处理系统,利用出预热器废气余热(温度约280℃)将污泥烘干至含水率低30%。含水率低于30%污泥已成散状物料,经输送及喂料设

备送入分解炉焚烧。在分解炉喂料口处设有撒料板,将散状污泥充分分散在热气流中,由于分解炉的温度高、热熔大,使得污泥能快速、完全燃烧。污泥烧尽后的灰渣随物料一起进入窑内煅烧。 2007年12月22日~24日,江苏绿森公司进行了含水量30%的漂染污泥在6000t/d生产线上的工业试验工作。试验期间漂染污泥的空气干燥基热值平均为1445kCal/kg,入窑平均水分%,喂料量。试验结果表明,新型干法水泥窑系统完全可以处置具有较高硫含量的工业污泥。对水泥窑工艺过程的研究可知,利用水泥回转窑处理污泥具有以下特性: (1)有机物分解彻底 在回转窑中内温度一般在1350℃-1650℃之间,甚至更高,燃烧气体在此停留时间>8s,高于l100℃时停留时间>3s。燃烧气体的总停留时间为20s左右,且窑内物料呈高湍流化状态。因此窑内的污泥中有害有机物可充分燃烧,焚烧率可达%,即使是稳定的有机物如二恶英等也能被完全分解。 (2)抑制二恶英形成 由于干化污泥喂入点处在高于850℃的分解炉,分解炉内热容大且温度稳定,有效地抑制了二恶英前躯体的形成。从国内外水泥窑处置有毒有害废弃物的实践表明,废弃物焚烧后产生的二恶英排放浓度远低于排放限值。

水泥窑协同处置

1/ 7水泥窑协同处置 01 什么是水泥窑协同处置? 水泥窑协同处置是水泥工业提出的一种新的废弃物处置手段,是指将满足或经过预处理后满足入窑要求的固体废物投入水泥窑,在进行水泥熟料生产的同时实现对固体废物的无害化处置过程。 曲阜中联日处理污泥100吨水泥窑无害化协同处置项目

02 水泥窑协同处置有哪些优势?水泥窑协同处置固废优势突出: 利用现有工业设施,不增加土地,环境扰动小,建设投资相对较少。 水泥窑具有高温煅烧和强碱性气氛,能够有效抑制二噁英等二次污染物的产生,只要控制得当就不会有二次污染的隐患。 不仅能够实现固废危废减量和资源化,还能促使水泥行业向绿色环保产业发展。 山东德州《新闻联播》播出德州中联大坝水泥窑协同处置废弃物项目 03 水泥窑可以协同处置哪些固体废物?水泥窑可以处理的废物包括生活垃圾,各种污泥(下水道污泥、造纸厂污泥、河道污泥、污水处理厂污泥),工业危险废物,各种有机废物(废轮胎、废橡胶、废塑料、废油等),动植物加工废物,受污染土壤、应急事件废物等固体废物。 但是,放射性废物、爆炸物及反应性废物、未经拆解的废电池、废家用电器和电子产品、含汞的温度计、血压计、荧光灯管和开关、2/ 7

铬渣、未知特性和未经鉴定的废物禁止入窑进行协同处置。 中材萍乡水泥窑协同处置中心采用新型干法回转窑焚烧污泥技术,年处置污泥2.64万吨 04 固体废物在水泥生产过程中有哪些用途?根据成分与性质,不同的废物在水泥生产过程中的用途不同,主要包括: 替代燃料:主要为高热值有机废物 替代原料:主要为低热值可作为水泥生产原料的无机矿物材料废物混合材料:改善水泥的某种性能,调节水泥的强度等级,提高水泥产量,降低水泥生产成本,适宜在水泥粉磨阶段添加的成分单一的 废物 3/ 7

水泥窑协同处置固废方案

水泥窑协同处置固废方案 城市生活垃圾处理是城市环境卫生治理的一大难点,而利用新型干法水泥窑协同处置生活垃圾技术在处置成本、污染控制上有明显的优势,是目前实现垃圾减量化、无害化、资源化、能源化的有效手段之一。本文介绍了水泥窑协同处置生活垃圾技术的几种方式和发展历程,并重点对几种协同处置方式进行了对比分析。 一、背景 改革开放以来,随着我国经济的快速发展,人民生活水平迅速提高,城镇化进程不断加快,城市生活垃圾产量一直在增加。近年来,我国的城市生活垃圾排放量以每年10%以上的速度增长[1],此外,国存量垃圾堆放量已超过80亿吨,既占用土地又污染环境。另外,由于我国垃圾分类收集重视不够,垃圾基本是混合收集,垃圾含水量高、热值低、有机成分高,垃圾成分随地区、季节等变化较大。 目前,我国城市生活垃圾无害化处理方式包括:卫生填埋、高温堆肥和焚烧,图1为2014年我国垃圾处理方式比例,显示我国仍然以填埋为主[2]。但焚烧凭借其减量效果最明显、无害化最彻底、且焚烧热量可以有效利用的特点,近年来比例上升很快,可以预见,焚烧正逐步成为处理城市垃圾的最主要方式。 与传统的垃圾焚烧相比,焚烧发电所需建设与运营的费用较高,且产生的灰渣需要二次处理。城市生活垃圾单独焚烧后产生的灰渣包

括底灰和飞灰,其主要化学成分与水泥原料相似,且具有一定的胶凝活性二、水泥窑协同处置生活垃圾的几种方案介绍及对比2.1 国外水泥窑协同处置生活垃圾的现状 国际上水泥窑协同处置废物技术开始于20世纪70年代,首次试验于1974年加拿大Lawrence水泥厂,随后美国的Peerless、德国Ruderdorf等十多家水泥厂先后进行了试验。截止到目前,在欧洲、北美、日本等发达国家已经有30多年的研究应用历史,在替代燃料研究和生态水泥生产方面积累了许多经验。据统计,2007年荷兰的燃料替代率已达85%以上,2013年日本、比利时、瑞士、奥地利等燃料替代率达50%以上,美国为30%左右。 我国水泥窑协同处置生活垃圾技术推广至今,仅有凯盛、海螺、中材、金隅、华新、华润、、中建材等几家领先的水泥企业集团和水泥装备集团开展了水泥窑协同处置生活垃圾工作,仅有等少数省份组织推动了水泥窑协同处置生活垃圾工作。目前,全国已建成投产水泥窑协同处置生活垃圾生产线30 多条,占水泥生产线的比重不足2%。 2.2 水泥窑协同处置生活垃圾的主要方案 水泥窑协同处置生活垃圾的核心是在水泥的生产过程中,充分利用城市生活垃圾中的可燃成分和灰渣材料,结合水泥窑的生产特点,应用适当的技术解决方案,使垃圾减量化、无害化、资源化、能源化。主要的处理方案可以大致进行如下分类:

污泥分类及污泥处理技术方案

污泥分类及污泥处理技术方案 污泥处理是对污泥进行减量化、稳定化和无害化处理的过程。污水处理程度越高,就会产生越多的污泥残余物需要加以处理。除非是利用土地处理或污水塘处理污水,否则一般的污水处理厂必须设有污泥处理设施。对现代化的污水处理厂而言,污泥的处理与处置已成为污水处理系统运行中最复杂、且花费最高的一部分。 一、污泥分类 原污泥(rawsludge):未经污泥处理的初沉淀污泥。二沉剩余污泥或两者的混合污泥。 初沉污泥(primarysludge):从初沉淀池排出的沉淀物。 二沉污泥(secondeysludge):从二次沉淀池(或沉淀区)排出的沉淀物。 活性污泥(activatedsludge):曝气池中繁殖的含有各种好氧微生物群体的絮状体。

消化污泥(digestedsludge):经过好氧消化或厌氧消化的污泥,所含有机物质浓度有一定程度的降低,并趋于稳定。 回流污泥(returnedsludge):由二次沉淀(或沉淀区)分离出来,回流到曝气池的活性污泥。 剩余污泥(excessactivatedsludge):活性污泥系统中从二次沉淀池(或沉淀区)排出系统外的活性污泥。 污泥气(sludgegas):在污泥厌氧消化时,有物分解所产生的气体,主要成分为甲烷和二氧化碳,并有少量的氢、氮和硫化氢,俗称沼气。 二、处理类型 污泥消化(sludgedigestion):在氧或无氧的条件下,利用微生物的作用,使污泥中的有机物转化为较稳定物质的过程。 好氧消化(aerobicsigestion):污泥经过较长时间的曝气,其中一部分有机物由好氧微生物进行降解和稳定的过程。

水泥窑协同处置固废成本分析

水泥窑协同处置固废成本分析 近年来,水泥窑协同处理固体废物已成为业界研究和开发应用的重点。2012 年,《建材行业节能减排先进适用技术目录》将采用预分解窑协同处理危险废物技术,预分解窑协同处理污泥,协同处理通过预分解窑从废物焚烧炉中飞灰。2014 年12 月,工业和信息化部,科技部和环境保护部联合发布了《国家鼓励发展的重大环保技术装备目录(2014 年版)》,鼓励国家发展。水泥窑协调无害化处理的全套设备包括在固体废物处理设备的推广项目中。2015 年,工业和信息化部等六部委联合发布了水泥窑共处理生活垃圾试点项目的通知。 水泥窑协同处置技术早已成为德国、日本等国家的主要处理方式。由于我国还处于发展阶段,水泥窑协同处置技术面临初始投资成本高、运行成本高、政府补贴低等主要难题。本文拟就水泥窑协同处置固体废物技术中3 种协同处置工艺,即水泥窑协同处置城市生活垃圾(RDF)、水泥窑协同处置城市生活垃圾(联合气化炉)和水泥窑协同处置城市污水污泥(干化),以5 000 t/d 生产线为基准,综合考虑减排量、减排成本指标,进行技术节能减排潜力和成本的分析,并给出技术发展的政策建议。 1 水泥窑协同处置固体废物概况 1.1 水泥窑协同处置城市生活垃圾(RDF)技术 水泥窑协同处置城市生活垃圾(RDF)技术,即把城市生活垃圾经筛分、粉碎、发酵、干燥、加工成型等预处理工艺,加工成热值更高、更稳定的垃

圾衍生燃料(RDF),结合水泥分解炉燃烧特点,达到资源化处置与利用的技术。它适用于新型干法水泥生产线协同处置城市生活垃圾技术改造。需要注意的是:垃圾处理站或RDF预处理站与水泥生产企业的距离不宜过远; 垃圾引入的有害元素对水泥窑正常生产的影响等问题。F.L.Sth 的“热盘”技术和Polysius 的预燃烧室技术,就属于RDF协同处置技术的范畴。国内华新水泥、中材国际开发了此类相关技术,过程预燃技术和设备也在研发过程中。华新水泥窑协同处置的商业运作模式是集合生活垃圾的收集、转运,垃圾的预处理和水泥窑协同处置于一体的创新性模式。经估算,若5 000 t/d 水泥熟料生产线利用此类技术日处理200~500 t 的生活垃圾,可实现吨熟料煤耗降低3%~6%,电耗增加3~5 kWh,折算成吨熟料CO2排放量降低4.02~13.23 kg ,吨熟料NOx排放量降低0.02~0.06 kg 。初始投资平均增加约8 000万元,单位熟料运行成本降低3.36~6.72 元/t 。生活垃圾补贴费用因各地政府标准不统一(50~200 元/t) ,假设每吨生活垃圾补贴100 元,预计投资回收期超过10年。 1.2 水泥窑协同处置城市生活垃圾(联合气化炉)技术 水泥窑协同处置城市生活垃圾(联合气化炉)技术,即将城市生活垃圾发酵、均化、破碎、称量等工序后,先送入气化炉,汽化后形成可燃性气体送入水泥分解炉内焚烧,气化炉底渣经分离后作为水泥配料。这种技术是联合水泥窑炉和气化炉的双重优势,对由此产生的废气、炉底渣及渗滤液进行无害化处理的全新的环境保护技术。它适用于新型干法水泥生产线协同处置城市生活垃圾技术改造。需要注意的是:垃圾处理站与水泥生产企业的距离

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

利用水泥窑协同处置废弃物技术研究.

利用水泥窑协同处置废弃物 胡芝娟* (天津水泥工业设计研究院有限公司,天津300400) 摘要 在经济合作与发展组织国家中,现代焚化工厂和安全的垃圾填埋是普遍采用的处理方式,但投资和运行成本非常高,而且需要有资质的管理和运行人员。高效水泥窑能为许多种废物提供环境友好且低成本的处理/回收方案。与其不做能源回收而直接将废物白白烧掉或处理掉,还不如用废物来代替化石燃料和原始原料(AFR),这还可以进一步降低CO2的总排放量。使用替代性燃料和原料能减少废物对环境的影响,能安全地处置危险废物,能减少温室气体排放,减少废物处理成本,降低水泥工业生产成本。 在《巴塞尔公约》的条文中,水泥生产过程中危险废物的协同处理方法已被认为是对环境无害的处理方法。这说明了水泥生产过程中对危险废物进行协同处理的适用性,以及协同处理的先决条件。水泥工业消耗了大量的自然资源和能源。同时也为全世界城市和基础设施的发展和现代化做出了贡献。水泥工业及其行业协会通过优化自然资源的使用和减少整体的能源消耗,在不断改善环境质量。 天津水泥工业设计研究院有限公司经过十余年潜心研究,结合水泥窑炉操作条件,针对中国固废处置客观环境,研发出一整套针对城镇污水处理厂污泥,生活垃圾,污染土等废弃物的水泥窑协同处置技术并在实践中的到检验和推广。 关键词:水泥窑;协同处置;污泥;生活垃圾;污染土 引言 全球水泥消耗量正在增加,特别是发展中国家和处于转型期的国家。由于发展中 国家和转型期国家的巨大需求,全世界的水泥产量从2001年的16.9亿公吨开始,以 年均3.6%的速度稳步增长,2003年全世界的水泥产量为19.4亿公吨。欧洲的消耗量 占14.4%;美国占4.7%;美洲其他国家占6.6%;亚洲占67.5%(中国占41.9%);非洲 占4.1%,世界其他国家占2.7%。预计2004年的水泥消耗量为人均260千克。 在经济合作与发展组织国家中,现代焚化工厂和安全的垃圾填埋是普遍采用的处 理方式,但投资和运行成本非常高,而且需要有资质的管理和运行加拿大以及澳大利

水泥窑协同处置危险废物经营许可证审查指南设计

水泥窑协同处置危险废物经营许可证 审查指南 (试行) 为贯彻落实《中华人民国固体废物污染环境防治法》、《危险废物经营许可证管理办法》等法律法规,进一步规水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,制定《水泥窑协同处置危险废物经营许可证审查指南》(以下简称《指南》)。 《指南》按照《危险废物经营许可证管理办法》第五条的有关许可条件,针对水泥窑协同处置危险废物经营单位的特点和存在的主要问题,进一步细化了相关要求。 一、适用围 《指南》适用于环境保护主管部门对水泥窑协同处置危险废物单位申请危险废物经营许可证(包括新申请、重新申请领取和换证)的审查。 二、术语和定义 (一)水泥窑协同处置危险废物,是指将满足或经预处理后满足入窑(磨)要求的危险废物投入水泥窑或水泥磨,在进行熟料或水泥生产的同时,实现对危险废物的无害化处置的过程。

(二)水泥磨,是指将熟料、石膏和混合材等材料混合研磨生产水泥的设备。 (三)窑灰,是指水泥窑及窑尾余热利用系统烟气(以下简称窑尾烟气)布袋除尘器捕获以及在增湿塔和窑尾余热锅炉沉积的颗粒物。 (四)旁路放风粉尘,是指通过水泥窑窑尾旁路放风设施排出水泥窑系统的颗粒物。 (五)窑尾烟室,是指水泥窑分解炉底部与回转窑尾端(物料入口端)之间的衔接空间(包括上升烟道)。 (六)预处理,是指为了满足水泥窑协同处置的入窑(磨)要求,对危险废物进行干燥、破碎、筛分、中和、搅拌、混合、配伍、预烧等前期处理的过程。 (七)危险废物预处理中心,是指在水泥生产企业厂区外设置的,用于对收集的危险废物进行预处理的专门场所。 (八)分散联合经营模式,是指水泥生产企业和危险废物预处理中心分属不同的法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。 (九)分散独立经营模式,是指水泥生产企业和危险废物预处理中心属于同一法人主体的情况下,危险废物在预处理中心经预处理满

污水污泥的处置方案

污水污泥的处置方案 污水污泥是城市排水系统的副产品,主要于城市排水系统,包括排水管道、泵站和污水处理厂的污泥。它容积大、有恶臭味、有些污泥还含有有毒有害物质及病原菌等,若不经有效处理和处置,则会对环境造成严重的二次污染。国和国际的立法机构也越来越重视污泥治理问题。许多国家都推行了严厉的法律制度不再允许直接将污泥倾倒入海,也禁止将含有奇特有机物的污泥直接填埋,防止进入食物链。 1 污泥处置技术污泥的处置技术除传统的浓缩、消化、自然干化、机械脱水、消毒等,还有如下处置技术: 1.1卫生填埋处置技术 污泥卫生填埋基本属厌氧性填埋,仅在初期填埋的污泥表层及填埋区排水排气管路附近,由于空气的接触扩散形成局部的准好氧填埋方式。虽然污泥在污水处理厂中经过了厌氧中温消化处理,但由于这一过程有机物没有达到完全的降解(进入填埋区的污泥有机物含量仍在40%左右),因此,污泥在填埋过程中依然存在着一个稳定化降解过程,这一过程一般需十几年,甚至几十年。 1.2堆肥处理技术 污泥堆肥农用是资源化再利用的有效途径之一。可采用单独堆肥或与城市垃圾混合堆肥的方式。污泥堆肥一般采用好氧动,静态技

术,利用嗜温菌、嗜热菌的作用,分解污泥中有机质并杀死致病菌、寄生虫卵和病毒,提高污泥肥份。制成有机复或有机菌肥以提高其利用价值。 1.3热干化与焚烧处理技术污泥的热干化与焚烧处理可以达到彻底的无害化和减量化效果,明显的优越性使得该技术的研究与应用在近年来得到长足的发展。在实际应用中,热干化与焚烧通常被认为是两个独立的工艺过程,事实上,没有经过干化的污泥直接都进行燃烧不仅十分困难,而且在能耗上也是极不经济的。 2 市政污水污泥处置方案探讨 2.1 脱水处理方案 污泥脱水有自然干化和机械脱水。 (1)人工干化场干化。污水污泥在传统的人工自然干化场进行泥水分离的作业方式,由于占地面积大、操作自动化程度低、工况恶劣、工艺效果的耐候性差、处理效率低下等缺陷已逐渐被淘汰并被机械脱水方式所取代。 (2)污泥机械脱水。脱水机械有:带式脱水机、离心脱水机、板框脱水机、螺压脱水机、滚压脱水机、真空过滤机等,其中带式脱水机和离心脱水机更为常用。 市政通挖污泥无机成分含量高、含水率偏低且杂质较多,选用脱水设备时,必须考虑污泥对设备造成的损害,如带式脱水机的滤布较易被坚硬颗粒硌破。一般离心脱水机的螺旋与进出料口均须有防磨损涂层进行保护。

水泥窑协同处置危险废物经营许可证审查指南

水泥窑协同处置危险废物经营许可证审查指南 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

水泥窑协同处置危险废物经营许可证 审查指南 (试行) 为贯彻落实《中华人民共和国固体废物污染环境防治法》、《危险废物经营许可证管理办法》等法律法规,进一步规范水泥窑协同处置危险废物经营许可证审批工作,提升水泥窑协同处置危险废物行业的整体水平,制定《水泥窑协同处置危险废物经营许可证审查指南》(以下简称《指南》)。 《指南》按照《危险废物经营许可证管理办法》第五条的有关许可条件,针对水泥窑协同处置危险废物经营单位的特点和存在的主要问题,进一步细化了相关要求。 一、适用范围 《指南》适用于环境保护主管部门对水泥窑协同处置危险废物单位申请危险废物经营许可证(包括新申请、重新申请领取和换证)的审查。 二、术语和定义 (一)水泥窑协同处置危险废物,是指将满足或经预处理后满足入窑(磨)要求的危险废物投入水泥窑或水泥磨,在进行熟料或水泥生产的同时,实现对危险废物的无害化处置的过程。 (二)水泥磨,是指将熟料、石膏和混合材等材料混合研磨生产水泥的设备。

(三)窑灰,是指水泥窑及窑尾余热利用系统烟气(以下简称窑尾烟气)布袋除尘器捕获以及在增湿塔和窑尾余热锅炉沉积的颗粒物。 (四)旁路放风粉尘,是指通过水泥窑窑尾旁路放风设施排出水泥窑系统的颗粒物。 (五)窑尾烟室,是指水泥窑分解炉底部与回转窑尾端(物料入口端)之间的衔接空间(包括上升烟道)。 (六)预处理,是指为了满足水泥窑协同处置的入窑(磨)要求,对危险废物进行干燥、破碎、筛分、中和、搅拌、混合、配伍、预烧等前期处理的过程。 (七)危险废物预处理中心,是指在水泥生产企业厂区外设置的,用于对收集的危险废物进行预处理的专门场所。 (八)分散联合经营模式,是指水泥生产企业和危险废物预处理中心分属不同的法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。 (九)分散独立经营模式,是指水泥生产企业和危险废物预处理中心属于同一法人主体的情况下,危险废物在预处理中心经预处理满足水泥窑协同处置入窑(磨)要求后,运送至水泥生产企业不再进行其他预处理而直接入窑(磨)协同处置的经营模式。

水泥窑协同处理飞灰技术取得突破 绿色方案都说可行

水泥窑协同处理飞灰技术取得突破绿色方案获认可 垃圾焚烧飞灰中有许多有毒物质,其无害化处理面临很大困难。然而,江苏绿森创新的水泥窑协同处理飞灰技术提供了一种具有明显优势的可行方法。虽然这项技术仍有一些缺点,但其经济,社会和环境效益已逐渐凸显。 提起飞灰,会想到什么?大地之殇、焚烧之痛、谈灰色变、浴水重生…… 垃圾焚烧飞灰中氯离子、重金属、二恶英等有毒物质含量较多,我国环保局将其定义为危废,代号HW18。因国内无垃圾分类基础,飞灰污染物质不稳定和成分不确定使其无害化处置和再生循环面临 很大困难。 水泥窑协同处置飞灰技术、环保可靠、处理成本合理,为困扰全国各大城市的“垃圾围城”问题提供了一条可行的产业链处置终端 技术。 飞灰知多少? 哪里来的? 垃圾焚烧飞灰是在生活垃圾焚烧发电过程中主要收集于烟气管道、烟气净化装置、旋风分离器和布袋除尘器等处的容重较轻、粒径细小的粉体物质。

产生量有多少? 我国垃圾焚烧主要以流化床和炉排炉为主,两种炉型处理能力分别占我国生活垃圾比例为1:2,流化床焚烧炉产生飞灰量约为入炉 垃圾质量的15-20%,炉排炉产生飞灰量约为入炉垃圾量的3-5%。 根据《十三五城镇生活垃圾无害化处理设施建设规划》,十三五期间,全国规划新增生活垃圾无害化处置能力50.97万吨/日,设市 城市生活垃圾焚烧能力占无害化总能力比例达到50%,东部地区达到60%。垃圾焚烧产业爆发式增长,未来飞灰产生量巨大。 到2020年底,垃圾总焚烧量达59.14万吨/日,年产生飞灰量约为1000万吨。 成分复杂、毒性大! 城市生活垃圾焚烧飞灰中不仅含有大量的Cd、Cr、Cu、Ni、Pb 和Zn等重金属无机有害物,还富集了高浓度的具有强毒性的二恶英 等有机致癌物,故我国国家环境保护局将生活垃圾焚烧飞灰定义为国家危险废物(代号HW18)。 资源化特征 飞灰中的不溶物主要以钙、硅、铝、铁等无机组分为主,这也是利用水泥窑处置飞灰的优势之一,这部分成分约占飞灰总量的60-70%,

污水污泥的处置方案

污水污泥的处置方案 污水污泥的处置方案 污水污泥是城市排水系统的副产品,主要于城市排水系统,包括排水管道、泵站和污水处理厂的污泥。它容积大、有恶臭味、有些污泥还含有有毒有害物质及病原菌等,若不经有效处理和处置,则会对环境造成严重的二次污染。国内和国际的立法机构也越来越重视污泥治理问题。许多国家都推行了严厉的法律制度不再允许直接将污泥倾倒入海,也禁止将含有奇特有机物的污泥直接填埋,防止进入食物链。 1 污泥处置技术 污泥的处置技术除传统的浓缩、消化、自然干化、机械脱水、消毒等,还有如下处置技术: 1.1 卫生填埋处置技术 污泥卫生填埋基本属厌氧性填埋,仅在初期填埋的污泥表层及填埋区内排水排气管路附近,由于空气的接触扩散形成局部的准好氧填埋方式。虽然污泥在污水处理厂中经过了厌氧中温消化处理,但由于这一过程有机物没有达到完全的降解(进入填埋区的污泥有机物含量仍在40%左右),因此,污泥在填埋过程中依然存在着一个稳定化降解过程,这一过程一般需十几年,甚至几十年。 1.2 堆肥处理技术 污泥堆肥农用是资源化再利用的有效途径之一。可采用单独堆肥

或与城市垃圾混合堆肥的方式。污泥堆肥一般采用好氧动,静态技术,利用嗜温菌、嗜热菌的作用,分解污泥中有机质并杀死致病菌、寄生虫卵和病毒,提高污泥肥份。制成有机复合肥或有机菌肥以提高其利用价值。 1.3 热干化与焚烧处理技术 污泥的热干化与焚烧处理可以达到彻底的无害化和减量化效果,明显的优越性使得该技术的研究与应用在近年来得到长足的发展。在实际应用中,热干化与焚烧通常被认为是两个独立的工艺过程,事实上,没有经过干化的污泥直接都进行燃烧不仅十分困难,而且在能耗上也是极不经济的。 2 市政污水污泥处置方案探讨 2.1 脱水处理方案 污泥脱水有自然干化和机械脱水。 (1)人工干化场干化。污水污泥在传统的人工自然干化场进行泥水分离的作业方式,由于占地面积大、操作自动化程度低、工况恶劣、工艺效果的耐候性差、处理效率低下等缺陷已逐渐被淘汰并被机械脱水方式所取代。 (2)污泥机械脱水。脱水机械有:带式脱水机、离心脱水机、板框脱水机、螺压脱水机、滚压脱水机、真空过滤机等,其中带式脱水机和离心脱水机更为常用。 市政通挖污泥无机成分含量高、含水率偏低且杂质较多,选用脱水设备时,必须考虑污泥对设备造成的损害,如带式脱水机的滤布较

全面解析水泥窑协同处置技术【建议收藏】

全面解析水泥窑协同处置技术 国际上水泥窑协同处置废物技术发源于20世纪70年代,第一次真正用于实践是1974年在加拿大劳伦斯水泥厂进行,随后在美国的Peerless,Ruderdorf,德国等十多家水泥厂进行。到目前为止,欧洲,北美,日本等发达国家已有30多年的研究和应用历史,在替代燃料研究和生态水泥生产方面积累了许多经验。据统计,2007年荷兰的燃料替代率达到85%以上,2013年,日本,比利时,瑞士,奥地利等燃料替代率达到50%以上,而在美国约为30%。 我国水泥窑协同处置生活垃圾技术推广至今,仅有江苏绿森、海螺、中材、中信、中建材等几家领先的水泥企业集团和水泥装备集团开展了水泥窑协同处置生活垃圾工作,仅有贵州等少数省份组织推动了水泥窑协同处置生活垃圾工作。目前,全国已建成投产水泥窑协同处置生活垃圾生产线30 多条,占水泥生产线的比重不足2%。 技术名称:水泥窑协同处置 1. 水泥窑协同技术适用性 1.1 适用的介质:污染土壤。 1.2 可处理的污染物类型:有机污染物及重金属。 1.3 应用限制条件。 不宜用于汞、砷、铅等重金属污染较重的土壤;由于水泥生产对进料中氯、硫等元素的含量有限值要求,在使用该技术时需慎重确定污染土的添加量。 2. 水泥窑协同技术介绍

2.1 原理 利用水泥回转窑内的高温、气体长时间停留、热容量大、热稳定性好、碱性环境、无废渣排放等特点,在生产水泥熟料的同时,焚烧固化处理污染土壤。有机物污染土壤从窑尾烟气室进入水泥回转窑,窑内气相温度最高可达1800℃,物料温度约为1450℃,在水泥窑的高温条件下,污染土壤中的有机污染物转化为无机化合物,高温气流与高细度、高浓度、高吸附性、高均匀性分布的碱性物料(CaO、CaCO3 等)充分接触,有效地抑制酸性物质的排放,使得硫和氯等转化成无机盐类固定下来;重金属污染土壤从生料配料系统进入水泥窑,使重金属固定在水泥熟料中。 2.2系统构成和主要设备 水泥窑协同处置包括污染土壤贮存、预处理、投加、焚烧和尾气处理等过程。在原有的水泥生产线基础上,需要对投料口进行改造,还需要必要的投料装置、预处理设施、符合要求的贮存设施和实验室分析能力。 水泥窑协同处置主要由土壤预处理系统、上料系统、水泥回转窑及配套系统、监测系统组成。 土壤预处理系统在密闭环境内进行,主要包括密闭贮存设施(如充气大棚),筛分设施(筛分机),尾气处理系统(如活性炭吸附系统等),预处理系统产生的尾气经过尾气处理系统后达标排放。 上料系统主要包括存料斗、板式喂料机、皮带计量秤、提升机,整个上料过程处于密闭环境中,避免上料过程中污染物和粉尘散发到空气中,造成二次污染。 水泥回转窑及配套系统主要包括预热器、回转式水泥窑、窑尾高温风机、三次风管、回转窑燃烧器、篦式冷却机、窑头袋收尘器、螺旋输送机、槽式输送机。监测系统主要包括氧气、粉尘、氮氧化物、二氧化碳、水分、温度在线监测以及水泥窑尾气和水泥熟料的定期监测,保证污染土壤处理的效果和生产安全。

城市污水处理厂污泥处置设计方案

城市污水处理厂污泥处置设计方案 1 项目介绍 1.1项目编制单位简介 1.2 项目编制原则 1.3 项目编制范围 1.4 采用的规范和标准 2 污泥处理技术的比较与选择 2.1污泥的处置方法概述项目 2.2、污泥处理处置方法简述 2.3、国内、外污泥处理和处置简述 1.1项目编制单位简介 1.2 项目编制原则 在污泥处理有关文件的指导下,坚持可持续发展战略原则,并在调研国内外污泥处理技术的基础上,针对污水处理厂的实际情况,选用适宜的处理方案。做到工艺合理、运行可靠、管理方便、环保节能,实现污泥无害化、资源化处理的目标; . 严格执行国家和省政府制定的有关法规和相关标准,根据城市污水厂污泥的特点、当地气候条件、地形情况、水文地质特征做好各项环境保护措施,使工程周围的环境卫生受到的污染减少到最低程度;

. 在确保环保达标的前提下,尽量节约投资及运行费用。 1.3 项目编制范围 本系统处理污水处理厂经过浓缩后的污泥。 本方案编制范围从污泥浓缩池开始,到干化成品送出处理区为止,包括处理工艺流程的设计,处理区的设计、建设、处理装置的购置和安装、脱水固剂的选择、以及污泥处理设施的调试运营。 1.4 采用的规范和标准 本报告采用的规范和标准为: 1 《城市生活垃圾卫生填埋技术规范》(CJJl7—2001); 2 《生活垃圾填埋污染控制标准》(GBl6889—2001); 3 《城市生活垃圾卫生填埋处理工程项目建设标准》(建标[2001]101号); 4 《城市生活垃圾卫生填埋场运行维护技术规程》(CJJ93-2003); 5 《生活垃圾填埋场环境监测技术标准》(CJ/T3037); 6 《恶臭污染物排放标准》(GB14554—93); 7 《污水综合排放标准》(GB8978—1996); 8 《环境空气质量标准》(GB3095—1996); 9 《大气污染物综合排放标准》(GBl6297—1996); 10 《城市防洪工程设计规范》(CJJ50-1992); 11 《建筑设计防火设计设计规范》(GBJ16-1987); 12 《堤防工程设计规范》(GB50286—1998);

污泥干化详细方案

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处理流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,中国南方大多数具有多雨潮湿季节的地区难以适用。另外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),能够采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,一般人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,经过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。 污泥热力干化工艺一般有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后经过高强度机械压滤析出达到高干的目的。一般污泥

水泥窑协同处置技术简介

1、技术名称:水泥窑协同处置 英文名称:Co-processing in Cement Kiln 2、技术适用性 2.1 适用的介质:污染土壤 2.2 可处理的污染物类型:有机污染物及重金属 2.3 应用限制条件:不宜用于汞、砷、铅等重金属污染较重的土壤;由于水泥生产对进料中氯、硫等元素的含量有限值要求,在使用该技术时需慎重确定污染土的添加量。 3 技术介绍 3.1 原理 利用水泥回转窑内的高温、气体长时间停留、热容量大、热稳定性好、碱 性环境、无废渣排放等特点,在生产水泥熟料的同时,焚烧固化处理污染土壤。有机物污染土壤从窑尾烟气室进入水泥回转窑,窑内气相温度最高可达1800℃,物料温度约为1450℃,在水泥窑的高温条件下,污染土壤中的有机污染物转化为无机化合物,高温气流与高细度、高浓度、高吸附性、高均匀性分布的碱性物料(CaO、CaCO3等)充分接触,有效地抑制酸性物质的排放,使得硫和氯等转化成无机盐类固定下来;重金属污染土壤从生料配料系统进入水泥窑,使重金属固定在水泥熟料中。 3.2系统构成和主要设备 水泥窑协同处置的土壤修复技术包括污染土壤贮存、预处理、投加、焚烧 和尾气处理等过程。在原有的水泥生产线基础上,需要对投料口进行改造,还需要必要的投料装置、预处理设施、符合要求的贮存设施和实验室分析能力。

水泥窑协同处置主要由土壤预处理系统、上料系统、水泥回转窑及配套系统、监测系统组成。 土壤预处理系统在密闭环境内进行,主要包括密闭贮存设施(如充气大棚),筛分设施(筛分机),尾气处理系统(如活性炭吸附系统等),预处理系统产生的尾气经过尾气处理系统后达标排放。 上料系统主要包括存料斗、板式喂料机、皮带计量秤、提升机,整个上料过程处于密闭环境中,避免上料过程中污染物和粉尘散发到空气中,造成二次污染。 水泥回转窑及配套系统主要包括预热器、回转式水泥窑、窑尾高温风机、三次风管、回转窑燃烧器、篦式冷却机、窑头袋收尘器、螺旋输送机、槽式输送机。监测系统主要包括氧气、粉尘、氮氧化物、二氧化碳、水分、温度在线监测以及水泥窑尾气和水泥熟料的定期监测,保证污染土壤处理的效果和生产安全。 3.3 关键技术参数或指标 影响水泥窑协同处置效果的关键技术参数包括:水泥回转窑系统配置、污染土壤中碱性物质含量、重金属污染物的初始浓度、氯元素和氟元素含量、硫元素含量、污染土壤添加量。 (1)水泥回转窑系统配置 采用配备完善的烟气处理系统和烟气在线监测设备的新型干法回转窑,单线设计熟料生产规模不宜小于2000吨/天。 (2)污染土壤中碱性物质含量 污染土壤提供了硅质原料,但由于污染土壤中K2O、Na2O含量高,会使水泥生产过程中中间产品及最终产品的碱当量高,影响水泥品质,因此,在开始水泥窑协同处置前,应根据污染土壤中的K2O、Na2O含量确定污染土壤的添加量。 (3)重金属污染物初始浓度 入窑配料中重金属污染物的浓度应满足《水泥窑协同处置固体废物环境保护技术规范》(HJ622)的要求。

脱硫污泥处置技术方案

六、处置方案主要内容包括但不限于以下内容: 1、服务方案 2、服务质量及保证措施 3、服务布署、进度计划及保障措施 4、相关具体措施

1、脱硫污泥处置方案 1.1 概要 脱硫污泥加氢氧化钠,然后将配好的物料在高温下焙烧0.5-2.0h,将焙烧后的熟料在热水中浸出;向水浸渣中加入硫酸酸化,然后加入镍离子捕捉剂回收镍,锑离子捕捉剂回收锑,钠离子捕捉剂回收钠,过滤去除硫酸钙,余液浓缩结晶成硫酸铁;在水浸液中加入氢氧化钡或铝酸钡,从铝酸钠溶液中通入二氧化碳,用碳分法制备氢氧化铝;最后将氧化铝在高温下煅烧,制备氧化铝。 1.2技术路线 从脱硫污泥中综合提取钒、镍、铝的技术路线如图所示: 氢氧化钡 二氧化碳 硫酸 钒 镍离子捕捉剂 三氧化二铝 锑离子捕捉剂 钠离子捕捉剂 硫酸铁 硫酸钙 前处理后脱硫污泥 高温焙烧 热水浸出 压滤 水浸液 铝酸钠 氢氧化铝 煅烧 水浸渣 混合溶液 混合溶液 混合溶液 混合溶液 压滤 滤液 浓缩结晶

2、危废处理计划保证措施 制定废物进场接收、配料、分类、暂存等运营及工艺操作规程。 危险废物转移联单管理。 危险废物的收集运输、进场接收及处理处置必须严格按照《危险废物转移联单管理办法》执行。 转移联单管理示意图如图1所示: 图1 危险废物联单管理示意图 2.1危险废物接收管理规程 危险废物在实质收运流转前,除严格按照国家《危险废物联单管理办法》的相关规定执行之外,按照宏恩环保运营的经验,需完成前期废物调查取样,废物进场前的信息采集工作等预接收相关的程序文件,有利于规避法务风险、提供定价依据及入场废物核对依据,降低不必要的运输成本。包括: 2.1.1危险废物的调查和取样 调查取样的操作规程: 对于有合作意向的客户,客户须配合业务人员填写《工业废弃物与危险废物调查表》、《危险废物成分参考表》、《采样记录表》并在客户现场完成废物的采样工作,并做好标识。液态废物及固态废物按照国家相关样品采集规定执行。采集后的样品为避免在邮寄或者转运途中,因泄露、破碎等原因造成的二次污染,必须确保采样容器完好无损且材质与所采集的废物为可相容,需具有一定的结构上的强度,避免在传递和贮存期间,发生任何变形或破损。 运输 5 3 2 1 5 4 3

水泥窑协同处理垃圾危废利润怎样

水泥窑协同处理垃圾危废利润怎样? 随着我国经济社会和城镇化的快速发展,城市人口保有量逐渐呈现上升趋势,随着人口的逐年增加,城市生活垃圾量也不断增长。据有关部门不完全统计,2013 年初我国城镇生活垃圾产生量超过1.8 亿吨,堆存量70 多亿吨,占地5 亿多平方米,“垃圾围城”问题日益显现。水泥窑协同处置生活垃圾已成为部分工业化国家消纳生活垃圾的主要方式之一。 经过百度,小编了解到在国外,水泥窑协同处置是固废危废处置的主要手段之一,已经有40多年的发展历史。德国在焚烧垃圾方面就一直采用水泥窑协同处置和垃圾发电两条途径。而且水泥工业中燃料替代率保持了迅猛增长势头,处理废物种类主要为废旧轮胎、废弃油、废木材以及工业废物。同时,固废处置产业链也较为完善,在水泥厂附近有配套的垃圾分选处理厂,把热值高、宜焚烧的成分分选出来进行破碎,再运到水泥厂,以确保焚烧时的燃料添加达到最小化,又能控制二恶英产生。 随着国家政策对水泥窑协同处置固废危废的鼓励,加上水泥窑协同处置日益成熟的技术,海螺、华新、金隅等传统水泥生产企业纷纷涉足固体废物处置,利用水泥窑协同处置生活垃圾。同时,环保企业也纷纷联手水泥企业,实现强强联合,共同推进水泥窑协同处置产业。

根据记者的粗略计算,危废行业盈利能力强,毛利率平均在35%以上,净利率20%左右。据不完全统计,各地平均处理垃圾费用在3000-5000元/吨之间,以3500元/吨为例,5000吨水泥窑每年处理3000吨来算,一年有近2亿元左右的净利润。这笔钱对水泥企业来说可是非常可观的,为企业在国内外市场竞争中提供绝对优势。 水泥窑协同处理技术在国内个别水泥生产企业已开始实践,有国家政策扶持,也有行业专家团队的技术支持,经过一段时间的摸索和创新必然会找到适合国内水泥企业生产特色的新工艺,不但给水泥生产企业带来可观的经济效益,更可长期的造福社会和人民!江苏绿森相信,任何有可能造福社会的新技术都值得我们研究和积极探索,同时始终坚信水泥窑协同处理城市垃圾技术会迎来灿烂的明天! 本文“水泥窑协同处理垃圾危废利润怎样?”相关资讯,如果您有任何疑问,可以随时联系客服!

相关文档
最新文档