《不等式》基础练习题(含答案)-新人教[整理].doc

《不等式》基础练习题(含答案)-新人教[整理].doc
《不等式》基础练习题(含答案)-新人教[整理].doc

不等式

「不等式的性质

不等式的解法

不等式[不等式的证明

J不等式的应用

%1.不等式的基本性质:

(1) a > b b < a

(2) a > b.b > c => a > c

(3)a>b=>a + c>b + c

a > b.c > d =>。+ c〉/? + d

(4)

a > b,c < d a-c > b-d

a > b,c >。n ac > be

(5)

a > b.c < 0 ac < be

a >

b > 0,

c >

d > 0 ac > bd

(4),八八 ,a b

a> h > 0,0 — > —

c d

(5) a > h > 0 a" > b" > 0,(/2 6 Z,且〃 > 1)

(6) a > b > 0 n '\!~a > '4b > 0, (n e Z,且〃 > 1)

A组1.判断下列各命题的真假,并说明理由:

(1)a>b ,贝\\a-ob-c (M)

(2)a>b,则->-(假)

c c

(3)ac < be,贝\\a

(4)a>b y则-<-(假)

a b

(5) a > b ,则ac2 > be2 (假)

(6)ac2 > be2,则a>b (真)

(7)a>b,则 / (假)

3.

4.

5.

(8)a>b,则6? >h3 (真)

2.比较(a + 3)(。- 5)与(a + 2)(a - 4)的大小.

比较X2+3与3x的大小求证:(x2+l)2^x4+x2+l 已知:a>b>0,c>0 求证:

a b

4 不等式a>b和->-同时成立的条件是(b

B.a>O>b

1 1八

D. — > - > 0

a b

5 .已知:0

A.log m n>l

C. 0< log m n

6.己知6

A.9WcW18

B. 15

C.9WcW30

D. 9

7.若a>2, b>2,则ab 与a+b的大小关系是( )(A)

A. ab>a+b

B. ab

C. ab=a+b

D.不能确定

a A. a>b>0

1 1 c

C. -<-<0 b a

)(B)

)(B)

B. log m n<0

D. Iog in n<-1

8. 若 a>0, b>0, a 尹b, n€N+,则 ab n +ba n -(a n+1+b n+1)fi

A.恒为负号

B.恒为正号

C.与n 的奇偶有关

D.与a,b 的大小有关 TT 7T

9. 设a,p 满足条件一一

2 ________________ J

3 <0)

10. 若a>5,则一 4 一 一 5与一 3 - Jtz - 4的大小关系为: (y/a-4 - y/a-5 > Jtz -3 -

y/a-4 )

试确足a,b,c 的大小顺序。

B 组

(A)

1. a,beR +

,是 ab>(HK 」( A. 充分但不必要条件 B. 必要但不充分条件 C. 充分必要条件 D. 既非充分也非必要条件 2. 若。。< 0,则下列不等关系中不能成立的是( 1 1 A.— > — a h C. |a|>|b| )(B) 1 1 B. -------- >- a-b a D. a 2>b 2 3. 若a>b>0, m>0,则卜列不等式中一定成立的是( a a — m —> ----- b b-m a a-m —< -----

b b - m )(C) b h + m A.- > ----------- a Q + m b b + in C.— < -------- a a + m B. D.

2.设60

求a+b, a?b及'的范围. b

3. log a(a+2)

4.己知:a,bCR\且a尹b,比较/伊与a b b a的大小.

5.设,x,yWR:求证:(亍+),2户 >(尸+),3)§

6.若a>b>l, P = Jig6/ ? 1g/,,Q = :(lgq + 1g?),R = ,

试问P,Q,R的大小关系.(p v Q v R)

%1.不等式的解法

A组

1.解不等式:(l)|2x?3|\5 ({%x>4?Ja<-l })

(2) |X2+3X-8|<10({A-6

解不等式: lg(3x ?2)vo ( 2

-<-^<1}) 6.解不等式:—―-―<0 ("工〈1或2<工〈3或工>4})

X 2-7X

+ 12 7. 解不等式:x(x-3)(x+l)(x-2)〈0 ({x —1 < X V 0或2 < 尤 V 3 })

8. 解不等式:|以+ 3|<2(6/^0)

a > 0时,解集为[工-。< x < -上,

。<0时,解集为尤 - < X < —

a a

2. 解不等式:V2x-1 <2 (Jx-

3. 解不等式:3A

2'3

A

< | ({V |1

5 0 < x —— x

解不等式:

解不等式: > a (ocR) (

1.当log2a > 1 W,解不等式:、2一(。+ 2口 + 2。>0

((r x < 2或尤> a })

2.解不等式:x(x.l)2(x+l)3(x+2)河

{x-20 }

3.(1)若关于x的不等式人'-ax-a > 0对一切x^R恒成立,

求实数a的取值范围。(4 0 ) (2)若关于x的小等式厂—ax—。£ 一3

的解集不是空集,

求a的取值范围.(-8,-6] u [2,4-oo)

V-2 _ 9 r +11 [ 1 4

4.解不等式: ——>7 X一一

X2-2X +1[ 2 3

fix— 5

5.若关于x的不等式一<0的解集为M

- a

(1)当a=4 时,求集合M < 一2或< x < 2 }

(2)若3e M ,求实数a的取值范围-8匚D(9,+8)

< 3)

6.若ax2 +/?x + 2 > 0 的解集为]x-Lvxvl],求a-b (-10)

I 2 3j

7.解不等式:(1) |x-3|-|x+l|

(2) |x + 1 > 2-x - xx > ^-j

8.解不等式:(l)j3、-4 > J州-31 \x\x > 3}

(2)725-x2 >x + l {x\-5

C组

1.解关于x的不等式以顼)>1

x -? 2

2.解不等式:56x2 + ax-a1 <0

3.解不等式:

⑴ log(7(1T) Z k)g(z)(尤 - 3)2

(2)9_7】ogm > |2

4.设A = (x 11 V x < 3},又B是关于x的不等式组J二一2’ + " ' °的解集,

[X2-2/?=5<0 试求a,b的取值范围,使A(ZB

5.函数/(X)= log2(x2 +h: + 2)的定义域为R,求1<的取值范围。

6.实数k为何值时,方程疽-2kx + k= 0的两个根一个在(0,1)内,另一个大

于2。f

7.己知:|x-4|+|x-3|

8.函数/(x) = log” x在[2,4-oo)上恒有|f(x)|>i ,求a的取值范围

(\ \

-a 顷1,2)

/

9.设函数f(X)= y/x2 +1 - ax ,其中a > 0 ,

解不等式f(x) <1 {x\x > 0)

10.设a b,解关于尤的不等式a2x-\-b~(\ - x) > [ax + b(\ - x)]~

(^|0

%1.不等式的证明

6.求证: A组

1.已知a,b,c:都是正数,求证:(ah + cd)(ac + hd) > 4abcd

⑴5*

2.x,y都是正数,求证:尤.V

(2)(x + y)(x2+y2)(x3 + y3)>8x3/

3.求证:/ + 3 > 3x

4.已知:a,b是正数.且"b ,求证:cr、十b' > ci'b + ab'

5.求证:V3 + V7 <2^/5

(1)| Q + 们 + | G - A 2 | Q

(2)\a-^-b\ — \a — b\<2\b\

1.求证:a5 6+b2+c2 ^ab+ac+bc

2.已知:aN3,求证:— J—— 1 < Jci— 1 — J—— 3 3求证.们+ 1们站顼I

1+|们 + |们一1+|。+们

4.a,b,c 是不全相等的正数,求证:(ab+a+b+1 )(ab+ac+bc+c')> 16abc

5.己知a,b,c,d 都是实数,且a2+b2=l,c2+d2=l

求证:|ac+bd|Wl

6.设a>2,求证:loga(a.l)loga (a+[)vl

C组

1.已知:a,b,c均是正数.求证:

+苻 + y/b2 +c2 + Jc2 +a2 > J2(u + b + c)

2.若g = Ji +己试证明:

|f(a)-f(b)|<|a-b|(其中aKb)

5 若xER*求函数y = x + —的取值范围.

x

3 3 9 6 设0 ,求函数y = 4x(3 - 2x)的最大值。(当x =-时,)%x=5)

3.已知a,b 都是正数,且x,y《R,且a+b=l 求证:ax2+by25:(ax+by)2

4.已知Z\ABC的三边长是a,b,c且m为正数,求证:一-一 + —-—>—-一

a + m

b + m

c + m

5.若a,beR-n GN*求证:(a+b)(a n+b n)^2(a n+l+b n+1)

%1.不等式的应用

A组

6 .

3.若xKO,求函数y = 4 ------ -- 的最大值.

Q 1

4.己知x?O,求函数y = x2 +r的最小值.(当x = ±3时,y min =18 )

,

5.一段长为Lm的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长和宽

为多少时,菜园的面积最大?(当长? m,宽fm,菜园的面积最大)

B组

4

1.设a>3,求——+。的最小值.

a-3

1*2 + Q

2.x>l求函数V =:--------- 的最小值

. x-1

x~ + X + ]

3.当x>0时,求函数y= ―-—的最小值.

?必+2工+ 1

4.求函数y = x + L (xKO)的值域

x

5.(1)在面积为定值的扇形中,半径为多少时扇形的周长最小?

(当且仅当半径是面积的算术平方根时,扇形的周长最小)(2)在周长为定值的扇形中,半径为多少时,扇形的面积最大?

(当且仅当半径是周长的[时,扇形的面积最大)

4

6.m是何值时,方程x2+(m-3)x+m=0的两个根都是正数?(0 < /〃 V 1 )

。16

7.已知a>b>0,求6T H ---------- 的最小值.

b{a一b)

(当ci = 20b = Jl时,a2 +—取最小值16)

b(a一b)

8.一间地面面积为12n?的背面靠墙的矩形小房,房屋正面的造价为1200元

/m)侧面的造价为800元/云屋顶的造价为5800元,若墙高3m,且不计房屋背面费用,问怎样设计房屋能使总造价最低?(当底面矩形与墙相对的边长为4m,另一边长为3m时,房屋总造价最低。)

C组

1.求函数y=cos2x+4cosx+5的最大值和最小值.

2.已知x,y满足(x-2)2+yM求三的最大值,最小值.

y

9 4

3.求y = sirrO + ——;—,(。泓兀)的最小值.

sin" 0

4.求函数y=sinxcosx+sinx+cosx 的最大值

5.巨幅壁画最高点高地面14m,最低点高地面2m,若从高地面1.5m处观赏此画,

问离墙多远时,视角最大?(离墙2.5 m时视角最大)

6.m 为何值时,方程(m+1 )x2+2(2m^ 1 )x+( 1 -3m)=0

(1)两根异号?tn tn <一1或/〃 > - \

(2)两根之和是非负数?

一元一次不等式单元测试题

《一元一次方程》试题 【巩固练习】 一、选择题 1.下列方程中,是一元一次方程的是( ). A .250x += B .42x y +=- C .162x = D .x =0 2. 下列变形错误的是( ) A.由x + 7= 5得x+7-7 = 5-7 ; B.由3x -2 =2x + 1得x= 3 C.由4-3x = 4x -3得4+3 = 4x+3x D.由-2x= 3得x= - 32 3. 某书中一道方程题:213 x x ++=W ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ). A .-2.5 B .2.5 C .5 D .7 4. 将(3x +2)-2(2x -1)去括号正确的是( ) A 3x +2-2x +1 B 3x +2-4x +1 C 3x +2-4x -2 D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ) A.-8 B.-4 C.-2 D.8 6.解方程121153 x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x -1) B .3x+3=15-10x -5 C .3(x+1)=15-5(2x -1) D .3x+1=15-10x+5 7.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .7 8.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ). A .18元 B .18.4元 C .19.6元 D .20元 二、填空题 9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x 52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x . 11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 . 13.“代数式9-x 的值比代数式x 3 2-1的值小6”用方程表示为 .

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

(完整版)一元一次不等式组测试题1含答案

第九章、不等式(组)单元测试题 一、 选择题(.每题3分,共30分) 1、如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2、 a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3、 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 4、 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5、 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种 出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 6、 若不等式组?? ?>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、若不等式组0,122x a x x +??->-? ≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a < 9、关于x 的不等式组无解,那么a 的取值范围是( ) A 、a ≤4.5 B 、a >4.5 C 、a <4.5 D 、a ≥4.5 10、如图是测量一颗玻璃球体积的过程: (1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在( ) (A )20cm 3以上,30cm 3以下 (B )30cm 3以上,40cm 3以下

不等式单元检测试卷

新课标人教版必修5高中数学 第3章 不等式单元检测试卷 1.设a b <,c d <,则下列不等式中一定成立的是 ( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ 2. “0>>b a ”是“2 2 2b a ab +<”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.不等式b ax >的解集不可能是 ( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022 >++bx ax 的解集是)3 1 ,21(- ,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .10 5.不等式||x x x <的解集是 ( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.若 01 1<+b a a b D .||||||b a b a +>+ 7.若13)(2 +-=x x x f ,12)(2 -+=x x x g ,则)(x f 与)(x g 的大小关系为 ( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是 ( ) A .y x +x y B .4 522++x x C .tan x +cot x D . x x -+22 9.下列各组不等式中,同解的一组是 ( ) A .02>x 与0>x B . 01) 2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112 ≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( ) A. }8|{a a C. }8|{≥a a D. }8|{≤a a 11.若+ ∈R b a ,,则 b a 11+与b a +1 的大小关系是 . 12.函数1 21lg +-=x x y 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一 年的总运费与总存储费用之和最小,则x = 吨.

不等式知识点汇总

不等式知识点汇总 1、不等式的基本性质 ②(传递性),a b b c a c >>?> ①(对称性)a b b a >?> ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑦(开方法则)0,1)a b n N n >>?∈>且 ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性) 0,0a b a b c d c d >>< ⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>?<<> 2、几个重要不等式 ②(基本不等式) 2 a b +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ⑤3 3 3 3(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ①()2 2 2a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式: 22 .2 a b ab +≤

④()2 2 2 a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ③(三个正数的算术—几何平均不等式) 3 ()a b c R + ∈、、(当且仅当 a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑧220;a x a x a x a x a >>?>?<->当时,或 2 2 .x a x a a x a >>>,,规律:小于1同加则变大, 大于1同加则变小. ⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式 ①平均不等式: 112a b a b --+≤≤ +()a b R + ∈, (当且仅当a b =时取 ""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式:2 22 ;22a b a b ab ++??≤≤ ??? 222 ().2a b a b ++≥ ②幂平均不等式:222212121 ...(...).n n a a a a a a n +++≥+++ ③≥1122(,,,).x y x y R ∈ ④二维形式的柯西不等式2 2 2 2 2 ()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当 ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222 123123112233()()().a a a b b b a b a b a b ++++≥++ ⑥一般形式的柯西不等式:222222 1212(...)(...) n n a a a b b b ++++++

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

不等式单元测试题及答案

第三章 章末检测(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若a <0,-1ab >ab 2 B .ab 2 >ab >a C .ab >a >ab 2 D .ab >ab 2 >a 2.已知x >1,y >1,且14ln x ,1 4,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 e C .有最小值e D .有最小值 e 3.设M =2a (a -2),N =(a +1)(a -3),则( ) A .M >N B .M ≥N C .M b ,则下列不等式中恒成立的是( ) A .a 2>b 2 B .(12)a <(12)b C .lg(a -b )>0 D.a b >1 6.当x >1时,不等式x + 1 x -1 ≥a 恒成立,则实数a 的取值围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 7.已知函数f (x )=????? x +2, x ≤0-x +2, x >0 ,则不等式f (x )≥x 2 的解集是( ) A .[-1,1] B .[-2,2] C .[-2,1] D .[-1,2] 8.若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( ) A.1ab >12 B.1a +1b ≤1 C.ab ≥2 D.1a 2+b 2≤1 8 9.设变量x ,y 满足约束条件???? ? x -y ≥0,2x +y ≤2, y +2≥0, 则目标函数z =|x +3y |的最大值为 ( ) A .4 B .6 C .8 D .10 10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )

《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷 (各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程 序拍照发给老师检查。) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若0a b <<,则下列不等式不能成立的是( ) A .11a b > B .11a b a >- C .|a|>|b| D .22a b > 2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15] 3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .152 4.设集合{}220A x x x =-->,{} 2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( ) A .()2,0- B .()(),02,∞∞-?+ C .()0,2 D .()(),20,∞∞--?+ 6.已知关于x 的不等式 101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12 - 7.不等式20ax x c -+>的解集为}{ |21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

最新高中数学不等式知识点归纳汇总

最新高中数学不等式知识点归纳汇总 知识点一:绝对值三角不等式 1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|, 当且仅当ab ≥0时,等号成立. 2.定理2:如果a ,b ,c 是实数,那么|a -c|≤ |a -b|+ |b -c|,当且仅当(a-b)(b-c) ≥0时,等号成立.知识点二:绝对值不等式的解法 1.不等式|x|a 的解集: 不等式 a>0a =0a<0|x|a {x|x>a ,或x<-a}{x|x ≠0}R 2.|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法: (1)|ax +b|≤c?-c ≤ax +b ≤c; (2)|ax +b|≥c?ax +b ≤-c 或ax +b ≥c. (3)|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法: 巩固专区:典例 [例1].函数y=|x+1|+ |x+3|的最小值为___________. 解析:由|x+1|+ |x+3|≥|(x+1)-(x+3)|=2,故y 的最小值2。 [例2].不等式|2x-1|0的解集是________. 解析:∵|x|2-2|x|-15>0,∴|x|>5或|x|<-3(舍去),∴x<-5或x>5. 答案:(-∞,-5)∪(5,+∞) [例4].若存在实数x 满足不等式|x -4|+|x -3|

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

不等式与不等式组单元测试题(新人教版)含答案

不等式与不等式组单元测试题 班级 座号 姓名 一、填空题(每题3分,共30分) 1、 不等式组1 2 x x -?的解集是 2、 将下列数轴上的x 的范围用不等式表示出来 3、 34125 x +-< ≤的非正整数解为 4、a>b,则-2a -2b. 5、3X ≤12的自然数解有 个. 6、不等式1 2 x >-3的解集是 。 7、用代数式表示,比x 的5倍大1的数不小于x 的 2 1 与4的差 。 8、若(m-3)x<3-m 解集为x>-1,则m . 9、三角形三边长分别为4,a ,7,则a 的取值范围是 10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛 二、选择题(每小题2分,共20分) 11、在数轴上表示不等式x ≥-2的解集,正确的是( ) A B C D 12、下列叙述不正确的是( )A 、若x<0,则x 2 >x B 、如果a<-1,则a>-a C 、若 43-<-a a ,则a>0 D 、如果b>a>0,则b a 1 1-<- 13、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为( ) A 、 ○□△ B 、 ○△□ C 、 □○△ D 、 △□○ 14、天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( ) 15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ) .13 .3 1.2 2.22A m B m C m D m -<≤-≤<-≤<- <≤ 16、不等式 45 111 x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个 17、不等式组2.01x x x >-?? >??-><<-<< 18、如果关于x 、y 的方程组3 22 x y x y a +=?? -=-?的解是负数,则a 的取值范围是( ) A.-45 C.a<-4 D.无解 19、若关于x 的不等式组()20 2114x a x x ->???+>-?? 的解集是x>2a,则a 的取值范围是( ) A. a>4 B. a>2 C. a=2 D.a≥2 20、若方程组2123 x y m x y +=+?? +=?中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ) .4 .4 .4 .4Am B m C m D m >-≥-<-≤- B A C D

一元一次不等式知识点汇总

一元一次不等式知识点汇总 【知识点一】不等式的有关概念 1、不等式定义:用符号“<”、“≤”、“>”、“≥”、“≠”连接而成的数学式子,叫做不等式。这5个用来连接的符号统称不等号。 2、列不等式:步骤如下 (1)根据所给条件中的关系确定不等式两边的代数式; (2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义; (3)选择与题意符合的不等号将表示不等关系的两个式子连接起来。 3、用数轴表示不等式 (1)x a <表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。 (2)x a ≥表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内。 (3)()b x a b a <<<表示大于b 而小于a 的全体实数。

1、不等式的基本性质 (1)基本性质1:若a b <,b c <,则a c <。(不等式的传递性) (2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。 ①若a b >,则a c b c +>+,a c b c ->-;②若a b <,则a c b c +<+,a c b c -<-。 (3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立; 若a b >,且0c >,则ac bc >, a b c c >。 ②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。 若a b >,且0c <,则ac bc <,a b c c <。 2、比较等式与不等式的基本性质

1、一元一次不等式的概念:不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次。 2、不等式的解集:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。 3、一元一次不等式的解法:步骤如下 (1)去分母:在不等式两边同乘分母的最小公倍数;(根据基本性质3) (2)去括号:把所有因式展开;(根据单项式乘多项式法则) (3)移项:把含未知数的项移到不等式的左边,不含有未知数的项移到不等式的右边;(根据基本性质2) (4)合并同类项:将所有的同类项合并,得ax b >或ax b <(0a ≠)的形式; (5)系数化为1:不等式两边同除以未知数的系数,或乘未知数系数的倒数。(根据基本性质3) 4、一元一次不等式的应用:解有关应用题步骤如下 (1)审题:认真审题,分清已知量、未知量及其关系,抓住题设中的关键字眼,如“大于”、“不小于”等; (2)设:设出适当的未知数; (3)找:找出不等关系; (4)列:根据题中的不等关系,列出不等式; (5)解:解出所列不等式的解集; (6)答:写出答案,并检验答案是否符合题意。

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

一元一次不等式单元测试题

第八章一元一次不等式测试题 一、选择题: 1、如果,那么下列不等式不成立的是() A、B、C、D、 2、不等式的解集是() A、B、C、D、 3、下列各式中,是一元一次不等式的是() A、B、C、D、 4、已知不等式,此不等式的解集在数轴上表示为() 5、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是() A、a< B、a<0 C、a>0 D、a<- 6、(2007年湘潭市)不等式组的解集在数轴上表示为() 7、不等式组的整数解的个数是() A、1个 B、2个 C、3个 D、4个 8、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为() A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-3 9、方程组的解x、y满足x>y,则m的取值范围是() A. B. C. D. 10、、(2013?荆门)若关于x的一元一次不等式组有解,则m的取值范围为() A.≤C.D.m≤ 11、(2013?孝感)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是() A.3,4 ,5 ,4,5 D.不存在

12、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法. 第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在 购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买 ()块肥皂. 二、填空题 13、若不等式组无解,则m的取值范围是. 14、不等式组的解集为x>2,则a的取值范围是_____________. 15、(2013?厦门)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全 区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为 米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火 线的长要大于米 16、(2013?白银)不等式2x+9≥3(x+2)的正整数解是. 17、(2013?宁夏)若不等式组有解,则a的取值范围是. 18、(2013?南通)关于x的方程12 -=的解为正实数,则m的取值范围是 mx x 19、(2013?包头)不等式(x﹣m)>3﹣m的解集为x>1,则m的值为. 三、解答题: 20、解不等式(组) (1) (2) 2x<1-x≤x+5

相关文档
最新文档