风管计算局部阻力系数

风管计算局部阻力系数
风管计算局部阻力系数

风管计算局部阻力系数

风管计算局部阻力系数

风管阻力计算

通风管道阻力计算 对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。否则别的就更不用考虑了。管道内风量主要是由风管内阻力影响的。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D 以上各式中: ΔPm———摩擦阻力(沿程阻力),Pa。 λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式: 其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】 莫台曲线图

表1-1 一般通风管道中K、Re、λ的经验取值 ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s) ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】 L ———风管长度,m 【横断面形状不变的管道长度】 D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直 径:;圆形风管D为风管直径】 摩擦阻力(沿程阻力)计算二:(比摩阻法)

风管阻力(1)

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。 当量直径有流速当量直径和流量当量直径两种: 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。局部阻力按下式计算:Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通 三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。. 在管道设计时应注意以下几点: 1. 渐扩管和渐缩管中心角最好是在8~15o。 2. 三通的直管阻力与支管阻力要分别计算。 3. 尽量降低出风口的流速。 以下为常见管段的比摩阻 规格(mmxmm) 流速(m/s) 当量直径(mm) 比摩阻(Pa/m)

阻力系数

五、数据处理 由于实验中的水温变化较小,平均温度为27.2,查得 ρ水= 995.7 kg/m3 μ水= 0.8545 mPa·s 局部阻力管径d:20.0 mm 测量长度l:95 cm 光滑管径d:20.0 mm 测量长度l:100 cm 粗糙管径d:21.0 mm 测量长度l:100 cm 1.估算粗管的相对粗糙度和绝对粗糙度 由 hf = △p f/ρ = λlu2/2d 得:λ= 2d△p f/ρlu2 将粗糙管的第一组数据代入得; u = 1.3÷3600÷(3.14×0.01052) = 1.0431 m/s λ = (2×0.021×1.52×1000)÷(995.7×1×1.04312) = 0.0589 同理可得: 由 Re = duρ/μ得(粗糙管的第一组数据): Re =0.021×1.0431×995.7÷(0.8545÷1000) = 25525 同理可得: 由此可以作出λ- Re曲线,如下所示:

由趋势线可以知道,λ- Re 曲线近似于一条平行于Re 轴线的直线,且在一定范围内无论Re 取何值,其λ都接近于0.059。 所以经过查表可知,此粗管的相对粗糙度近似为: ε/d = 0.03 则绝对粗糙度为 ε = 0.03×0.021 = 0.00063 2. 根据光滑管实验结果,对照柏拉修斯方程,计算误差: 同第一步计算λ值一样,由公式 λ= 2d △p f /ρlu 2 可根据实验数据计而根据柏拉修斯方程 λ= 0.3164/Re 0.25 ,以第一组数据为例计算如下: Re = du ρ/μ =0.020×1.1500×995.7÷(0.8545÷1000) =26801 则 λ= 0.3164/Re 0.25 =0.3164÷26801 0.25 =0.0247 误差为 (0.0179 - 0.0247)÷0.0247 = -27.5 % 同理可计算其他各组数据的误差为:

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计 算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正

流体阻力系数

流体阻力系数 一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。 在相对速率v 较小时,阻力f的大小与v 成正比: f = kv 式中比例系数k 决定于物体的大小和形状以及流体的性质. 在相对速率较大以致于在物体的后方出现流体漩涡时,阻力的大小将与v平方成正比。对于物体在空气中运动的情形,阻力 f = CρAvv/2 式中,ρ是空气的密度,A 是物体的有效横截面积,C 为阻力系数。 物体在流体中下落时,受到的阻力随速率增大而增大,当阻力和重力平衡时,物体将以匀速下落。物体在流体中下落的最大速率称为终极速率,又称为收尾速率。对在空气中下落的物体,它的终极速率为: 如图

关键字:2.2.4 流体流动阻力的计算 流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种: 直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。 1. 流体在直管中的流动阻力 如图1-24所示,流体在水平等径直管中作定态流动。 在1-1′和2-2′截面间列柏努利方程, 因是直径相同的水平管, 若管道为倾斜管,则 由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。 把能量损失表示为动能的某一倍数。 令 则(2-19) 式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning)公式。式中为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re及管壁状况有关。 根据柏努利方程的其它形式,也可写出相应的范宁公式表示式: 压头损失(2-20) 压力损失 (2-21) 值得注意的是,压力损失是流体流动能量损失的一种表示形式,与两截面间的压力差意义不同,只有当管路为水平时,二者才相等。 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数不同。以下对层流与湍流时摩擦系数分别讨论。 (1)层流时的摩擦系数 流体在直管中作层流流动时摩擦系数的计算式: (2-22) 即层流时摩擦系数λ是雷诺数Re的函数。 (2)湍流时的摩擦系数

风管选择计算

11.2风管的沿程压力损失 11.2.1 沿程压力损失的基本计算公式 1. 风量 (1)通过圆形风管的风量 通过圆形风管的风量L (m 3/h )按下式计算: L=900πd 2V (11.2-1) 式中d ——风管径,m ; V ——管风速,m/s 。 (2)通过矩形风管的风量 通过矩形风管的风量L (m 3/h )按下式计算: L=3600abV (11.2-2) 式中 a ,b ——风管断面的净宽和净高,m 。 2. 风管沿程压力损失 风管摩擦损失m P ?(Pa ),可按下式计算: l p P m m ?=? (11.2-3) 式中 m p ?——单位管长沿程摩擦阻力,Pa/m ; l ——风管长度,m 。 3. 单位管长沿程摩擦阻力 单位管长沿程摩擦阻力m p ?,可按下式计算: 22ρ λV d p e m = ? (11.2-4) 式中 λ——摩擦阻力系数; ρ——空气密度,kg/m 3; e d ——风管当量直径,m ; 对于圆形风管: d d e = 对于非圆行风管: P F d e 4= (11.2-5) 例如,对于矩形风管: b a ab d e +=2

对于扁圆风管: )(4 2 A B A A F -+= π )(2A B A F -+=π F ——风管的净断面积,m 2; P ——风管断面的湿周,m ; a ——矩形风管的一边,m ; b ——矩形风管的另一边,m ; A ——扁圆风管的短轴,m ; B ——扁圆风管的长轴,m 。 4.摩擦阻力系数 摩擦阻力系数λ,可按下式计算: )51 .271.3log( 21 λ λ e e R d K +-= (11.2-6) 式中 K ——风管壁的绝对粗糙度,m ; e R ——雷诺数: ν e e Vd R = (11.2-7) ν——运动粘度,s m /2。 11.2.2 沿程压力损失的计算 风管沿程压力损失的确定,有两种方法可以选择。第一,按上述诸公式直接进行计算;第二,查表计算:可以按规定的制表条件事先算就单位管长沿程摩擦阻力)/(m Pa p m ?,并编成表格供随时查用,当已知风管的计算长度为)(m l 时,即可使用式(11.2-3)算出该段风管的沿程压力损失m P ?(Pa )了。下面仅介绍与计算表有关的容。 1.制表条件 (1)风管断面尺寸 风管规格取自国家标准《通风与空调工程施工质量验收规》(GB 50243) 。 (2)空气参数 设空气处于标准状态,即大气压力为101.325kPa ,温度为20℃,密度 3/2.1m kg =ρ,运动粘度s m /1006.1526-?=ν。 (3)风管壁的绝对粗糙度 以m K 31015.0-?=作为钢板风管壁绝对粗糙度的标准。其他风管的壁绝对粗糙度见表11.2-1.

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法 胡宝林 在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件与重杂物分离器、供料器、卸料器、除尘器等设备上产生。由于管件形状与设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都就是实测数据,由于规格结构不同差异也会很大,所以仅供参考。只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。局部阻力就是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2、5~6、5m 的直管沿程阻力。由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下与带料运行时的局部阻力系数的变化及局部阻力计算方法。 一、纯空气输送时局部阻力与系数 1、局部阻力 当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。在产生局部损失的地方,由于主流与边界分离与漩涡的存在,质点间的摩擦与撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式: 2 2 j d H H ρυξξ=?=? 式中:j H —局部阻力,a P ; ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ; ρ—空气密度,1、2053/kg m (20°℃); υ—空气流速,/m s

Fluent中升力系数阻力系数定义

问题:圆柱绕流在fluent中如何得到阻力系数和升力系数?具体的设置是怎样的?是要监测得到阻力和升力吗?它们分别怎么设置来得到? 答:首先要在report-reference value里设置参考速度和长度 然后solve-monitor-force中设置监测drag,lift就可以了 阻力和升力是可以得到的,得到之后再除以1/2pV**2S就可以了 问题:fluent中升阻力系数如何定义? 答:升力系数定义: FLUENT的升力系数是将升力除以参考值计算的动压 (0.5*density*(velocity**2)*area=0.5*1.225* (1**2)*1=0.6125),可以说只是对作用力进行了无量纲化,对自己有用的升力系数还需要动手计算一下,report一下积分的面积和力,自己计算。 其实本身系数就是一个无量纲化的过程,不同的系数有不同的参考值,就像计算Re数时的参考长度,是一个特征长度,反应特征即可 作为Cl、Cd也是具有特定含义的系数,参考面积的取法是特定的,比如投影面积等等,但是这个在Fluent 里是没有体现的 Fluent里面你不做设置,就是照上面的帖子这样计算出来的, 并不是你所期望的参考值,自己需要设定,对需要的参考值要做在里面设定 另外:参考值的改变不影响迭代计算的过程,只是在后处理一些参数的时候应用到 user guide 的相关内容 26.8 Reference Values You can control the reference values that are used in the computation of derived physical quantities and nondimensional coefficients. These reference values are used only for postprocessing. Some examples of the use of reference values include the following: Force coefficients use the reference area, density, and velocity. In addition, the pressure force calculation uses the reference pressure. Moment coefficients use the reference length, area, density and velocity. In addition, the pressure force calculation uses the reference pressure. Reynolds number uses the reference length, density, and viscosity. Pressure and total pressure coefficients use the reference pressure, density, and velocity.

风道系统的阻力平衡自动计算解析

风道系统的阻力平衡自动计算 摘要:风道系统的阻力平衡直接影响着系统风量的实际分配值及技术经济指标。本文介绍的风道系统阻力平衡自动计算,不但可确保了设计的准确性,还可有效提高设计效率。 关键词:风道系统环路阻力平衡自动计算 一、引言 在空调、通风系统中,由于同一系统的风管是相互连接的一个整体,因而必然遵循各支路阻力平衡规律,当风管系统的结构形式、管道尺寸一经确定,在一定的风机作用下,各段的风量是按阻力平衡规律自动分配的。在设计计算时未经阻力平衡计算,会导致系统实际风量分配与设计不符。当然我们也可以通过调节风阀来分配风量,但这样一来就又使非最不利环路的风压多余。所以在设计计算时考虑各环路的阻力平衡具有现实意义。 然而,不少设计人员在进行风道水力计算及阻力平衡过程中仅仅凭经验估算或查图手算,这样费时费力还达不到理想效果。笔者所设计的计算软件以EXCEL为工作平台,用VBA语言为开发工具,从而确保了程序的执行效率。 二、阻力自动平衡计算的基本步骤 风道系统阻力平衡自动计算的执行过程基本延用常规设计的计算步骤,主要如下:

①将各节点间的逻辑关系、管段的相关参数依次输入并保存,然后根据技术要求初步选定各管段的假定风速; ②根据假定风速自动计算管段当量水力直径及阻力损失; ③用节点逆寻法自动查找系统各环路的路径及阻力损失,并确定系统最不利环路; ④对非不利环路进行自动阻力平衡。 ⑤对计算结果进行校核。 以上过程中只有工作量不大①、⑤需人工干预,而其他步骤全部由计算机自动完成。从而不但确保其计算速度及准确性,而且还可根据需要进行适当的手工调整。 三、设计要点 要实现风道系统的阻力平衡自动计算过程,主要体现在以下几个核心要点上。

暖通风管风量如何计算

暖通风管风量如何计算 通风工程风管的选择很大一部分取决于实际中风量,风速,但是风管风量怎么计算呢? 风管: 风管尺寸=风量/风速风量=房间面积*房间高*换气次数 有个例子:风量4万,风速9m/s,得风管尺寸=40000/9/3600=1.23平方 1.23=1.5*0.82 所以风管尺寸为 1500*800 Q:1、例子中的3600是既定参数吗? 2、这个风管尺寸计算公式,对排烟,排风管道尺寸计算通用吗? 3、求风口和排烟口尺寸计算公式——或者求暖通基础知识学习文档,手里的设计规范对现在的我来说太太高深,还是从基础打起吧 一小时有3600秒,除以3600是因为计算公式前后的单位要统一。这个公式对所有风管计算都适用,但是9m/s这个风速值不是固定值,需要由你来设定。排烟排风的公式都是一样的算法,这个9m/s的风速需要根据噪音要求调整的,楼主可参考下采暖通风设计规范消声部分,还有矩形风管的规格建议用标准的,施工规范里的是1600,没有1500。 管道直径设计计算步骤 专业制作与安装——铁皮风管——不锈钢风管,通风工程

以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,一定要通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小

1阻力系数和升力系数的计算

目录 1 阻力系数和升力系数的计算...................................................................................................1 2 俯仰力矩系数的计算...............................................................................................................1 3 法向力系数对攻角导数的计算...............................................................................................1 4 俯仰阻尼力矩系数的计算.......................................................................................................2 5 俯仰阻尼力矩系数的推导. (2) 1 阻力系数和升力系数的计算 n C —法向力系数;a C —轴向力系数; d C —阻力系数;L C —升力系数。 α—攻角。 cos sin L n a C C C αα=? sin cos d n a C C C αα=+ 2 俯仰力矩系数的计算 ()m n cp cg C C x x =? 3 法向力系数对攻角导数的计算 1(|1)(180)0(180)0o o o n n o n C C C ααπαα πα=?×=?=?×≠??

风管计算局部阻力系数

知识就绘力量 风管计算局部阻力系数 1.3.2局部組力廉散 竇杵彳进凤口的AM1力嬴故 A 1安装庄堵上的风曾 吗风管为短形时?门対臓逮芳H直住◎ 出这种管件的入口外装有网幡时.应进行修疋「边醴较弾时.BP S/D?h05时fo = I十氐边壁较阜时.即J/P>0.05时* 式中A—管件的局部阻力累裁*见上樂——福的 局诽阻力慕数.见管杵G-乩^-2不安在惓埴上的 權足甑妁則叭口 4 -.. 丄 ■ 02B聞4已fid100140IBD U. 026 1.00.96IKM0亠肺w0.69 4.590.30 o. os 1.0c,as IL帥0,?5 C.fl7乩站0.53仇的fe * 0,1& 1.0L*U *1) 4. so Ik 57此厲九血I.D■“ 1 1,0 ' C.UE乩50IK3i4L&2 -$50.72V.73 X06(L500-50O.So0.5D o.sa0,50心揃

577 知识就姥力量 当断简①处有期格时,按式<8.3-2)进行修正。 /?3安装在端堪上的锥形渐缩剤叭口 当断面①处有网格时,应按式(8.3 2)修正。 *4罩形进风门 若斷面①处有剧祜时.应按式<8<3-2)进行修正。 4-5带或不带凸边的渐缩型罩子。 矶?) 0 20 40 w ?0 ]00 120 1W 1W 180 L0 O.ll 0N6 0.W 044 0.18 0.27 - O.A3 <1. W 20 40 8C- 100 120 uo 160 l?J : 1.0 0.L9 0.13 0U6 0<2l 0.27 0.33 0.33 0.52 : 对于矩形罩子,&系招大角。 管件B 岀风口的局部81力系数 B-1直管出风口 瓷o = 1?0 当岀口断面处有网格时,应按式(8.3?2) 进行修正? B-2健形出风口.園风管 1 D C 10 20 M 40 60 100 13 180 O.OZL o.so 0.U 仇45 C.43 0.41 0.40 0.42 0.45 O.M 0.05 0.W 0.45 0.1( 0.W 0.33 0.30 0>35 0.42 O.ati 0.OT5 OeSO 0.42 0.36 O.2C 0.28 0.23 0.30 0.40 0.50 0.10 0.50 0.W 0.S2 0.2S 几22 0.18 0.27 C.M 0.50 0.1$ 0.60 0.37 0.Z7 9.20 ).16 0.15 0.25 0-37 0.50 ? 0?3 0.50 0.27 0.18 _ !>.13 3.11 0.12 0.23 0.36 C.50 0.1 0.2 0.3 0.4 0.5 0?b 0.7 0.8 ?.9 ■ 0 2?$ 1.8 i?5 1.1 1.3 1.2 l.Z 1.1 l.l 15 1.3 o.$o o.a 0.41 0.30 0.29 0.2S 0-25

风管阻力计算

厦门中央空调风管阻力计算. 确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多得环路。 4.根据造价和运行费用的综合最经济的原则,选择合理的空气流速。根据经验总结,风管内的空气流速可按P111表6.3确定。 5.根据给定风量和选定流速,逐段计算管道断面尺寸,并使其符合表6.1所列的矩形风管统一规格。然后根据选定了的断面尺寸和风量,计算出风道内实际流速。 通过矩形风管的风量G可按下式计算: G=3600abυ (m3/h) 式中a,b—分别为风管断面净宽和净高,m。 6.计算风管的沿程阻力 根据沿程阻力计算公式:?Py=?pyl 查《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损失?py,再根据管长l,计算出管段的摩擦阻力损失。 7.计算各管段局部阻力 根据局部阻力计算公式:?Pj=ζ×υ2ρ/2 查《局部阻力系数ζ计算表》取得局部阻力系数ζ值,求出局部阻力损失。 8.计算系统的总阻力,?P=∑(?pyl +?Pj )。 9.检查并联管路的阻力平衡情况。 10.根据系统的总风量、总阻力选择风机。 假定流速法,你可以看看空调简明手册参数都可以查 消声器、静压箱总结 一、概念 (一)消声器 1。阻式消声器:是通过吸声材料来吸收声能降低噪音,一般的微穿孔板消声器就属于这个类型,一般是用来消除高、中频噪声。但是由于结构的原因,在高温、高湿、高速的情况下不适用。 2。抗式消声器:是通过改变截面来消声的。我们常用的消声静压箱都是这个原理。一般降低中、低频噪音。对风系统没有具体的要求。 3。阻抗复合式:当然是结合二者的结构原理。可以消除低中高频噪音。但是对风系统的要求同阻式消声器 4、对于一般的民用空调通风系统,我个人认为选用阻抗复合消声器为好。 阻性消声器具有良好的中高频消声性能。按气流通道几何形状不同,可分为直管式、片式、折板式、迷宫式、蜂窝式、声流式、障板式、弯头式等。抗性消声器适用于消除中低频噪声或窄带噪声。按其作用原理不同,可分为扩张式、共振腔式和干涉式等多种型式。阻抗复合式消声器,有共振腔、扩张室、穿孔屏等

管道的阻力计算

6.1.1 管道的阻力计算 [ 2007-9-4 14:50:31 | By: rsjang ] 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1)对于圆形风管,摩擦阻力计算公式可改为: (6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; R s——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5)

风管的水力计算

风管的水力计算 1、对各管段进行编号,标注管段长度和风量 2、选到管段1-2-3-4-5-6为最不利环路,逐步计算摩擦阻力和局部阻力管段 1-2: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.88Pa,?Pm1-2=0.88*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩 三通 双层百叶送风口:查得ζ=3, 渐扩口:查得ζ=0.6 弯头:ζ=0.39 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=3.47m/s 汇总的1-2段的局部阻力为=(3+0.6+0.39+0.5+0.4)*1.2*3.47*3.47/2=35.3Pa 所以1-2段的总阻力为:35.3+2=37.3Pa 管段2-3: 摩擦阻力部分: L=2250,单位长度摩擦阻力Rm=1.0Pa,?Pm1-2=1.0*2.25=2.25Pa 局部阻力部分: 该段的局部阻力的部件有多页调节阀、裤衩三通 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=4.34m/s

汇总的2-3段的局部阻力为=(0.5+0.4)*1.2*4.34*4.34/2=10.2Pa 所以2-3段的总阻力为:2.25+10.2=12.5Pa 管段3-4: 摩擦阻力部分: L=8400,单位长度摩擦阻力Rm=1.33Pa,?Pm1-2=1.33*8.4=11.2Pa 局部阻力部分: 该段的局部阻力的部件有四通:ζ=1,V=5.56m/s 局部阻力=1*1.2*5.56*5.56/2=18.5Pa 所以管段3-4的总阻力 为:11.2+18.5=29.7Pa 管段4-5: 摩擦阻力部分: L=1100,单位长度摩擦阻力Rm=0.93Pa,?Pm1-2=0.93*1.1=1.023Pa 局部阻力部分: 该段的局部阻力的部件有70?防火阀、静压箱 70?多页调节阀:ζ=0.5,V=5.56m/s 静压箱的阻力约30Pa 局部阻力=0.5*1.2*5.56*5.56/2+30=39.25Pa 所以管段4-5的总阻力 为:1.023+9.25+30=40.25Pa 管段5-6: 单层百叶风口:ζ=3,V=3.17m/s 静压箱的阻力约30Pa 局部阻力=3*1.2*3.17*3.17/2+30=48Pa 所以管段5-6的总阻力为:48Pa 机外余压=机外静压+机外动压=沿程阻力+局部阻力+风管系统最远送风口的动压 =37.3+12.5+29.7+40.25+48+1.2*3.47*3.47/2=175Pa 机外静压=机外余压-设备出口处的动压

空气阻力的计算

空气阻力的计算 空气阻力的计算公式是什么? 空气阻力Fw是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:Fw=1/16·A·Cw·v2(kg) 其中:v为行车速度,单位:m/s;A为汽车横截面面积,单位:m2:Cw为风阻系数。 空气阻力跟速度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力会增加3倍。因此高速行车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。换句话讲,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。空气阻力的大小除了取决于车的速度外,还跟汽车的截面积A和风阻系数Cw有关。 风阻系数Cw是一个无单位的数值。它描述的是车身的形状。根据车的外形不同,Cw值一般在0.3(好)—0.6(差)之间。光滑的车身造型(最理想为水滴型)使气流流过车身后的速度变化小,不会形成旋涡,Cw值就低;相反,如果车身外形有棱有角又有缝,Cw值就高。一般赛车将车轮设计在车身之外,自成一体。理论上每一辆车的Cw可以在模型制作阶段测得,但准确的Cw值都必须在出了成品之后,通过做风洞实验来获得。 通过改善汽车的空气动力学性能,比如变化尾翼、底盘罩、前部进风口和轮毂帽,都能降低风阻系数。而降低车身高度,等于减小了截面积,或使车身更多地盖住轮子,也有利于降低空气阻力。 == 空气阻力. 空气阻力是与物体运动的速率成正比的,即:f=kv k是空气摩擦系数,和空气密度有关,在我们能找到的丢东西的地方,一般可以认为是一个常数. 当物体从空中开始下落的时候,v很小,f很小,mg>f,所以物体逐渐加速.随着速度 的增加,f增加,最终会达到mg=f的平衡点.此时,物体就开始了匀速下落.并且我们知道下落的速率便是v=mg/k在一般意义上我们说的重量,指的便是mg. 冬季奥林匹克运动会向我们展示了一幅幅完美的气体动力学画面。不管是速滑、雪橇还是跳台滑雪运动员,他们在风洞中的轮廓看上去都几近完美。由于百分之一秒就可能决定胜负,所以尽可能地减小风阻就是迫在眉睫的事情了。 一个移动物体所受的风阻取决于许多因素,例如它的速度,速度增加一倍,物体所受的阻力就会是原阻力的四倍。重要的还有风阻系数,通常它只取决于移动物体的形状。风阻系数缩写为“Cw”,是一个无单位的数。我们在汽车目录的参数一栏中也可以看到。一辆车(滑

风管阻力计算简

风管阻力计算 ☆风管阻力计算方法 送风机静压Ps(Pa)按下式计算 P S = P D + P A 式中:P D——风管阻力(Pa),P D = RL(1 + K) 说明:R——风管的单位磨擦阻力,Pa/m;L ——到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K——局部阻力与磨擦阻力损失的比值。 推荐的风管压力损失分配(按局部阻力和磨擦阻力之比) P D = R(L + Le) 式中Le为所有局部阻力的当量长度。 PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa) ☆推荐的风管压力损失分配(按送风与回风管之阻力) ☆低速风管系统的推荐和最大流速m/s

☆低速风管系统的最大允许流速m/s

☆推荐的送风口流速m/s ☆以噪声规范控制的允许送风流速m/s ☆回风格栅的推荐流速m/s

根据YORK公司产品手册整理2004年4月3日常用单位换算公式集合大全常用单位换算公式集合大全 换算公式 面积换算 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方M(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘M(cm2) 1公顷(ha)=10000平方M(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方M(m2) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方M(m2) 1平方英尺(ft2)=0.093平方M(m2) 1平方M(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方M(m2) 1平方英里(mile2)=2.590平方公里(km2) 体积换算 1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方M(m3)=42美加仑(gal)1英亩·英尺=1234立方M(m3) 1立方英寸(in3)=16.3871立方厘M(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方M(m3)1万亿立方英尺(tcf)=283.17亿立方M(m3) 1百万立方英尺(MMcf)=2.8317万立方M(m3)1千立方英尺(mcf)=28.317立方M(m3) 1立方英尺(ft3)=0.0283立方M(m3)=28.317升(liter) 1立方M(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)

空气阻力的计算公式是什么

空气阻力的计算公式是什么? 空气阻力Fw是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:Fw=1/16·A·Cw·v2(kg) 其中:v为行车速度,单位:m/s;A为汽车横截面面积,单位:m2:Cw为风阻系数。 空气阻力跟速度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力会增加3倍。因此高速行车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。换句话讲,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。空气阻力的大小除了取决于车的速度外,还跟汽车的截面积A和风阻系数Cw有关。 风阻系数Cw是一个无单位的数值。它描述的是车身的形状。根据车的外形不同,Cw值一般在0.3(好)—0.6(差)之间。光滑的车身造型(最理想为水滴型)使气流流过车身后的速度变化小,不会形成旋涡,Cw值就低;相反,如果车身外形有棱有角又有缝,Cw值就高。一般赛车将车轮设计在车身之外,自成一体。理论上每一辆车的Cw可以在模型制作阶段测得,但准确的Cw值都必须在出了成品之后,通过做风洞实验来获得。 通过改善汽车的空气动力学性能,比如变化尾翼、底盘罩、前部进风口和轮毂帽,都能降低风阻系数。而降低车身高度,等于减小了截面积,或使车身更多地盖住轮子,也有利于降低空气阻力。 == 空气阻力. 空气阻力是与物体运动的速率成正比的,即:f=kv k是空气摩擦系数,和空气密度有关,在我们能找到的丢东西的地方,一般可以认为是一个常数. 当物体从空中开始下落的时候,v很小,f很小,mg>f,所以物体逐渐加速.随着速度 的增加,f增加,最终会达到mg=f的平衡点.此时,物体就开始了匀速下落.并且我们知道下落的速率便是v=mg/k在一般意义上我们说的重量,指的便是mg. 冬季奥林匹克运动会向我们展示了一幅幅完美的气体动力学画面。不管是速滑、雪橇还是跳台滑雪运动员,他们在风洞中的轮廓看上去都几近完美。由于百分之一秒就可能决定胜负,所以尽可能地减小风阻就是迫在眉睫的事情了。 一个移动物体所受的风阻取决于许多因素,例如它的速度,速度增加一倍,物体所受的阻力就会是原阻力的四倍。重要的还有风阻系数,通常它只取决于移动物体的形状。风阻系数缩写为“Cw”,是一个无单位的数。我们在汽车目录的参数一栏中也可以看到。一辆车(滑冰运动员也是同样)的Cw值越小,它的流线型就越标准。小的Cw值在汽车驾驶中意味着低油耗,在体育运动中则意味着在同样的用力下能够达到更高的速度。Cw值可用传感器在风洞中进行测量。

标准摩擦阻力系数

第三章 井巷通风阻力 本章重点和难点: 摩擦阻力和局部阻力产生的原因和测算 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 第一节 井巷断面上风速分布 一、风流流态 1、管道流 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。 (1)雷诺数-Re 式中:平均流速v 、管道直径d 和流体的运动粘性系数γ。 在实际工程计算中,为简便起见,通常以R e =2300作为管道流动流态的判定准数,即: R e ≤2300 层流, R e >2300 紊流 (2)当量直径 对于非圆形断面的井巷,Re 数中的管道直径d 应以井巷断面的当量直径de 来表示: 因此,非圆形断面井巷的雷诺数可用下式表示: γ d v e R ? =

对于不同形状的井巷断面,其周长U 与断面积S 的关系,可用下式表示: 式中:C —断面形状系数:梯形C =4.16;三心拱C =3.85;半圆拱C =3.90。(举例见P38) 2、孔隙介质流 在采空区和煤层等多孔介质中风流的流态判别准数为: 式中:K —冒落带渗流系数,m 2; l —滤流带粗糙度系数,m 。 层流,R e ≤0.25; 紊流,R e >2.5; 过渡流 0.252300,紊流 巷道条件同上,Re=2300层流临界风速: V=Re×U×ν/4S =2300×4.16×3×15×10-6/(4×9)=0.012m/s<0.15 二、井巷断面上风速分布 (1)紊流脉动 风流中各点的流速、压力等物理参数随时间作不规则变化。 (2)时均速度 瞬时速度 v x 随时间τ的变化。其值虽然不断变化,但在一足够长的时间段 T 内,流速 v x 总是围绕着某一平均值上下波动。 (3)巷道风速分布

相关文档
最新文档