copley驱动器手册

copley驱动器手册
copley驱动器手册

Copley Camming User Guide

P/N 95-00501-000

Revision 2

June 2008

Copley Camming User Guide

.

TABLE OF CONTENTS

About This Manual (5)

1:Operational Overview (7)

1.1: Host System Requirements (8)

1.2: Camming Operation (9)

1.3: Monitoring Camming Moves (10)

2:Camming Setup (11)

2.1: Start CME 2 (12)

2.2: Configure CME 2 Basic Setup for Camming Mode (13)

2.3: Configure Camming Parameters (14)

2.4: Load the Cam Tables (16)

3:Cam Tables (17)

3.1: Cam Table Specifications and Guidelines (18)

3.2: Overview of the Tables Tab (20)

3.3: Cam Table Procedures (22)

4:Application and Connection Examples (25)

4.1: Conveyer Camming Application Example (26)

4.2: Connection Examples (27)

5:Camming Configuration via ASCII (31)

5.1: Camming Mode Variables (32)

6:Camming Control via Indexer Program (35)

6.1: Indexer Camming Function (36)

6.2: Camming Internal Master Function (37)

Table of Contents Copley Camming User Guide

A BOUT T HIS M ANUAL

Overview and Scope

This manual describes the use of the Copley Controls Camming feature, and its setup through Copley Controls CME 2 amplifier commissioning software. Thus, this book is intended to be used as an addendum to the CME 2 User Guide.

It is assumed that before the Camming feature is configured and operated, the amplifier will have been set up and tuned using CME 2 software.

Related Documentation

Documents of related interest include:

?CME 2 User Guide (describes the use of CME 2 amplifier commissioning software to set up and tune the amplifier)

?Copley Indexer Program User Guide (describes use of Indexer Program to create motion control sequences)

?Copley ASCII Interface Programmer’s Guide (describes how to send ASCII format commands over an RS232 serial bus to set up and control one or more amplifiers). ?Copley Amplifier Parameter Dictionary (describes all Copley Controls amplifier parameters)

Links to these publications, along with hardware manuals and data sheets, can be found under the Documents heading of

https://www.360docs.net/doc/c59978335.html,/Motion/Downloads/index.html

Copley Controls software and related information can be found on:

https://www.360docs.net/doc/c59978335.html,/Motion/Products/Software/index.html

Comments

Copley Controls Corporation welcomes your comments on this manual. See

https://www.360docs.net/doc/c59978335.html, for contact information.

Copyrights

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Copley Controls Corporation.

Xenus, Accelnet, Stepnet, Accelus, and Junus are registered trademarks of Copley Controls Corporation.

CME 2 is a registered trademark of Copley Controls Corporation.

Windows NT, 2000, XP, and Vista are trademarks or registered trademarks of the Microsoft Corporation.

Document Validity

We reserve the right to modify our products. The information in this document is subject to change without notice and does not represent a commitment by Copley Controls Corporation. Copley Controls Corporation assumes no responsibility for any errors that may appear in this document.

About this Manual Copley Camming User Guide

1.1.1: Product Warnings

Observe all relevant state, regional, and local safety regulations when installing and using Copley Controls amplifiers. For safety and to assure compliance with documented system data, only Copley Controls Corporation should perform repairs to amplifiers.

Exercise caution when installing and adjusting Copley Controls amplifiers.

Risk of electric shock.

DANGER

High-voltage circuits are connected to mains power on certain Copley Controls

amplifiers.

Risk of unexpected motion with non-latched faults.

After the cause of a non-latched fault is corrected, the amplifier re-enables the PWM

output stage without operator intervention. In this case, motion may re-start

unexpectedly. Configure faults as latched unless a specific situation calls for non-

latched behavior. When using non-latched faults, be sure to safeguard against

unexpected motion.

Latching an output does not eliminate the risk of unexpected motion with non-

latched faults.

Associating a fault with a latched, custom-configured output does not latch the fault

itself. After the cause of a non-latched fault is corrected, the amplifier re-enables

without operator intervention. In this case, motion may re-start unexpectedly.

Using CME 2 or serial commands may affect or suspend CAN operations.

When operating the amplifier as a CAN node, the use of CME 2 or ASCII serial

commands may affect CAN operations in progress. Using such commands to initiate

motion may cause CAN operations to suspend.

CAN operations may restart unexpectedly when the commanded motion is stopped.

Use equipment as described.

Operate amplifiers within the specifications provided in the relevant hardware manual

or data sheet.

Failure to heed these warnings can cause equipment damage, injury, or death.

1.1.2: Revision History

# Comments

Revision Date DECO

1July 2006 Initial publication.

2June 2008 16707 Various updates, including updated Web page references.

.

CHAPTER

1: O PERATIONAL O VERVIEW Topics include:

H

C

M

Operational Overview Copley Camming User Guide

1.1: Host System Requirements

1.1.1: Computer and Operating System

Minimal hardware requirements:

?CPU:400 MHZ.

?RAM:128 MB.

Operating Systems Supported: Windows NT, 2000, XP, Vista.

1.1.2: Software

Copley Controls CME 2 software, Version 5.1 or higher.

1.1.3: Serial Communications

For each PC-to-amplifier connection via serial port: One serial communication cable.

See amplifier data sheet for part numbers.

Copley Camming User Guide Operational Overview

1.2: Camming Operation

Camming allows Copley amplifiers to synchronize the motion of an axis (the Cam Slave) to the motion or commands of an external device (the Cam Master).

A Cam Master can be an encoder, a PLC, or any device that generates electronic pulses to indicate the position of the Master axis. (In place of an external Master, the amplifier can generate Master position pulses with its own Internal Generator.) A Cam Slave is an axis controlled by a Copley amplifier.

1.2.1: Cam Tables and Controls

A user defines camming moves by populating Cam Tables. Each Cam Table line contains a Cam Master Position and a corresponding Slave Position.

The user also configures the Cam Trigger and the source of the Master input.

Cam Table position values are entered in counts. (Note that because the value of a count is system dependent, a Master count and a Slave count may not have the same distance equivalent.)

Master and Slave Position values are relative to the positions of the Master and Slave at trigger time.

NOTE: Normally, Cam Tables are stored in the amplifier’s flash memory, allowing the Cam Tables to be uploaded once and persist between power cycles.

In applications where flash storage is not appropriate or optimal, up to 16 Cam Tables can be loaded into and run from amplifier RAM instead. For more information, see the CANopen Programmer’s Manual .

1.2.2: Control Diagram

As shown below, when the Cam Trigger is activated, the amplifier receives position data (counts) from the Master Input and interprets the active Cam Table to command the Slave position loop. When the Master reaches a programmed Master position, the Slave axis reaches the corresponding Slave position. The position loop uses linear interpolation to drive the Slave axis smoothly from point to point.

Input

Position

Commanded (Master)Position

Cam Signal

Profile Velocity

Note that during camming, profile velocity, acceleration, deceleration, and Aff have no effect. The only limiting variables are the current limits and the velocity limit in the velocity loop.

Operational Overview Copley Camming User Guide

1.3: Monitoring Camming Moves

To monitor the Cam Master position in the CME 2 Scope tool or Control Panel, use the

Commanded position variable. To monitor the Cam Slave position, use the Limited

position variable. For an example, see Scope Trace of a Sample Camming Move below.

Another useful variable to monitor is the Event Status Misc.: In Motion flag.

1.3.1: Scope Trace of a Sample Camming Move

Following is a trace of a simple camming move shown in the CME 2 Trace Viewer tool.

Scope Channel 1 (green) traces Commanded position, representing the Cam Master

position. Channel 2 (white) traces Limited position, representing the Cam Slave position.

Channel 6 (red) traces IN 2, which was used as the Cam Trigger.

The Cam Table that was interpreted to control this move is shown below:

CHAPTER

2: C AMMING S ETUP This chapter shows how to use CME 2 to prepare the amplifier to run camming profiles.

Perform the steps outlined below. Details follow in the chapter.

1S

C

C

L

Camming Setup Copley Camming User Guide

2.1: Start CME 2

1

Double-click the CME 2 shortcut icon on the Windows desktop to start CME 2.

2

If communications were set up already…

If communications were not set up…

…the CME 2 Main Screen opens. If there are

multiple ports, the Copley Neighborhood root will be selected as shown below:

Select the desired amplifier. For instance:

…see the screen below:

In this case, see the Copley Controls CME 2 User Guide .

After an amplifier has been selected, the CME 2 Main Screen looks similar to this:

If the Basic Setup options have not been chosen, the Basic Setup screen opens.

Copley Camming User Guide Camming Setup 2.2: Configure CME 2 Basic Setup for Camming Mode

1

Click the Basic Setup tool to open the open the Basic Setup screen:

2Click Change Settings to start the Basic Setup wizard. Use the Back and Next buttons to navigate screens. Screen details vary depending on amplifier model

and mode selection.

3Verify the settings on the Motor Options and Feedback Options screens. See the Copley Controls CME 2 User Guide for more information.

4Click the Next button to display the Operating Mode Options screen.

5Set Operating Mode to Position.

6Set Command Source to Camming.

7Set Digital Input Source:

To control camming with an external master using two of the amplifier’s digital input

lines (typically IN 9 and IN 10), set Digital Input Source to High Speed Inputs.

To control camming with an external master using the amplifier’s secondary encoder

inputs, set Digital Input Source to Multi-mode Port.

To control camming with the amplifier’s Internal Generator, set Digital Input Source to

High Speed Inputs.

8Verify settings on the Miscellaneous Options screen.

See the Copley Controls CME 2 User Guide for more information.

9Click Finish to close the screen.

10If you are following the setup procedure described at the beginning of this chapter, proceed to Configure Camming Parameters (p. 14).

Camming Setup Copley Camming User Guide

2.3: Configure Camming Parameters

2.3.1: Configuration Procedure

1

Click Camming to open the Camming screen:

2Enter values for the Camming Parameters described on p. 15

(including the Active Cam Table parameter).

3If you are following the setup procedure described at the beginning of this chapter, proceed to Load the Cam Tables (p. 16) and make sure that the Active Cam Table

assigned in the previous step has been saved to flash.

Copley Camming User Guide Camming Setup 2.3.2: Camming Parameters

Parameter Description

Control Input Specifies the type of digital control:

Pulse and Direction: One input takes a series of pulses as motion step commands,

and another input takes a high or low signal as a direction command.

Pulse Up / Pulse Down: One input takes each pulse as a positive step command, and

another takes each pulse as a negative step command.

Quadrature: A/B quadrature commands from a master encoder (via two inputs) provide

velocity and direction commands.

Increment position on Rising Edge: Increment position on the rising edge of the input pulse. Falling Edge: Increment position on the falling edge of the input pulse. (For Pulse and Direction or Pulse Up / Pulse Down control only.)

Invert

Command

When selected, inverts commanded direction.

Internal Master When set, an internal pulse generator is used to generate the Camming master pulses at the rate specified in the counts/s field.

Trigger Type Controls how execution of a Cam Table is triggered.

None (Continuous): The active Cam Table is repeated continuously.

Use Master (Secondary) Encoder Index: The active Cam Table is executed when the

amplifier receives an index pulse from the camming master encoder. Index pulses

received during execution are ignored.

Use Input, Edge: The active Cam Table begins executing on the rising edge of the

designated input pin. Trigger input transitions received during execution are ignored.

Use Input, Level: The active Cam Table repeats continuously as long as the

designated input is high.

Active Cam Table Selects the Cam Table that the amplifier will execute when the camming trigger is activated.

Offset Forward: A delay (in Master counts) applied before the Cam Table is executed when the Master is moving forward.

Reverse: A delay (in Master counts) applied before the Cam Table is executed when

the Master is moving in reverse.

Startup Camming takes Control on startup: Camming takes control of the amplifier on amplifier startup.

CVM takes control on startup: The Copley Virtual Motion (CVM) Indexer program

takes control of the amplifier on amplifier startup. This makes it possible to use the

Indexer program to home the amplifier before putting the amplifier under Camming

control.

Camming Setup Copley Camming User Guide 2.4: Load the Cam Tables

1Click on Camming screen Tables tab.

2Import any externally generated Cam Tables as instructed in

Import an Externally Created Table (p. 22).

As needed, use CME 2 to create and edit tables as instructed in

Create a New Table with CME 2 (p. 23) and

Edit Table Values with CME (p. 24).

3

Save all Cam Tables to amplifier flash memory.

4Close the screen. If you have followed the setup procedure described at the beginning of this chapter, the amplifier is now ready to execute Cam Tables.

ALTERNATE:

https://www.360docs.net/doc/c59978335.html,t file can be downloaded directly to amplifier flash by selecting

File->Restore Cam Tables from the CME 2 Main Screen. All Cam Tables in amplifier

flash will be replaced by the tables in the .cct file. This table loading method can be used

even when CME 2 is locked by the Tools->CME 2 Lock/Unlock control.

CHAPTER

3: C AM T ABLES Contents include:

1C

O

C

Camming Setup Copley Camming User Guide

3.1: Cam Table Specifications and Guidelines

A Cam Table contains a progression of Master Position values paired with corresponding

Slave Position values. Tables can be created, viewed, and edited directly within the

Tables tab of the CME 2 Camming screen. They can also be created using external tools, saved as ASCII text files (such as .txt or .csv), and then imported into CME 2.

NOTE: Normally, Cam Tables are stored in the amplifier’s flash memory, allowing the

Cam Tables to be uploaded once and persist between power cycles. In applications where flash storage is not appropriate or optimal, up to 16 Cam Tables can be loaded into and

run from amplifier RAM instead. For more information, see the CANopen Programmer’s

Manual.

3.1.1: Cam Table Storage Limits

The amplifier can hold up to 10 Cam Tables. The total number of Master/Slave position

value pairs that can be distributed across all 10 tables is 3,000 for ACM ACJ, ACP, XSL,

STP, and STM model amplifiers and 3,960 for AMP, AEP, XSJ, ADP, XTL, and STX

model amplifiers. The maximum number of value pairs per table varies as described

below, but the grand total of all tables can not exceed 3,000 or 3,960 respectively.

The number of Cam Table lines is limited by the amount of CVM memory space available in the amplifier. Management of each populated Cam Table requires a certain amount of

that memory space. Also, Cam Tables share that space with Copley Virtual Machine

(CVM) programs. Therefore, the maximum number of Cam Table lines will decrease if

more than one Cam Table is populated or if CVM programs are stored in the amplifier.

The Camming screen Tables tab displays the percentage of amplifier memory used as

described in CVM Memory Usage (p. 21).

3.1.2: Master/Slave Position Value Rules

?All position values must be whole numbers (no fractional values) in counts.

?All Master Position values must be positive and increasing, and

thus, only the first line may contain a zero for the Master Position value.

?The difference between successive master values must be less than 16384.

?The difference between successive slave values must be less than 32768.

3.1.3: Externally Created Table Files

Data format: ASCII. No header line allowed in file.

Line Syntax:

Where delimiter is a comma, a space, or a tab character, and all values conform

to the Master/Slave Position Value Rules.

Syntax examples: Comma-separated Space-separated

0,0 5,2 10,13 15,42 00 52 10 13 15 42

File name: An externally created table file must not have a .cct filename extension (which is

reserved for table files saved by CME 2.) There are no other special restrictions

on file names. File name extension (for instance, .csv for comma separated

values) is optional.

File location: May be stored anywhere. Default location is the CamTables folder in the CME 2

installation directory (typically c:\Program Files\Copley Motion\CME

2\CamTables).

Copley Camming User Guide Camming Setup

3.1.4: Programming Note: Small Master Increments and Slow Master Input

The combination of very small Cam Table Master Position increments and a camming

Master Input speed that is slower than the amplifier’s servo loop cycle can generate

undesired resonance. Here is an example of the problem, and how it was solved.

The original Cam Table specified a new Slave Position for every count of the Master

Position, as shown below.

Original Cam Table

Table

M

Line #

000

1110

2250

33120

44220

The amplifier was programmed to use its Internal Master. The Master speed was set to

1,000 counts/second. The amplifier’s servo loop sampled the Master Position at the rate

of 3,000 samples per second, or at 3 times the update speed of the Master.

Thus, as shown in A below, the Camming interpolator would read the same Master

Position for three servo loop sample cycles in a row. With no change in the Master

Position, no update was commanded for the Slave Position.

On the fourth cycle, the new Master Position was read. The amplifier would abruptly drive the Slave axis to the corresponding Slave Position as per the Cam Table.

As shown in B below, the problem was solved by increasing the Master speed and each

programmed Master Position by a factor of 10.

Because the speed and Master Position changes were proportional, both configurations

drove the Slave to the programmed positions at the same time, but the increased Master

Speed in B allowed for 3 times as many Master Position increments, resulting in a

smoother profile.

Servo

cle ble

000000

10033

20077

31110 10 10

23

4110 13

37

5110 17

62250 20 50

73

7250 23

8250 27

97

933120 30 120

153

33

120

10 3

37

187

120

11 3

12 44220 40 220

Camming Setup Copley Camming User Guide

3.2: Overview of the Tables Tab

3.2.1: Viewing the Tables Tab

1

If

Click Camming to open the Camming screen. Click the Tables tab.

Menu Bar

Green next to table number

indicates that table is populated

Master/Slave position values

Highlight a table number

to display that table

Control Bar

3See Cam Tables Menu Bar,Cam Tables Tool Bar,and CVM Memory Usage (p. 21) for more details.

XPL-ds_ Xenus Copley交流伺服驱动器

description Xenus Plus set new levels of performance, connectivity, and flexibility. CANopen communication provides a widely used cost-effective industrial bus. A wide range of absolute interfaces are built-in including EnDat, Hiperface, and BiSS. High resolution A/D converters ensure optimal current loop performance. Both isolated and high-speed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed. Model Vac Ic Ip XPL-230-18100 - 240618XPL-230-36100 - 2401236XPL-230-40 100 - 240 20 40 Add -R for resolver feedback option control Modes ? Indexer, Point-to-Point, PVT ? Camming, Gearing ? Position, Velocity, Torque command interface ? CANopen ? ASCII and discrete I/O ? stepper commands ? ±10V position/velocity/torque (2 inputs) ? PWM velocity/torque command ? Master encoder (Gearing/Camming) Communications ? CAN ? RS-232 ? RS-485 (Optional)Accessories ? External regen resistors ? External edge filter Feedback ? Digital quad A/B encoder ? EnDat, Hiperface, BiSS, SSI, & panasonic encoders ? Aux. encoder / encoder out ? Analog sin/cos encoder ? Resolver option ? Digital Halls Safe Torque Off (STO) ? Two active inputs enable power stage ? One output confirms power stage status I/O Digital ? 15 inputs, 6 outputs I/O Analog ? 2, 16 bit inputs ? 1, 12 bit input ? 1, 12 bit output Dimensions: in [mm] ? 7.9 x 5.5 x 2.3 [202 x 139 x 52]

Copley驱动器用户指南

Copley驱动器总结 一、驱动器简介 -S和-R版本可以从模拟正弦/余弦编码器和无刷解析器中模拟出正交编码器的输出信号,我们的驱动器是XTL-230-40,输入标准版本,支持正交编码器。 驱动器可以以以下几种方式进行操作: 1.作为一个传统的电机驱动器,接受外部控制器发出的电流,速度和位置信号。 在电流和速度模式下,可以接受正负10V的模拟信号;占空比50%的PWM波,或者PWM/极性输入。 在位置模式下,输入可以是从步进电机控制器发出的位置增量命令(以脉冲方向格式或者递增递减计数格式)或者是从主编码器输出的A/B正交指令。 2.作为CANopen网络的一个网点。 3.作为DeviceNET网络的一个网点。 4.作为一个独立的控制器运行虚拟机上的程序,或者通过RS232串口运行ASCII码格式的 指令。 另外还需要一个独立的+24V电源给内部控制电路供电,这个电源跟主电源隔离开来。这个设计保证了主电源断开,+24v电源不断开的时候,驱动器能保留位置信息和通信。 CME2 CME2是对驱动器进行配置和调试的软件,通过RS232串口连接电脑和驱动器。所有的配置驱动器的操作都可以通过这个软件完成。电机数据存储为.CCM文件,驱动器数据存储为.CCX 文件。

二、驱动器操作 供电和接地图 电源 交流电压经过整流滤波输出直流驱动PWM逆变器。 +24V电源经过一个DC/DC变换器,产生控制电路所需的电压和一个+5V电源给HALL电路和编码器供电。 操作模式 控制环的嵌套和模式 驱动器可以使用最多三个嵌套的控制环,电流环、速度环、位置环在三种相关联的模式下控制电机

Copley 驱动中文调试说明

Copley CME2调试软件用户向导 Chinese Revision 1 Nov 2009 Written by Paul

目录 1.软件的安装、启动及向导 (4) 1. 1 安装软件 (4) 1. 2 启动CME2软件 (4) 1. 3 串口设置 (4) 1. 4 CAN网络参数配置 (6) 1. 5 CME2连接到驱动器 (6) 1. 6 CME2软件向导 (7) 2.基本配置 (9) 2.1 改变基本设置 (9) 2.2 ServoTube电机配置 (12) 3.电机/反馈参数配置 (14) 3.1 电机/反馈参数窗口概览 (14) 3.2 旋转电机参数设置 (14) 3.3 直线电机参数设置 (15) 3.4 反馈参数,旋转电机 (16) 3.5 反馈参数,直线电机 (17) 3.6 反馈注意事项 (17) 3.7 Brake/Stop 参数 (18) 3.8 Brake/Stop 注意事项 (18) 3.9 计算功能 (19) 4.数字输入/输出配置 (21) 4.1 数字输入 (21) 4.2 数字输出 (23) 4.3 同步PWM开关频率 (28) 5.电机相位 (29) 5.1 用Auto Phase 整定电机相位 (29) 5.2 选择Auto Phase时Current和Increment Rate值向导 (34) 5.3 Auto Phase过程中的微调 (34) 5.4 用Motor Phase Manually整定电机相位 (35) 6.控制面板 (40) 6.1 Control Panel 概览 (40) 6.2 状态指示和消息 (41) 6.3 Control Panel 监控通道 (41) 6.4 控制功能 (42) 6.5 Jog 模式 (42) 7.控制环路 (44) 7.1 电流环设置和调试 (44) 7.2 电流环自动调节 (46) 7.3 电流模式和电流环的注意事项 (48) 7.4 速度环设置和调试 (50) 7.5 速度模式和速度环的注意事项 (52) 7.6 位置环设置和调试 (54)

基于Canopen协议的运动控制系统设计

基于Canopen协议的运动控制系统设计 刘玉倩张文靳卫国王慧 (中国电子科技集团公司第四十五研究所,北京,101601) 摘要:描述了一种最广泛应用的现场总线CAN和最为成功的CAN应用层协议Canopen,介绍了CAN +Canopen工业控制总线解决方案,重点阐述了这种解决方案在一种工业控制模型中的实现。同时对软件设计、设备调试中的问题提出解决方案,对系统效率、可靠性进行测试优化。 关键词:CAN;Canopen;运动控制;软件编程 中文分类号:文献标志码:文章编号: Motion Control System Design Based on Canopen protocol Liu Yuqian, Fu Chunhe, Zhang Wen, Jin Weiguo (The 45th Research Institute of CETC,Beijing 101601,Chia) Abstract:This paper describes a widely used fieldbus CAN and the successful Application layer protocol Canopen ,introduces the CAN and Canopen industry control fieldbus solutions, emphatically expounds the realization of the field bus resolution in the industry control model. At the same time, put forward resolvents of problems in software design and machine debugging, tests and optimizes the system’s stability and efficiency. KeyWord: CAN;Canopen;motion control;software program CAN总线系统解决方案是利用CAN总线的优点及其特长为机器自动化设备提供高效、可靠、性价比高的解决方案。CAN+Canopen是机器自动化领域最为成功的总线解决方案,在欧美被广泛应用]1[。本文将以一种全自动半导体设备为具体实例,介绍一种基于CAN+Canopen解决方案的工业控制模型的软件实现。1CAN和Canopen协议 CAN是最早的,也是应用最为广泛的现场总线。CANopen是欧洲CIA组织定义的最为成功的CAN应用层协议,在基于CAN的自动化系统中居于领导地位。CAN现场总线技术是集自动控制技术、通讯技术、传感技术、计算机技术等于一体,是个革命性的技术,正广泛应用于自动化各个领域。目前广泛使用的其它现场总线还有Profibus、DeviceNet、ControlNet、HART、FF等等,但是CAN 总线也是所有现场纵向中最早出现的,也是最适合机器自动化领域的现场总线。 CAN总线除了具有一般总线所具有的优点外,还根据机械自动化的特点,提供了一些非常有优势的技术特点: 1. 高速的数据传输速率可达1M bit/s; 2. 采用对数据通信数据块进行编码,可以多主方式工作;

关于仿人机器人关节驱动微型伺服系统的介绍

摘要:用于仿人机器人关节驱动的微型伺服系统日前完全依赖进口。基于分析微型伺服系统各部件的发展现状与技术特点,研制了一款适用于仿人机器人关节驱动的国产倒服系统,包括永磁无刷伺服电机、巨磁阻编码器、高功率密度驱动模块以及通讯单元。通过与周内仿人机器人研究单位常用的几款进口伺服系统进行对比,验证所研制的微型伺服系统满足仿人机器人关节驱动对功率密度比等性能指标的要求.可完全代替进口产品。 关键词:仿人机器人;关节驱动;微型伺服系统,永磁同步电动机 1 引言 2000年,日本本田公司发布的仿人机器人AsIMO吸引了全世界的目光。过去10年里,得益于计算机、电气工程、材料工程、传感器科学等相关学科的发展,仿人机器人技术也有了长足的发展。其中较为突出的有日本本田公司、美国麻省理工大学、俄亥俄州立大学、北京理工大学、哈尔滨工业大学等。仿人机器人由控制系统、关节伺服系统、传感器系统、能源系统和本体结构5部分组成。关节伺服系统按驱动方式可以分为液压伺服、气动伺服、电机伺服、压电伺服等。这几种系统中,液压伺服抗污染能力差、调试维护困难、瞬间过载能力低;气动伺服非线性程度高、定位刚度小;电机伺服通常需要减速机构,使其体积增大;压电伺服一般不需要减速机构,易于实现微型化,但其驱动电路复杂,多用于微型机器人或仿人机器人的手指关节。比较几种伺服系统的优缺点,电机伺服系统,尤其是旋转电机伺服系统由于技术成熟、可靠性高、刚度强、较易驱动,是目前仿人机器人关节伺服系统的首选。 在仿人机器人中,由于使用电池供电,供电电压低、功率/能量密度受限,且机器人的体积、重量均有严格的要求,所以仿人机器人关节中使用的电机伺服系统有其特殊的要求。例如低工作电压而且变化范围大、低损耗、高功率密度、重景轻、单一电源供电、高动态性能、高可靠性等等。本文围绕仿人机器人对关节驱动的要求特点,详细介绍目前广泛应用的关节电机伺服系统的组成、类别、性能特点等。在此基础上研制了一台国产微型伺服系统,通过与国外同类伺服系统的对比研究,结果表明所研制的微型系统满足仿人机器人关节驱动的性能要求,可取代进口产品。 2 关节驱动伺服系统的组成 电机伺服系统一般是由电动机、位置传感器、电流传感器、功率器件和控制器5部分组成的闭环系统,如图1所示。 2.1电机 永磁无刷电动机无需励磁绕组和励磁电源,结构相对简单,具有很高的功率密度,非常适合仿人机器人这种对体积、重量十分敏感的场合。在伺服系统中应用的永磁无刷电动机分为元刷直流电动机(brushless DC motor,BI。DCM)和永磁同步电动机(PMSM)两种。前者设计和生产费用低,但转动时不可避免有转矩脉动;后者正弦波驱动,理论上可完全消除转矩脉动,但需要更高精度的转子位置传感器和更复杂的控制器件”…。 2.2位置传感器 2.2.1光电编码器 在位置伺服系统中,光电编码器常被采用作为位置传感器。它具有高精度、高分辨率、工作范同大、功耗低、非接触测量等优点,但由于光栅盘是精密的光学元件,其抗振性能差,轴向的振动极易使其破碎,烟雾、灰尘等杂质也会影响光路系统。光源、镜头、光栅盘和光电传感器组成的光路系统只能轴向排布,也令光电编码器的厚度难以缩小。 目前商品化的光电编码器中,体积较小的是SCANCON公司的增量式光电编码器,其分辨率为1 000线/r,尺寸为西24 mm×24 mm。 2.2.2磁编码器 磁编码器是近年发展起来的以一种新型电磁敏感元件为基础的检测装置。这种编码器使用具有交替变化磁场的永磁体盘代替光栅盘,使用巨磁电阻(GMR)等磁敏元件代替光电元件,把磁信号变为电信号。在T作中,磁编码器不易受尘埃和结露影响,抗振能力强,可靠性高,同时其结构简单紧凑,无需复杂的光源和光学元件,易于实现小型化。 但受充磁技术的制约,磁编码器的磁极数不可能提得很高,通过控制充磁,是磁场分布呈理想的正弦波,那么可通过波形细分技术进一步提高精度和分辨率。目前商品化的磁编码器分辨率可达l 000线/r。 2.3功率器件 在中小功率的应用中,一般使用电力MOsFET或IGBT作为功率器件。电力MOSFET具有易驱动、开关速度快的优点,但其导通损耗和耐压能力之间存在矛盾,故一直局限子在低压场合使用。IGBT是一种复合型的功率器件,整合了MOsFET和BJT的优点,驱动端类似MOsFET的结构,通过电压控制,所需功率小,而开关端则与BJT相似,耐压水平高、电流大、导通损耗小。 但其关断时间较长,因此开关损耗较大,而且其导通压降为固定值,与流过电流无关,在开关电压较高的时候才能体现出其低损耗的优点。 目前主流IGBT导通压降为1.5~2.5 V,而100 V耐压的MOSFET导通电阻一般在15~30mn。仿人机器人电源电压一

Copley+驱动调试帮助

Copley驱动调试帮助向导 1.到https://www.360docs.net/doc/c59978335.html,/Motion/Products/Software/index.html 下载CME2软件并进行安装。 2.软件安装完成后,用RS232通讯线缆将驱动器与电脑串口相连,连接完成后给驱动器上电,再点击桌面“CME2”图标打开软件,如图1 所示: 图1 点击“OK”后,出现图2界面: 图2(以XSL-230-18驱动为例) 3.驱动器基本配置 点击“Amplifier”菜单下“Basic Setup”或点击图标工具栏第一个图标,出现图3窗口:

图3 在图3中可以看到当前驱动器的配置情况,如要改变设置,请点击“Change Settings”,进入“Motor Options”设置,出现图4窗口: 图4

Motor Family(电机类别): Brushless:无刷电机 Brush:有刷电机 Three Phase Stepper:三相步进电机 Motor Type(电机类型): Rotary:旋转电机 Linear:线性电机 再点击“Next”进入“Feedback Options”设置,出现图5窗口: 图5 Hall Type(Hall类型): None:没有Hall Digital:数字Hall Analog:模拟Hall(Copley直线电机专用) 当有Hall时,请勾上“Hall Phase Correction”。 Motor Encoder(电机编码器): None:没有 Primary Incremental:主通道数字编码器接口 Secondary Incremental:第二通道数字编码器接口 Analog:模拟信号编码器接口 Low Frequency Analog:低频模拟信号编码器接口(Copley直线电机专用)Position Encoder(位置编码器): None:没有 Primary Incremental:主通道数字编码器接口 Secondary Incremental:第二通道数字编码器接口 Analog:模拟信号编码器接口

直线模组调试说明

直线模组调试说明 目录 第一章,机械、硬件显示测试 (2) 第二章,COPLEY驱动器调试 (3) 第三章,PMAC控制器配置 (9) 第四章,上位界面设置 (25) 第五章,触发脉冲问题 (30) 第六章,控制器常见问题 (31)

第一章,机械、硬件显示测试 1,安装好机械结构后,保证直线模组可以运行整个行程,当模组运行到正负限位时,普通光耦板发光二极管会熄灭,从而验证是否到达限位;有的平台由于机械干涉,但也必须保证一个轴能触碰到一个限位,否则模组不能正常运行。 2,正常通电后,IMAC-400一共有4个指示灯亮分别是:D+5V,D+12V,D-12V,A+5V。 普通光耦板有发光二极管亮,一个轴有两个限位对应两个二极管,比如设备有两个直线模组轴,那么一共应该有4路发光二极管亮。(如图三轴实例) 3,高速光耦板正常通电后,有一个红色+5V指示灯亮,8路绿色通道指示灯亮。

第二章,COPLEY驱动器调试 1,打开CME2 V6.1文件夹,点击安装Setup.exe文件。 2,使用串口与CME2软件通讯,用RS232串口通讯时,配置波特率如图,COM端口按实际情况设置。 3,通讯上后点击Motor/Feedback,进入后点击OK确定,依次确定。 4,点击File菜单下Restore->Amplifier Data,把对应轴的配置down到驱动器,然后点击 save to flash。

5,点击菜单Control Panel,如图显示,用手推动模组运行时位置反馈会有数值变化,表明从读数头到驱动器的编码器线缆正常。 6,点击Tools菜单下的Manual Phase相序测试,用手缓慢推动电机运动,Hall的三相U、V、W会实时变化,右边的指针也会随着旋转,这代表模组的Hall线缆正常。

copley驱动器手册

Copley Camming User Guide P/N 95-00501-000 Revision 2 June 2008

Copley Camming User Guide .

TABLE OF CONTENTS About This Manual (5) 1:Operational Overview (7) 1.1: Host System Requirements (8) 1.2: Camming Operation (9) 1.3: Monitoring Camming Moves (10) 2:Camming Setup (11) 2.1: Start CME 2 (12) 2.2: Configure CME 2 Basic Setup for Camming Mode (13) 2.3: Configure Camming Parameters (14) 2.4: Load the Cam Tables (16) 3:Cam Tables (17) 3.1: Cam Table Specifications and Guidelines (18) 3.2: Overview of the Tables Tab (20) 3.3: Cam Table Procedures (22) 4:Application and Connection Examples (25) 4.1: Conveyer Camming Application Example (26) 4.2: Connection Examples (27) 5:Camming Configuration via ASCII (31) 5.1: Camming Mode Variables (32) 6:Camming Control via Indexer Program (35) 6.1: Indexer Camming Function (36) 6.2: Camming Internal Master Function (37)

Copley驱动器用户指南

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。 Copley驱动器总结 一、驱动器简介 极性输入。 另外还需要一个独立的+24V电源给内部控制电路供电,这个电源跟主电源隔离开来。这个设计保证了主电源断开,+24v电源不断开的时候,驱动器能保留位置信息和通信。 CME2 CME2是对驱动器进行配置和调试的软件,通过RS232串口连接电脑和驱动器。所有的配置驱动器的操作都可以通过这个软件完成。电机数据存储为.CCM文件,驱动器数据存储为.CCX

文件。 二、驱动器操作 供电和接地图 电源 交流电压经过整流滤波输出直流驱动PWM逆变器。 +24V电源经过一个DC/DC变换器,产生控制电路所需的电压和一个+5V电源给HALL电路和编码器供电。 操作模式 控制环的嵌套和模式 驱动器可以使用最多三个嵌套的控制环,电流环、速度环、位置环在三种相关联的模式下控制电机

控制环图解 在位置模式下,驱动器用到了三个环。如上图所示,位置环驱动速度环,速度环驱动电流环。在速度模式下,速度环驱动电流环,在电流模式下,电流环直接由外部或内部的电流指令驱动。 环路基本属性 这些环路和一般的伺服控制环路有一些相同的属性 环路属性描述 命令输入每个环路给定一个需要达到的值。例如,速度环接受一个速度指令,它是期望的电动机速度 限制每个环路上都有限制,以保护电机或者机械系统 反馈伺服控制环接受反馈。如位置环把电机的实际位置作为反馈。 增益这些是伺服环路的数学方程中的常数值,通过这些值可以设置驱动器,提高驱动器的性能。调整这些值被称为环路整定。 输出环路产生的控制信号。这个信号可以被用作命令信号输入到另一控制回路或输入到功率放大器中。 电流模式和电流环 电流环的前端是一个限制模块,限制模块接收一个电流指令,然后输出一个受到限制的电流,这个电流减去实际的电流,得到一个偏差信号,经过P,I调节得到一个指令,这个指令然后施加到驱动器的功率级。

相关主题
相关文档
最新文档