比表面及孔径吸附分析

比表面及孔径吸附分析
比表面及孔径吸附分析

背景知识

细小粉末中相当大比例的原子处于或靠近表面。如果粉末的颗粒有裂缝、缝隙或在表面上有孔,则裸露原子的比例更高。固体表面的分子与内部分子不同,存在剩余的表面自由力场。同样的物质,粉末状与块状有着显著不同的性质。与块状相比,细小粉末更具活性,显示出更好的溶解性,熔结温度更低,吸附性能更好,催化活性更高。这种影响是如此显著,以至于在某些情况下,比表面积及孔结构与化学组成有着相当的重要性。因此,无论在科学研究还是在生产实际中,了解所制备的或使用的吸附剂的比表面积和孔径分布有时是很重要的事情。例如,比表面积和孔径分布是表征多相催化剂物化性能的两个重要参数。一个催化剂的比表面积大小常常与催化剂活性的高低有密切关系,孔径的大小往往决定着催化反应的选择性。目前,已发展了多种测定和计算固体比表面积和孔径分布的方法,不过使用最多的是低温氮物理吸附静态容量法。

气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称吸附(adsorption)。吸附气体的固体物质称为吸附剂(adsorbent);被吸附的气体称为吸附质(adsorptive);吸附质在表面吸附以后的状态称为吸附态。

吸附可分为物理吸附和化学吸附。

化学吸附:被吸附的气体分子与固体之间以化学键力结合,并对它们的性质有一定影响的强吸附。

物理吸附:被吸附的气体分子与固体之间以较弱的范德华力结合,而不影响它们各自特性的吸附。

孔的定义

固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹坑直径就成为孔。有孔的物质叫做多孔体(porous material),没有孔的物质是非孔体(nonporous material)。多孔体具有各种各样的孔直径(pore

diameter)、孔径分布(pore size distribution)和孔容积(porevolume)。

孔的吸附行为因孔直径而异。孔大小(孔宽)分为

微孔(micropore) < 2nm

中孔(mesopore) 2~50nm

大孔(macropore) 50~7500nm

巨孔(megapore) > 7500nm(大气压下水银可进入)

此外,把微粉末填充到孔里面,粒子(粉末)间的空隙也构成孔。虽然在粒径小、填充密度大时形成小孔,但一般都是形成大孔。分子能从外部进入的孔叫做开孔(open pore),分子不能从外部进入的孔叫做闭孔(closed pore)。

单位质量的孔容积叫做物质的孔容积或孔隙率(porosity)

吸附平衡

固体表面上的气体浓度由于吸附而增加时,称吸附过程(adsorption);反之,当气体在固体表面上的浓度减少时,则为脱附过程(desorption)。

吸附速率与脱附速率相等时,表面上吸附的气体量维持不变,这种状态即为吸附平衡。吸附平衡与压力、温度、吸附剂的性质、吸附质的性质等因素有关。一般而言,物理吸附很快可以达到平衡,而化学吸附则很慢。

吸附平衡有三种:等温吸附平衡、等压吸附平衡和等量吸附平衡。

等温吸附平衡――吸附等温线

在恒定温度下,对应一定的吸附质压力,固体表面上只能存在一定量的气体吸附。通过测定一系列相对压力下相应的吸附量,可得到吸附等温线。吸附等温线是对吸附现象以及固

体的表面与孔进行研究的基本数据,可从中研究表面与孔的性质,计算出比表面积与孔径分布。

吸附等温线有以下五种(图 1)。吸附等温线的形状直接与孔的大小、多少有关。现在人们已普遍地将他们分别称做第I类吸附等温线、第II类吸附等温线,……第V类吸附等温线,这种分类法通常称做吸附等温线的B.E.T.分类.

著作权:贝士德仪器研究院

比表面积分析仪使用方法及测试步骤

Rise系列全自动静态容量法氮吸附 比表面积及孔隙度分析仪使用方法及操作步骤 样品准备阶段:样品管烘干,样品管称重,添加样品,新样品管应在样品管称重前测试自由体积。 样品测试阶段:将准备好的样品管安装到样品测试端口,将杜瓦平稳放置到自动升降架,输入样品信息,样品管信息,选择测试方法比表面积或全过程,开始测试。自由体积测试:对新样品管首先烘干样品管,将其固定到样品测试端口,将杜瓦平稳放置到自动升降架,输入样品管编号,开始测试,测试完成后保存样品管信息。 5.1 样品测试 5.1.1样品准备 1.将真空泵与脱气站连接好,选择样品管,确认样品管编号。如果样品是超细粉 状物,须将样品进行压片处理。 2.将样品管固定到脱气口(如果真空泵未打开请打开真空泵) 3.将加热包固定到加热端口 4.设置加热时间和加热温度,开始加热脱气 5.脱气时间到,看到提示或听到提示声音停止加热和抽真空。 6.样品管冷却5分钟后取下。 7.用分析天平称量样品管重量(g1),并记录。 8.为已称好的样品管中加入适量样品,比表面积较大的样品一般在0.2~0.5克,比表面积较小的样品一般在1-10克。比表面积特别大的样品适当减少样品重量 9.将样品管固定到脱气口 10. 将加热包固定到加热端口 11. 设置加热温度,和加热脱气时间,开始加热脱气 12.脱气时间到,看到提示或听到提示声音,停止加热和脱气。 13.样品管冷却5分钟后取下 14.用分析天平称量样品管重量(g2),并记录。 15.(g2-g1)计算样品重量(g),并记录。 * 已使用过的样品管可不做1~7步。 5.1.2 杜瓦瓶准备 将液氮加入杜瓦瓶到指定液位,静置半小时以后待用。 5.1.3 样品管固定到测试端口 5.1.4 输入样品信息 输入样品名称,材料(微孔分析使用),比重,质量。 5.1.5输入样品管信息 空管,选择管号,点击测试后自动测试冷体积和修正系数,然后保存。 5.1.6 输入样品测试数据文件 文件名称可以直接输入,或点击选择 不输入文件名,开始测试后系统自动生成文件名。 5.1.7 开始测试

氮气吸附定义

气体吸附(氮气吸附法)比表面积测定 比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特 性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下 对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力 存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模 型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规 则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外 表面和内部通孔总表面积之和,如图所示意位置。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。计算公式如下: sg: 被测样品比表面积(m2/g) Vm: 标准状态下氮气分子单层饱和吸附量(ml) Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2) W:被测样品质量(g) N:阿佛加德罗常数(6.02x1023) 代入上述数据,得到氮吸附法计算比表面积的基本公式: 由上式可看出,准确测定样品表面单层饱和吸附量Vm是 比表面积测定的关键。 测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样 品吸附气体量多少方法的不同,可分为:连续流动法、容 量法及重量法,重量法现在基本上很少采用;再者是根据 计算比表面积理论方法不同可分为:直接对比法比表面积 分析测定、Langmuir法比表面积分析测定和BET法比表面 积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍 一、比表面积介绍 比表面积定义为单位质量物质的总表面积,国际单位是(m2/g),主要是用来表征粉体材料颗粒外表面大小的物理性能参数。实践和研究表明,比表面积大小与材料其它的许多性能密切相关,如吸附性能、催化性能、表面活性、储能容量及稳定性等,因此测定粉体材料比表面积大小具有非常重要的应用和研究价值。材料比表面积的大小主要取决于颗粒粒度,粒度越小比表面积越大;同时颗粒的表面结构特征及形貌特性对比表面积大小有着显著的影响,因此通过对比表面积大小的测定,可以对颗粒以上特性进行参考分析。 研究表明,纳米材料的许多奇异特性与其颗粒变小比表面积急剧增大密切相关,随着近年来纳米技术的不断进步,比表面积性能测定越来越普及,已经被列入许多的国际和国内测试标准中。 二、气体吸附法 比表面积测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。 三、测试方法及原理 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法、Langmuir法和BET法等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。 1)连续流动法 连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相色谱原理的基础上发展而来,藉由热导检测器来测定样品吸附气体量的多少。连续动态氮吸附是以氮气为吸附气,以氦气或氢气为载气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘

比表面积仪操作细则

水泥比表面积测定操作比赛实施细则 一、水泥比表面积测定要求: 1、参赛人员在规定时间内,对规定试样(水泥)采用勃氏法进行水泥比表面积测定,确定该样品的比表面积(30min内完成,并出具正式的试验报告); 2、水泥比表面积测定必须按照JTG E30-2005《公路工程水泥及水泥混凝土试验规程》的试验步骤及本细则有关要求进行试验; 二、水泥比表面积测定步骤: 1、漏气检查: 用橡胶塞塞紧压力计容桶接口,设定必要参数然后起动仪器,仪器自动停止后,仔细观察液面是否有降落,无降落为正常。 2、试料层体积测定: 1)将两片滤纸沿圆筒壁放入透气圆筒内,用一个直径略比透气圆筒小的细长棒往下按,直到滤纸平整放在金属的穿孔板上。 2)装满水银,用一小块薄玻璃板轻压水银表面,使水银面与圆筒口平齐,保证在玻璃板和水银表面之间没有气泡或空洞存在。 3)从圆筒中倒出水银,称量P1,精确到0.05g。重复几次测定,到数值基本不变为止。 4)从圆筒中取出一片滤纸,试用约3.3g的水泥。 5)轻敲圆筒的边,使水泥层表面平坦。 6)再放入一片滤纸,用捣器均匀捣实试料直至捣器的支持环紧紧接触圆筒顶边并旋转两周。(应制备坚实的水泥层,如水泥太松或不能压到要求体积时,应调整水泥的质量。)

7)慢慢取出捣器,再在圆筒上部空间注入水银。 8)同上方法除去气泡、压平、倒出水银称量P2。 9)测量室温。 10)圆筒内试料层体积V=10-6×(P1-P2)/ρ水银,精确到5×10-9m3。 11)进行两次平行测定,两次数值相差不超过5×10-9m3,则取两者的平均值,精确至10-10m3。 3、确定试样量:W=试样密度ρ×圆筒内试料层体积V×(1-ε) 注:ε——空隙率,标准水泥采用0.500,P.Ⅰ、P.Ⅱ型水泥采用0.500;其它水泥采用0.530。 4、试料层制备: 1)将穿孔板放入透气圆筒的突缘上,用一根直径比圆筒略小的细棒把一片滤纸送到穿孔板上,边缘压紧。 2)称取确定的试样量,精确到0.001g,倒入圆筒。 3)轻敲圆筒的边,使水泥层表面平坦。 4)再放入一片滤纸,用捣器均匀捣实试料直至捣器的支持环紧紧接触圆筒顶边并旋转两周,慢慢取出捣器。 5、参数标定(K值标定): 1)将仪器放平稳,接通电源,打开仪器左侧的电源开关。此时仪器左侧的四位数码管显示Errl,表示玻璃压力计内的水位未达最低刻度线。 2)用滴管从压力计左侧一滴滴的滴入清水。滴水过程中应仔细观察仪器左侧显示屏,至显示good时立即停止加水。此时左侧数码管显示仪器常数K的值;右侧三位数码管显示当前环境温度。至此仪器处于待机状态,可以进行操作。3)将装有试样的容桶锥部的下部均匀涂上少量黄油(或凡士林),将容桶边旋

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 3H-2000PS4仪器外观尺寸:H78cm * W72cm * L47cm Weight:46Kg 3H-2000PS4大型静态容量法比表面及孔径分析仪 性能简介: 分析站数量:具有4个样品分析站,1个P0测试站,4个样品脱气站; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试方法:静态容量法 优势特征: ◆具有国内领先独立的高精度饱和蒸汽压(P0)实时测试站; ◆具有国内首家有氦气和无氦气可选测试功能;(有氦气可提高死体积测试精度,降低样品吸附误差) ◆具有国内领先精确的全自动液氮面伺服智能保持系统; ◆具有独立的真密度测试功能,可氦气测试,精确度高,独立报告; ◆具有国内外领先的测试、脱气完毕自动恢复常压功能,防止样品飞溅; ◆先进的智能自检流程,智能判断样品管是否安装,试管夹套是否拧紧有无漏气; ◆具有国内外首创的样品预处理普通模式和分子置换模式两种模式; ◆精确的分压点控制机制,可按设定要求对重点孔径段进行精细分析,分析点数可达千点;

◆清晰形象的图形化控制界面,并可在界面上进行所有硬件的控制操作; ◆具有国内唯一的液氮杯防意外“安全下降”智能控制机制,完全避免了液氮杯意外下降气体膨胀使样品管爆裂的危险;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪。 ◆超强的稳定性,即使意外断电、断线,亦不会丢失当前数据,且实验可恢复继续进行; ◆强大的实验报告数据库化管理功能,可按多种方式进行报告查询、比较与分类管理; ◆数据报告小窗口自动预览功能,同时显示结果与曲线; ◆原始测试数据导出导入,PDF报告单个导出、批量导出; ◆全程自动化智能化运行,亲和的真人语音操作提示; ◆自动记忆上次测试设置,同类分析只需修改样品名称与重量,其它设置自动沿用上次; ◆详尽的仪器运行日志显示与记录,每次实验全自动过程中的所有硬件动作与流程进展的均有记录,时间精确到秒,方便过程查询与故障反馈; ◆仪器配置芯片记忆功能,实现人工对仪器硬件参数的零配置; ◆软件界面详尽的操作帮助与指示功能,未经培训人员几乎只需按照帮助信息就可实现对软件的应用;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 ◆具有便捷的液氮杯自动加盖; ◆软件界面自定义风格转换; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试理论与报告内容: 1、吸附、脱附等温线; 2、BET单点法比表面S BET-O 3、BET多点法比表面S BET-M ,BET常数C BET 4、朗格缪尔(Langmuir)比表面S Langmuir ,朗格缪尔平衡常数b Langmuir 5、统计吸附层厚度法外比表面(STSA)S 外 6、粒度估算报告和真密度; 7、BJH法孔容孔径分布;(微分、积分孔体积、孔面积、孔径分布,柱状图、曲线图) 8、MK-plate法(平行板模型)孔容孔径分布(为BJH法的补充,适合对片层状结构材料分析); 9、t-plot法(Boder)微孔分析;(V-t图,t法微孔孔径分布图) 10、MP法(Brunauer) 微孔分析;(V-t图,微孔孔径分布图)(该方法考虑到不同材料吸附常

11.3H-2000A型全自动氮吸附比表面积测试仪操作规程

1目的 为了正确指导3H-2000A型比表面仪的操作要领及注意事项。 2范围 本规程规定了3H-2000A型比表面仪的操作步骤、设备验证、设备确认、常见故障及处理方法、注意事项、保养规定、其他说明及记录。 3操作步骤 3.1操作前检查 3.1.1仪器接电正常。 3.1.2氮气及混合气体的压力符合测试要求。 3.1.3准备足量样品测试管。 3.2操作步骤 3.2.1称样: 3.2.1.1 样品管的较粗端口为装样口,样品从粗口端装入; 3.2.1.2 待测样品称样量的多少以体积为准,振动敲平后的体积应控制在样品管装样管部分体积的1/3至1/2左右。待测样品比表面较小时,称样量应多一些;当待测样品比表面较大时,则称样量应少一些; 3.2.1.3 标准样品称样量原则为:使标准样品重量与其比表面积的乘积和待测样品重量与其比表面积的乘积基本相等,即使测试中的信号强度(峰面积)基本相当。 3.2.1.4 标准样品可重复使用,一般在使用1个月左右后应重新称量,定期更换标样; 3.2.2样品管安装3.2.2.1先套上铜螺母,再给样品管两个管臂每端各套一个O型圈。套O型圈时,两手指应捏在靠近管口的位置,以防样品管折断伤手,不可给样品管施向两竖管间的力,以防样品管断裂。 3.2.2.2O型圈上沿距样品管口约3mm~5mm。 3.2.2.3 样品管的装样口应安装在进气口端,否则可能使管壁上粘挂的微量样品粉末被气体带入仪器内部。 3.2.2.4 使样品管竖直,无左右偏斜,切记将加紧螺母拧紧,以防漏气。 3.2.3样品吹扫脱气处理 3.2.3.1装电炉,将加热炉接线端口接在主机相应端口上,将加热炉套在样品管上。 3.2.3.2 开气,打开吹扫气源高纯N2气瓶(开气步骤:先打开钢瓶总阀<逆时针旋转半圈至一圈即可> ,再打开减压阀阀门<顺时针往内拧紧为开,逆时针往外拧松为关> ),

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明

目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。 ★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型

几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明

SSA3500型全自动比表面积分析仪

SSA--3500型全自动比表面积分析仪 (原理及其特点) 在科技化日新月异的今天,现代化的脚步越来越快。技术更新已经更大程度的影响了一个企业的存亡。计算机智能比表面积测试仪就是其中知识经济的代表。 在工业上,固体高度分散后的固体比表面积的测定和分析(微观结构性能),对于吸附,催化,色谱,冶金,陶瓷,建筑材料的生产和研究工作都有重要意义。本设备是在基于表面物理吸附的相关理论为基础,以Nelsen和Eggertsen提出的连续流动法为结构,从而测定出固体的比表面积。以氦气作为载气,氮气为吸附气体,二者按4:1的比例通入样品管,当样品管浸入液氮时,在低温作用下,混合气中的氮气被样品物理吸附,直至吸附饱和,在随后的样品管及样品在升温的过程中,样品吸附的氮气全部解析出来,此时混合气体中氮气的比例将发生变化。在此吸附和脱附过程中,高精度的热导检测器会完成相关的检测工作,再经过模数转换系统,把模拟电信号转换成数字信号,并通过微机处理系统进行基于布朗诺尔-埃米特-泰勒(BET)的多层吸附理论及其公式计算出固体的比表面积。 本产品(新型智能化表面测定仪)在实际中极大的提高了工作效率,过去用做手工操作的测量,绘制记录波峰,分析得出结果,现

在都可用计算机软件来实现。将工作中的误差减到了最低,计算更加的便捷准确,节省人力和时间,输出规范,便于操作。还在搜索查询等多种功能上完全展现了计算机的独到优势。 SSA系列产品是本公司在原有的此类比表面分析仪的基础上自行研制开发的一种高智能现代化仪器。它具有高精度,高性能,低价位,功能完善的数据处理工具。具备同类进口比表面积处理机的全部功能,并且能随着科学技术的发展功能会得到进一步地完善。仪器操作简单,使用方便,在分析结果结束以后,即可得到您所需的数据结果。 本产品已申请专利,专利号为02229474.0 SSA-3500的特点: 一、自动化: 新型SSA-3500是全自动化的。只需通过计算机操作, 吸附程序、脱附和表面积的显示,所有这些不需要操作者的干涉。 二、精确性:比表面积测试值是通过BET低温吸附原理为理论基础 来计算的,原有的老设备在气体脱附后是通过机械式仪表来实现测量及显示的,因此老式仪器的重复性误差达到了10%---20%,而SSA-3500系列的设备在气体脱附后是采用热导池和高精度传感器来测量转换信号的,并通过取得国家专利的内置工作站和操作软件来实现计算机的数据采集和微处理。由于整个测量、转化和计算的过程都采用了精度极高的软硬件,所以使重复性误差有了大幅度下降,基本保持在2%以下。

(参考)动态氮吸附比表面及孔容

1.静态法氮吸附仪 静态法有重量法和容量法两种,以后者为主,静态容量法氮吸附仪是一个真空系统,其核心部分可示意如下图 Vd :电磁阀1、2及压力计之间体积 Ve :电磁阀1以下样品室体积 把被测样品放入样品管中,并浸入液氮中,首先充分抽真空;Vd及Ve空间中的压力为零,这时把Vd及Ve隔开,往Vd中充气至P1;打开阀门1,使系统达到平衡压力 P1′,此时样品表面将吸附氮,氮气吸附量可由气体状态方程求得: 把n1擇算成标准态(101.3KPa ,273.2K)的体积V1 测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。引起静态容量法测量误差的因素很多,主要有压力传感器的精度、死容积测量精度、真空泄漏、试样温度和冷却剂液面的变化、样品室温度场的校正等。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国每年的进口量也不少,但由于价格昂贵,在我国的应用受到限制,近

来北京精微高博科学技术有限公司已研制成功具有我国自主知识产权的JW-BK静态氮吸附仪,代替进口已成必然趋势。 2.动态法氮吸附仪 动态氮吸附仪的原理是采用一个氮气浓度传感器,把含N2 一定比例的氦-氮混气通入浓度传感器的参考臂,然后流经样品管,再进入传感器的测量臂,当样品不发生氮气吸附或脱附现象时,流经传感器的参考臂和测量臂的氮气浓度相同,这时传感器的输出信号为0,当样品发生氮吸附或脱附时,测量臂中的氮浓度发生变化,这时传感器将输出一个电压信号,在电压- 时间坐标图上得到一个吸附或脱附峰,该峰面积(A)正比于样品吸附的氮气量,由此便可测定样品表面吸附的氮气量。 动态氮吸附仪是我国的特色并已被普遍使用,近几年来,北京精微高博科学技术有限公司经过艰苦努力,攻克了一系列技术难点,使动态氮吸附仪发展成为一个完整的体系,由原来只能用直接对比法侧比表面的状态,发展成包括直接对比法、BET法比表面测定和孔容孔径分布测定的完整系列,JW(精微)品牌的动态氮吸附仪系列,具有我国自主的知识产权,其质量不断提高,国内用户迅速增加,并开始进入国际市场。 (1)"直接对比法"快速测定比表面仪(JW-04型) JW-04型全自动氮吸附比表面仪,采用固体标样法,可以快速而准确的测试比表面积;该机备有若干种经国际权威机构标定了比表面的标准样品,每次测量时,先测定标样的吸附峰面积,再测出被测样品的吸附峰面积,通过对比直接求出被测样品的比表面积。

比表面积测定仪的原理

比表面积测定仪的原理 比表面:单位质量固体的总表面积。 孔径分布:固体表面孔体积对孔半径的平均变化率随孔半径的变化。 氮吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的气体吸附量,改变压力可以改变吸附量。平衡吸附量随压力而变化的曲线称为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布。 一.比表面的计算与测定 1.Langmuir吸附等温方程――单层吸附 理论模型: 吸附剂(固体)表面是均匀的;吸附粒子间的相互作用可以忽略;吸附是单分子层。 吸附等温方程(Langmuir) ------ (1) 式中:v 气体吸附量 Vm 单层饱和吸附量 P 吸附质(气体)压力 b 常数 以对p作图,为一直线,根据斜率和截距可求出b和Vm,只要得到单分子层饱和吸附量Vm即可求出比表面积Sg 。用氮气作吸附质时,Sg由下式求得 ------ (2) 式中:Vm用ml表示,W 用g表示,得到是的比表面Sg为(㎡/g)。 2.BET吸附等温线方程――多层吸附理论 目前被公认为测量固体比表面的标准方法。 理论模型: 认为物理吸附是按多层方式进行,不等第一层吸满就可有第二层吸附,第二层上又可能产生第三层吸附,吸附平衡时,各层达到各层的吸附平衡。 BET吸附等温方程: -----(3) 式中:V 气体吸附量 Vm 单分子层饱和吸附量 P 吸附质压力 P0 吸附质饱和蒸气压 C 常数 将P/V(P0-P)对P/P0作图为一直线,且 1/(截距+斜率)=Vm ,代入(2)式,即求得比表面积。用BET法测定比表面,最常用的吸附质是氮气,吸附温度在其液化点(-195℃)附近。低温可以避免化学吸附。相对压力控制在0.05----0.35之间,低于0.05时,不易建立多

全自动孔径分析仪技术指标

全自动孔径分析仪技术指标 工作原理:非浸润液体仅当施加外压力时方可进入多孔体。在不断增压和测量作为外压力函数的进汞体积,即可得到由外力作用下进入抽空样品中的汞体积测得样品的孔体积、比表面积和孔径分布。它可以对块状和粉状试样进行测试,可直接用于检测水泥、陶瓷、混凝土、耐火材料、玻璃等无机非金属材料样品以及金属和部分有机材料样品内部微观的气孔分布状态;也可用于研究材料内部的微观气孔结构对材料性能的影响规律;深入和拓宽材料微观结构的研究领域等等 1.设备技术性能指标及参数 1.1孔径测量范围:最大压力:33000PSI,1080-0.005 m 1.2传感器精度:低压≤±0.11%;高压≤±0.1% 1.3传感器重复性:≤ 0.1% 1.4样品管为全透明管,并配备独立的金属外套管 1.5有液压油全自动再循环系统 1.6配备蓄油池和自动油泵来消除液压系统中的空气 1.7 配备不锈钢密封汞池,为保证操作者安全避免汞池爆裂伤人,汞池的汞应处于仪器内部不可见的位置 1.8 为保证测试人员在测试初期的安全,仪器的低压站应处于仪器内部不可见的位置,提供仪器实物照片 此外,根据实验安全和健康防护要求,特别需要具备下列保护措施: 1.9配备液氮冷阱(内置)防护装置,防止汞蒸气泄漏挥发侵害 1.10具有多重安全防范系统,包括手动急停开关,泄压阀及低压回路互锁机构,油封等。 2.使用目的和用途 测试过程可采用连续增压或步进加压方式,能对材料的孔大小分布、孔体积/面积的微分/平均分布进行测量表征,从而分析获得样品压缩率、堆积密度和表观密度、孔的分形维数等参数。可直接用于检测粉末和多孔固体试样内部微观的气孔分布状态;也可用于研究材料内部的微观气孔结构对材料性能的影响规律;深入和拓宽宏观-微观领域的研究内容。

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪

比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 i"匸面无HL if卅 世戈 ■■■ 3H-2000PS4 仪器外观尺寸:H78cm * W72cm * L47cm Weight : 46Kg 3H-2000PS4大型静态容量法比表面及孔径分析仪 性能简介: 分析站数量:具有4个样品分析站,1个P。测试站,4个样品脱气站; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试方法:静态容量法 优势特征: ?具有国内领先独立的高精度饱和蒸汽压(P0)实时测试站; ?具有国内首家有氦气和无氦气可选测试功能;(有氦气可提高死体积测试精度,降低样品吸附误差) ?具有国内领先精确的全自动液氮面伺服智能保持系统; ?具有独立的真密度测试功能,可氦气测试,精确度高,独立报告; ?具有国内外领先的测试、脱气完毕自动恢复常压功能,防止样品飞溅; ?先进的智能自检流程,智能判断样品管是否安装,试管夹套是否拧紧有无漏气; ?具有国内外首创的样品预处理普通模式和分子置换模式两种模式;

?精确的分压点控制机制,可按设定要求对重点孔径段进行精细分析,分析点数可达千点; ?清晰形象的图形化控制界面,并可在界面上进行所有硬件的控制操作; ?具有国内唯一的液氮杯防意外“安全下降”智能控制机制,完全避免了液氮杯意外下降气体膨 胀使样品管爆裂的危险;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度, 孔隙率分布测试仪。 ?超强的稳定性,即使意外断电、断线,亦不会丢失当前数据,且实验可恢复继续进行; ?强大的实验报告数据库化管理功能,可按多种方式进行报告查询、比较与分类管理; ?数据报告小窗口自动预览功能,同时显示结果与曲线; ?原始测试数据导出导入,PDF 报告单个导出、批量导出; ?全程自动化智能化运行,亲和的真人语音操作提示; ?自动记忆上次测试设置,同类分析只需修改样品名称与重量,其它设置自动沿用上次; ?详尽的仪器运行日志显示与记录,每次实验全自动过程中的所有硬件动作与流程进展的均有记录,时间精确到秒,方便过程查询与故障反馈; ?仪器配置芯片记忆功能,实现人工对仪器硬件参数的零配置; ?软件界面详尽的操作帮助与指示功能,未经培训人员几乎只需按照帮助信息就可实现对软件的应用;比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪 ?具有便捷的液氮杯自动加盖; ?软件界面自定义风格转换; 比表面积及介孔微孔分布分析仪,孔径测量仪,孔容积测试仪,孔体积,孔隙度,孔隙率分布测试仪测试理论与报告内容: 1、吸附、脱附等温线; 2、BET单点法比表面S BET-O 3、BET多点法比表面S BET-M , BET常数C B ET 4、朗格缪尔(Langmuir )比表面S Langmuir ,朗格缪尔平衡常数b Langmuir 5、统计吸附层厚度法外比表面(STSA S外 6、粒度估算报告和真密度; 7、BJH法孔容孔径分布;(微分、积分孔体积、孔面积、孔径分布,柱状图、曲线图) 8、MK-plate法(平行板模型)孔容孔径分布(为BJH法的补充,适合对片层状结构材料分析) 9、t-plot法(Boder)微孔分析;(V-t图,t法微孔孔径分布图) 10、MP法(Brunauer)微孔分析;(V-t图,微孔孔径分布图)(该方法考虑到不同材料吸附常数不同的

关于氮气等温吸脱附计算比表面积

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 ★★★★★★★★★★★★★★★★★★★★★ 小木虫(金币+1):奖励一下,鼓励发有价值的话题 dy322112:标题高亮 2010-12-16 16:31 zhangwengui330(金币+10):很好很强大,欢迎原创!! 2010-12-16 17:02:55 jinkai838(金币+10):perfect 2010-12-16 20:46:19 jinkai838:为什么加这么多的分,因为我们是论坛,我们鼓励原创,鼓励用自己的语言,自己的经验,来表述科学,我们也喜欢读书,但是我们更推崇这样的自己发表理解的帖子! 2010-12-16 20:48:48 jinkai838:标题高亮 2010-12-16 20:49 tangjy(C-EPI+1):辛苦了! 2010-12-29 21:23:48 tangjy:标题高亮 2011-01-05 16:03 目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。 ★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型

比表面积测试方法分类

测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法(重量法现在基本上很少采用);另一种是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。连续流动法 连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相 色谱原理的基础上发展而来,由热导检测器 来测定样品吸附气体量的多少。连续动态氮 吸附是以氮气为吸附气,以氦气或氢气为载 气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小

正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。通常利用脱附峰来计算比表面积。 特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET方法进行比表面积理论计算。 容量法 容量法中,测定样品吸附气体量多少是利用气态方程来计算。在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出被吸附气体摩尔数变化。 直接对比法 直接对比法比表面积分析测试是 利用连续流动法来测定吸附气体量, 测定过程中需要选用标准样品(经严 格标定比表面积的稳定物质)。并联 到与被测样品完全相同的测试气路 中,通过与被测样品同时进行吸附,分别进行脱附,测定出各自的脱

氮气等温线及比表面和孔径分布

氮气等温吸脱附计算比表面积、孔径分布 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(三型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm 2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL

3.STP每mL氮气分子铺成单分子层占用面积 4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。在p/p0 =0.5~0.8左右吸附量有一突增。该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。 ◆Kelvin方程 Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。弯曲液面曲率半径R‘=2γVm/[RT*ln(p0/p)],若要算弯曲液面产生的孔径R,则有R’Cosθ=R,由于不同材料的接触角θ不同。 ◆滞后环 1.滞后环的产生原因 这是由于毛细管凝聚作用使N2 分子在低于常压下冷凝填充了介孔孔道,由于开始发生毛细凝结时是在孔壁上的环状吸附膜液面上进行,而脱附是从孔口的球形弯月液面开始,从而吸脱附等温线不相重合,往往形成一个滞后环。还有另外一种说法是吸附时液氮进入孔道与材料之间接触角是前进角,脱附时是后退角,这两个角度不同导致使用Kelvin方程时出现差异。当然有可能是二者的共同作用,个人倾向于认同前者,至少直觉上(玄乎?)前者说得通些。 2.滞后环的种类 滞后环的特征对应于特定的孔结构信息,分析这个比较考验对Kelvin方程的理解。

比表面积仪的标定方法

比表面积标定方法 ① .标准样的处理,将水泥细度和比表面积标淮样在110C 士5C下烘干1h 并在干燥器中冷却至室温 ② . 料筒体积标定(水银排代法) :将穿孔板平放人圆筒内,再放人两 片滤纸。然后用水银注满圆筒,用玻璃片挤压圆筒上口多余的水银,使水银面与圆筒上口平齐,倒出水银称量(m1) ,然后取出一片滤纸,在圆筒内加入适量的试样。再盖上一片滤纸后用捣器压实至试料层规定高度。取出捣器用水银注满圆筒,同样用玻璃片挤压平后,将水银 倒出称量(m)。圆筒试料层体积按式V=(m—m)/ p水银计算。试料层体积要重复测定两遍,取平均值,计算精确至0.00l cm3。 ③ .称取水泥细度和比表面积标准样的质量m (g)确定,标准样质 量按式m =p V(1 - £)计算,精确称取至0. OOlg。p -水泥细度 和比表面积标准样的密度( g/cm3);V 一透气圆筒的试料层体积 (cm i) ; e ----- 取0.5。 ④ . 试料层制备, 将穿孔板放人透气圆筒的突缘上,用捣棒把一片滤纸放到穿孔板上,边缘放平并压紧。将准确称取的按本方法②计算的水泥细度和比表面积标准样倒人圆筒,轻敲圆筒的边,使粉煤灰层表面平坦。再放人一片滤纸,用捣器均匀压实标准样直至捣器的支持环紧紧接触圆筒顶边,旋转捣器1?2圈,慢慢取出捣器。 ⑤ . 透气试验:将装好标准样的圆筒外锥面涂一薄层凡士林,把它连 接到U形压力计上,打开阀门,缓慢地从压力计一臂中抽出空气,直到压力计内液面上升到超过第i 条刻度线时关闭阀门。当压力计内液面的

弯月面下降到第 3 条刻线时开始计时,当液面的弯月面下降到第 2 条刻线时停止计时。记录液面从第 3 条刻线到第2 条刻线所需的时间ts ,精确至0.

在线总硬度分析仪及方案

总硬度在线分析仪 总硬度在线分析仪 ====技术方案==== 日期: 2012年6月

一、技术参数分析指标 分析物水中的总硬度 测量范围8-200 mg/L 检测下限8.0mg/L 标准偏差<1.1% 重现性<±3% 测量方法比色法 测量原理水中钙镁离子与显色剂生产稳定的紫色,在620nm下分别测量加入显色剂之前和之后的样品吸光值,计算总硬度浓度,并自动补偿样品色度。 分析步骤- 通过隔膜泵取样20ml到光度池(cuvette); - 加入2N的NaOH溶液调节pH值; - 加入显色剂溶液; - 等待120s,在620nm波长下第一次测量吸光度A1;- 加入0.0005N 的EDTA溶液,掩蔽钙镁离子; - 等待30s,在610nm波长下第二次测量吸光度A2;- 计算结果,输出。 试剂及样品的要求

试剂EDTA溶液0.0005N(每次分析消耗3ml)NaOH溶液2N (每次分析消耗1ml) Calver-B溶液0.1%(每次分析消耗0.4ml)Ca2+标准溶液10ppm(每次校正消耗约1ml) 校正全自动校正程序,可自由选择校正频率,两点校正样品数量2个样品 分析周期约8分钟每个样品 样品体积10 ml 样品温度0-40℃ 样品压力< 1 bar,推荐0.5 bar 仪器配置 外形尺寸600 x 400 x 260 mm 重量25Kg 电源115/230 V,50/60 Hz 材料聚苯乙烯、玻璃、PFA 环境温度<40℃ 箱体防护IP65/NEMA4;Smarter在线总硬度分析仪采用一块集成线路版,并且将湿化学组件(滴定杯、蠕动泵和样品流路)与电路板部分完全隔离,保证电路在露天或潮湿环境也可长时间正常运行。

低温氮吸附法测定多孔材料的比表面积及孔隙分布

低温氮吸附法测定多孔材料的比表面积及孔隙分布 一、实验目的 (1)了解低温氮吸附法测定多孔材料的比表面积及孔隙分布的原理。 (2)掌握低温氮吸附法测定比表面积及孔隙分布的方法。 (3)掌握仪器的实际操作过程、软件使用方法 (4)学习分析实验结果和数据 二、实验概述 多孔材料的比表面积和孔隙分布测试在各行各业已逐步引起人们的普遍重视,是评价粉末及多孔材料的活性、吸附、催化等多种性能的一项重要参数。广泛应用于药品、陶瓷、活性炭、碳黑、油漆和涂料、医学植入体、推进燃料、航天隔绝材料、MOF储氢材料、碳纳米管和燃料电池的研究。 比表面及孔隙分布测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积及孔隙分布测试方法有粒度估算法、显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高。吸附法是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面及孔隙分布大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;以氮分子作为吸附质的氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面及孔隙分布测试吸附质。 三、实验原理 1、比表面积测试原理 比表面积是指1g固体物质的总表面积,即物质晶格内部的内表面积和晶格外部的外表面积之和。低温吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。在恒定温度下,在平衡状态时,一定的气体压力,对应于固体

相关文档
最新文档