如何测试延时、抖动、丢包率

如何测试延时、抖动、丢包率
如何测试延时、抖动、丢包率

如何测试延时、抖动、丢包率?延时、抖动、丢包率各个数据的含义是什么?

很简单,在Windows的左下角点击"开始",选"运行",键入 cmd 回车,就可以进入DOS窗口,在DOS命令状态下输入:

ping 202.105.135.211

就会得到下面的结果:

Pinging 202.105.135.211 with 32 bytes of data:

Reply from 202.105.135.211: bytes=32 time=93ms TTL=42

Reply from 202.105.135.211: bytes=32 time=86ms TTL=42

Reply from 202.105.135.211: bytes=32 time=81ms TTL=42

Reply from 202.105.135.211: bytes=32 time=80ms TTL=42

Ping statistics for 202.105.135.211:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 80ms, Maximum = 93ms, Average = 85ms

这里面,丢包率0%,抖动是-5ms到+8ms,延时是 85ms(毫秒),测试另外两个IP地址,可以看到:

Pinging 221.221.23.7 with 32 bytes of data:

Reply from 221.221.23.7: bytes=32 time=28ms TTL=48

Reply from 221.221.23.7: bytes=32 time=26ms TTL=48

Reply from 221.221.23.7: bytes=32 time=26ms TTL=48

Reply from 221.221.23.7: bytes=32 time=26ms TTL=48

Reply from 221.221.23.7: bytes=32 time=28ms TTL=48

Reply from 221.221.23.7: bytes=32 time=28ms TTL=48

Reply from 221.221.23.7: bytes=32 time=27ms TTL=48

Reply from 221.221.23.7: bytes=32 time=60ms TTL=48

Reply from 221.221.23.7: bytes=32 time=113ms TTL=48

Reply from 221.221.23.7: bytes=32 time=27ms TTL=48

Reply from 221.221.23.7: bytes=32 time=52ms TTL=48

Reply from 221.221.23.7: bytes=32 time=58ms TTL=48

Reply from 221.221.23.7: bytes=32 time=27ms TTL=48

Reply from 221.221.23.7: bytes=32 time=112ms TTL=48

Reply from 221.221.23.7: bytes=32 time=76ms TTL=48

Reply from 221.221.23.7: bytes=32 time=154ms TTL=48

Ping statistics for 221.221.23.7:

Packets: Sent = 16, Received = 16, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 26ms, Maximum = 154ms, Average = 54ms

丢包率0%,抖动是-28ms到+100ms,延时是 54ms(毫秒)Pinging 221.221.23.209 with 32 bytes of data:

Reply from 221.221.23.209: bytes=32 time=885ms TTL=48

Reply from 221.221.23.209: bytes=32 time=688ms TTL=48

Reply from 221.221.23.209: bytes=32 time=482ms TTL=48

Reply from 221.221.23.209: bytes=32 time=119ms TTL=48

Reply from 221.221.23.209: bytes=32 time=61ms TTL=48

Reply from 221.221.23.209: bytes=32 time=456ms TTL=48

Reply from 221.221.23.209: bytes=32 time=962ms TTL=48

Reply from 221.221.23.209: bytes=32 time=890ms TTL=48

Reply from 221.221.23.209: bytes=32 time=939ms TTL=48

Reply from 221.221.23.209: bytes=32 time=891ms TTL=48

Reply from 221.221.23.209: bytes=32 time=141ms TTL=48

Reply from 221.221.23.209: bytes=32 time=420ms TTL=48

Reply from 221.221.23.209: bytes=32 time=517ms TTL=48

Reply from 221.221.23.209: bytes=32 time=463ms TTL=48

Reply from 221.221.23.209: bytes=32 time=798ms TTL=48

Reply from 221.221.23.209: bytes=32 time=451ms TTL=48

Reply from 221.221.23.209: bytes=32 time=604ms TTL=48

Ping statistics for 221.221.23.209:

Packets: Sent = 17, Received = 17, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 61ms, Maximum = 962ms, Average = 574ms

丢包率0%,抖动是-511ms到+488ms,延时是 574ms(毫秒)

从上面3个结果看,第一组延时小,第三组延时大,丢包率为0%,第二组抖动大不可用,第三组延时、抖动都大,也不可用。

根据经验,这3个指标中,以下的区间范围是比较理想的:

丢包率:小于8%

延时:小于200ms

抖动:正负不大于40ms

这就是延时、抖动、丢包率比较理想的范围,太大了,肯定就是网络速度出现了问题。

volte丢包率TOP小区处理.doc

volte丢包率TOP小区处理 2016年7月

目录 一、概述 (3) 二、volte丢包率高TOP小区处理流程 (8) 三、丢包率高TOP小区处理案例 (8) 1.选择丢包率高TOP小区 (8) 2.提取相关联指标项 (9) 3. 实施处理 (9) 3.1 下行丢包率高TOP小区处理 (9) 3.2 上行丢包率高TOP小区处理 (11) 四、TOP小区处理总结 (12)

一、概述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE 语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 丢包率定义和影响因素 指标定义:

VOLTE语音包关联指标分析 举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。

根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包; 空口丢包原理 上行空口丢包统计原理:

主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。 上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。 常见PDCP层丢包原因总结

SDH抖动测试(DOC)

SDH抖动测试 一、抖动特性 1、抖动的概念 在理想情况下,数字信号在时间域上的位置是确定的,即在预定的时间位置上将回出现数字脉冲(1或0)。然而由于种种非理想的因素会导致数字信号偏离它的理想时间位置。我们将数字信号的特定时刻(例如最佳抽样时刻)相对其理想时间位置的短时间偏离称为定时抖动,简称抖动。这里所谓短时间偏离是指变化频率高于10H的相位变化,而将低于的相位变化称为漂移。事实上,两者的区分不仅在相位变化的频率不同,而且在产生机理、特性和对网络的影响方面也不尽相同。 定时抖动对网络的性能损伤表现在下面几个方面: *对数字编码的模拟信号,解码后数字流的随机相位抖动使恢复后的样值具有不规则的相位,从而造成输出模拟信号的失真,形成所谓抖动噪声,影响业务信号质量,特别是图像信号质量。 *在再生器中,定时的不规则性使有效判决点偏离接收眼图的中心,从而降低了再生器的信噪比余度,直至发生误码。 *对于需要缓存器和相位比较器的数字设备,过大的抖动会造成缓存器的溢出或取空,从而导致不可控滑动损伤。 2、抖动机理 (1)、PDH与SDH共有的抖动源 A、随机性抖动源 * 各类噪声源 * 定时滤波器失谐 * 完全不相关的图案抖动 B、系统性抖动源 * 码间干扰 * 有限脉宽作用 * 限幅器的门限漂移 * 激光器的图案效应 (2)、SDH设备特有的抖动机理 A、指针调整抖动 SDH设备的支路信号的同步机理采用所谓的指针调整,即利用指针值的增减调整来补偿低速支路信号的相位变化和频率变化,由于指针调整是按字节为单位进行的,调整时将带来很大的相位跃变。带有这些相位跃变的数字信号通过带限电路时将会产生很长的相位过滤过程。处于正常同步工作的SDH网中的指针调整主要是由于同步分配过程中的随机噪声引起的,因而由之引起

RFC2544以太网性能测试规程

1RFC2544 概述 IP网络设备是IP网络的核心,其性能的好坏直接影响IP网网络规模、网络稳定性以 及网络可扩展性。 由于IETF没有对特定设备性能测试作专门规定,一般来说只能按照 RFC2544( Benchmarking Methodology for Network Interconnect Devices)作测试。以太网交换机测试标准则参照RFC2889(Benchmarking Methodology for LAN Sw itching Devices)。但是由于网络互联设备除了通用性能测试以外通常还有一些特定的性能指标。例如路由器区别于一般简单的网络互连设备,在性能测试时还应该加上路由器特有的性能测试。例如路有表容量、路由协议收敛时间等指标。 网络互联设备例如路由器性能测试应当包括下列指标: 吞吐量(Throughput): 测试路由器包转发的能力。通常指路由器在不丢包条件下每秒转发包的极限。一般可以采用二分发查找该极限点。 时延(Latency): 测试路由器在吞吐量范围内从收到包到转发出该包的时间间隔。时延测试应当重复20 次然后去其平均值。 丢包率(Packet loss rate): 测试路由器在不同负荷下丢弃包占收到包的比例。不同负荷通常指从吞吐量测试到线速(线路上传输包的最高速率),步长一般使用线速的10%。 背靠背帧数(Back-to-back frame): 测试路由器在接收到以最小包间隔传输时不丢包条件下所能处理的最大包数。该测试实际考验路由器缓存能力。如果路由器具备线速能力(吞吐量=接口媒体线速),则该测试没有意义。 系统恢复时间(System recovery): 测试路由器在过载后恢复正常工作的时间。测试方法可以采用向路由器端口发送吞吐量110%和线速间的较小值持续60秒后将速率下降到50%的时刻到最后一个丢包的时间间隔。 如果路由器具备线速能力,则该测试没有意义。 系统复位(Reset): 测试路由器从软件复位或关电重启到正常工作的时间间隔。正常工作指能以吞吐量转发数据。 在测试上述RFC2544中规定的指标时应当考虑下列因素: 帧格式:建议按照RFC2544所规定的帧格式测试。 帧长:从最小帧长到MTU顺序递增。例如在以太网上采用64, 128, 256, 512, 1024, 1280, 1518字节。 认证接收帧:排除收到的非测试帧。例如控制帧,路由更新等帧。 广播帧:验证广播帧对路由器性能的影响。上述测试后在测试帧中夹杂1%广播帧再测

VOLTE丢包分析思路

VOLTE RTP丢包率问题分析 一、网管统计丢包率情况 1、丢包率变化情况: 通过对指标的观察,发现上行丢包率大于下行丢包率,且指标都位于0.1%-0.3%之间。 二、丢包率的影响因素(无线侧) 1、上行丢包率 影响上行丢包率的主要有三大因素:弱覆盖、大话务、上行干扰。 ①弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 案例:邻区漏配导致的弱覆盖,丢包严重,MOS低 ②大话务:控制信道配置不足,同一小区内上行用户量多时概率性出现上行数据包未 正常发送,导致丢包; 案例:XXXXXXX-HLW业务量较大,上行丢包率较高 XXXXXXXX-HLW站点长期业务量较大,上行丢包率大于1%,主要原因是上行资源不足,需要修改上下行初始CCE分配比例,加大上行CCE的资源预留。 ③外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、

站点GPS故障等,导致丢包。 案例:上行干扰导致上行丢包严重,造成掉话 问题描述 UE在XX路由北往南移动,主叫占用A-HLH-2(RSRP:-77.56dBm SINR:26.9dB)在16:55:29.181完成呼叫,发起BYE REQUEST请求;被叫占用相同小区(RSRP:-80.75dBm SINR:23.5dB)在此时未收到网络侧下发的BYE REQUEST,在16:55:32.105主动发起BYE REQUEST,系统记为一次掉话。 问题分析 主叫在通话完成以后上发BYE REQUEST,基站侧未收到,被叫主动发起BYE REQUEST,系统记为掉话。查看主被叫信令,发现在挂机时刻UE重复发送BYE REQUEST消息和BYE OK 消息,基站侧也重复下发BYE REQUEST给主叫,此时上行BLER非常高,达到70%-80%,上行链路质量非常差;通过查询当时的干扰信息,发现该路段附近存在较大的上行干扰:(参考此时段共站共覆盖TDS小区“SMSNR1:XXXXX_2”干扰信号) 问题结论 该路段存在较强的外部干扰,需对干扰源进行定位,排除干扰。 2、下行丢包率 影响下行丢包率的主要有三大因素:弱覆盖、下行质差、外部干扰。 弱覆盖:上行弱覆盖导致上下行链路不平衡,导致丢包; 下行质差:4G网络组网结构复杂,目前存在F/D/E共计7 个频点,等同于7张网络,切换、重选参数设置难度很大,在部分复杂场景下容易发生重叠覆盖、频繁切换问题,导致丢包;部分区域存在模3干扰导致丢包; 案例1:模3干扰导致丢包,影响MOS值 案例2:重叠覆盖导致丢包,影响MOS值 外部干扰:4G网络受到网内、网外干扰的情况依然存在,如电信FDD干扰、干扰器、站点GPS故障等,导致丢包。 三、针对影响因素目前可以使用的优化手段 1、针对上行丢包率可用的优化手段 弱覆盖处理手段:

简单排查ping丢包

最近单位的个别互联网用户反映上网不稳定时通时断,结合这次维修工作实际讲一下解决此类问题的一点心得。 一、简单介绍Ping丢包率概念 数据在网络中是被分成一个个数据包传输的,每个数据包中都有表示数据的信息和提供数据路由的桢。而数据包在一般介质中传播是总有一小部分由于两个终端的距离过大会丢失,而大部分数据包都会到达目的终端.所谓网络丢包率是数据包丢失部分与所传数据包总数的比值.正常传输时网络丢包率应该控制在一定范围内。 在cmd 中键入ping [网址],显示最后一行(x% loss)就是对目标地址ping包的丢包率。 二、了解一下单位互联网用户宽带接入方式拓扑图(如图1所示) ▲图1 三、解决问题的步骤方向

这次我们要解决的问题是用户电脑丢包严重,有时会影响用户正常上网,这次解决问题的方法是顺藤摸瓜,意思是说由用户电脑自下而上查找问题。 四、分步骤判断出问题所在。 (一)介绍造成用户PC上网丢包原因: 1、计算机网卡是否损坏; 2、RJ45头是否损坏,是否线路错误; 3、网线是否折伤; 4、设备故障; 下面首先使用用户的电脑,在cmd 中键入ipconfig显示如图2所示 ▲图2 得到该网络的网关(Default Gateway)后,ping 192.168.0.2 -t得到该网络丢包率大如图3所示

▲图3 得到上述信息后,为了排除故障点,用自己随身携带的笔记本ping 192.168.0.2得到的结果依然如图3所示,首先可以排除不是用户电脑网卡的故障。接着查看用户水晶头是否制作规范,为了保险起见,将水晶头截掉重新做了新的水晶头,可是故障依旧。这时候就要从用户这台机器脱离向上找问题,即顺藤摸瓜的方法。 为了能在24口交换机中迅速定位那根网线是该用户的,我们需要用户帮助我不停地做从网口上拔插网线动作,我就可在交换机指示灯处看到某个灯一灭一亮,注意这里说的一灭一亮并不是频闪,而是灭了又亮。采用上述办法就可以判断出7口为用户所接的交换机的端口,从交换上拔下该网线,用直通线一端接7口,一端笔记本,依然丢包,这样可以排除是网线的问题。 需要说明的是这次报修的互联网用户是极个别的,说明这个网络中,绝大部分用户上网是正常的,找到该交换机空余的端口,用直通线一端接上,一端接测试用笔记本,目的是通过这种步骤测试出那个端口是完好的,如果这个不行,可以试下一个,依次类推,找到一个完好的端口,尽量多测试一会,为了节省时间测试端口时,可以一直运行着ping包的命令,待出现4图的情形后,基本可断定该端口可正常使用。

CC2530无线通信丢包率测试

***************** 实践教学 ***************** 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:CC2530无线通信丢包率测试 专业班级:通信工程04 姓名:刘旺春 学号:10250423 指导教师张玺君 成绩:

目录 一、摘要 (3) 二、应用背景 (4) 三、CC2530芯片概述 (6) 3.1CC2530芯片基本介绍 (6) 3.2CC2530芯片功能介绍 (6) 3.3 CC2530 芯片引脚功能 (7) 3.3.1电源引脚功能 (8) 3.3.2控制线引脚 (8) 四、原理 (9) 4.1有关无线通信的基本概念 (9) 4.2基本原理 (9) 4.2.1程序流程图 (11) 4.2.2具体步骤 (12) 五、程序代码 (13) 六、参考文献 (19) 七、总结 (20) 致谢 (21)

一、摘要 嵌入式系统是以应用为中心,以计算机术为基础,软硬件可定制,适用于不同应用场合,对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由嵌入式微处理机,外围硬件设备,嵌入式操作系统,用户应用程序4个部分组成。用于实现对其他设备的控制,监视和管理等功能。嵌入式系统已经广泛应用于科学研究,工业控制,军事技术,交通通信,医疗卫生,消费娱乐等领域,人们常用的手机,PDA,汽车控制系统,ATM(Auto Teller Machine),智能家电,GPS等均是嵌入式系统的典型代表。 CC2530 是用于2.4-GHz IEEE 802.15.4、ZigBee 和RF4CE 应用的一个真正的片上系统(SoC)解决方案。它能够以非常低的总的材料成本建立强大的网络节点。 随着3C融合进程和我国传统产业结构升级的加速,人们对设备越来越高的应用需要已经无法满足当前和未来高性能的应用与发展需求. 使用两个CC2530模块利用其板载无线天线,测试在不同环境或不同通信距离内,CC2530无线通信数据包丢失率。 关键词:嵌入式 CC2530 丢包率

抖动分类与测量

抖动分类与测量 李惠民力科公司华南区应用工程师 在现在的协议一致性测试中,“抖动”似乎已经成为了一个绕不开的名词,它是评估信号质量的一个关键指标。然而,各个通信协议对抖动似乎有着不同的要求,到底抖动的各个分量有什么意义呢?它们又是如何测量得到准确的结果呢?在系统设计中又该如何改善抖动指标呢?希望看完本文之后您能够得到一些帮助。 抖动的定义 过去,时钟频率只有10MHz。电路板或者封装设计的主要挑战就是如何自双层板上布通所有的信号线以及如何在组装时不破坏封装,在那个时代,数字信号基本上不需要考虑“信号质量”的;然而随着时钟频率的提高,信号周期和上升沿也已经普遍变短,这个时候,信号完整性就变得十分重要。特别的,当时钟频率超过1GHz时,由于时钟周期变短,“抖动”这个指标在信号质量也变得十分重要。 抖动是指信号与理想时钟之间的偏差[1]。如下面图1和图2两个时序中,可以明显看出,图2中信号与理想时钟之间偏差相对较图1比更大,若两个信号时钟频率相同,我们就可以说图2中的抖动比图1中大。 图1信号和理想时钟之间的偏差 图2更“大”的抖动 需要注意的是,抖动和频偏并不是不是相同的概念,一般讨论抖动是要在一段时间内实际信号和理想时钟之间速率相同或者相差很小的情况。图3中,这段

时间内,实际信号和理想时钟之间的频率偏差约为7%,一般来说我们讨论抖动的时候频偏不会超过5000ppm(即0.5%),图3这种情况不再我们的讨论范围之内。 图3“频偏”并不是我们所讨论的抖动 另外,抖动的绝对值在有些情况下参考意义并不太大。假若是10MHz的时钟频率,每个周期为100ns,1ns的抖动似乎对信号没有太大的影响。然而当频率为500MHz时,1ns的抖动就很的能会影响信号信号质量,使得信号在传输过程在出现误码。所以我们在很多情况下会用UI这个相对单位;1UI即为1个时钟周期所花费的时间。若信号的时钟周期为10MHz时,1UI对应为100ns。相应的还有mUI,1mUI即0.001UI。相对单位比绝对时间单位更能看出抖动对信号质量的影响。 抖动的分类 在说抖动分类之前,首先我想说一下源同步与时钟恢复技术。想必大家在学习和使用单片机的时候应该对同步通信和异步通信有比较深刻的认识;同步通信的典型代表就是SPI,特点就是同时传送时钟和数据;异步通信的经典代表是UART,只需要两根线就可以实现全双工。源同步和SPI类似,在通信的时候同时传输时钟和数据,但是高速的时钟信号在传输过程中衰减很大,而且容易引起EMI,所以一般会对同步时钟进行分频,源同步的代表有HDMI,其时钟频率是信号速率的1/10。时钟恢复技术可以在串行数据中提取出时钟,然后用恢复出来的时钟对信号进行采样,克服异步通信中由于不同源带来的的频偏和抖动,时钟恢复的代表有USB,万兆以太网等。 首先,我们需要明确的一点就是——抖动是时间的函数,确切的来说,抖动是和时钟周期相关的。 在讨论抖动分类的时候,我们一般会从三个维度去讨论。 从关注抖动参数的类型,可以分成TIE(Time interval error),Period

网络性能测试与分析 林川 复习整理

网络性能测试与分析(林川)复习整理对一台具有三层功能的防火墙进行测试,可以参考哪些和测试相关的RFC文档 RFC3511、RFC3222、RFC2889、RFC2544 包头的最大长度为多少为什么IP 字节4060答:字节,固定部分20字节,可变部分 在数据传输层面,用以衡量路由器性能的主要技术指标有哪些 )背(65)丢包率;(4)背对背;()时延抖动;)延迟;1 答:()吞吐量;(2(3)系统恢复。8)系统恢复;板能力;(7( 什么是吞吐量简述吞吐量测试的要点 路由设备说明书和性能测试文答:吞吐量是描述路由器性能优劣的最基本参数,档中都包含该参数。是指在没有丢包的情况下,路由设备能够转发的最大速率。要规定延迟测试发包速率要小于吞吐量什么是延迟为什么RFC2544点:零丢包率。 延迟是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,答: 又叫时延。 丢包率测试的目的是什么简述丢包率与吞吐量之间的关系 在不同的负载和帧长度条件下的丢包率。DUT 答:丢包率测试的目的是确定 什么是背对背什么情况下需要进行背对背测试 答:背对背指的是在一段较短的时间内,以合法的最小帧间隙在传输

介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。该指标用于测试路由器缓存能力。 大量的路由更新消息、频繁的文件传送和数据备份等操作都会导 致数据在一段时间内急剧增加,甚至达到该物理介质的理论速率。为了描述此时路由器的表现,就要进行背对背突发的测试。 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实,即)Mpps现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(. 交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某

高级抖动溯源分析方法

高级抖动溯源分析方法 安捷伦科技(中国)有限公司孙灯亮 抖动的定义及和相位噪声和频率噪声的关系 抖动是数字系统的信号完整性测试的核心内容之一,是时钟和串行信号的最重要测量参数(注:并行总线的最重要测量参数是建立时间和保持时间)。 一般这样定义抖动:“信号的某特定时刻相对于其理想时间位置上的短期偏离为抖动”(参考:Bell Communications Research,Inc(Bellcore),"Synchrous Optical Network(SONET) Transport Systems:Common Generic Criteria, TR-253-CORE",Issue 2, Rev No.1, December 1997".如图1所示。其中快过10HZ的偏离定义为抖动(Jitter),漫过10Hz的偏离定义为漂 移(Wander)。 图1. 时钟和数据抖动的定义 抖动和相位噪声和频率噪声有什么关系呢? 图2.抖动和相位噪声和频率噪声的关系

抖动成分的分解及各个抖动成分的特征及产生原因 随着信号速率的不断提高和对精度的越来越高要求,需要进行抖动成分的分离以更深入表征抖动特征和查找问题根源。一般按图3进行抖动成分的分离。 图3.抖动成分分离图 各个英文的中文翻译如下。 Total Jitter(TJ):总体抖动; Random Jitter(RJ):随机抖动; Deterministic Jitter(DJ):确定性抖动; Data Dependent Jitter(DDJ):数据相关抖动; Periodic Jitter(PJ):周期性抖动; Inter-symbol Interference(ISI):码间干扰 Duty Cycle Distortion(DCD):占空比失真; Sub Rate Jitter(SRJ):子速率抖动。 下面分别讨论每种抖动成分的特征和产生原因。 1、随机抖动RJ 随机抖动是不能预测的定时噪声,因为它没有可以识别的模式。典型的随机噪声实例是在无线电接收机调谐到没有活动的载频时听到的声音。尽管在理论上随机过程具有任意概率分布,但我们假设随机抖动呈现高斯分布,以建立抖动模型。这种假设的原因之一是,在许多电路中,随机噪声的主要来源是热噪声(也称为Johnson 噪声或散粒噪声),而热噪声呈现高斯分布。另一个比较基础的原因是,根据中心极限定理,不管各个噪声源采用什么分布,许多不相关的噪声源的合成效应该接近高斯分布。高斯分布也称为正态分布,但它的一个最重要的特点是:对高斯变量,它可以达到的峰值是无穷大。尽管这种随机变量的大多数样本将会聚集在中间值的周围,但在理论上,任何单一的样本,它可以偏离中间值任意大的量。所以,高斯分布都没有峰到峰边界值,从这种分布中的样本数越多,所测得的峰到峰值将越大。所以,我们用stdev或RMS(均方差)值来衡量随机抖动RJ。 2、确定性抖动DJ 确定抖动是可以重复的、可以预测的定时抖动。正因如此,这个抖动的峰到峰值具有上下限,在数量相对较少的观察基础上,通常可以以高置信度观察或预测其边界。DDJ和PJ 根据抖动特点和根本成因进一步细分了这类抖动。确定性抖动和随机抖动在统计图上可以用图4形象化表示。

网络性能测试与分析林川复习整理完整版

网络性能测试与分析林 川复习整理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

网络性能测试与分析(林川)复习整理 对一台具有三层功能的防火墙进行测试,可以参考哪些和测试相关的RFC文档?RFC3511、RFC3222、RFC2889、RFC2544 IP包头的最大长度为多少为什么 答:60字节,固定部分20字节,可变部分40字节 在数据传输层面,用以衡量路由器性能的主要技术指标有哪些? 答:(1)吞吐量;(2)延迟;(3)丢包率;(4)背对背;(5)时延抖动;(6)背板能力;(7)系统恢复;(8)系统恢复。 什么是吞吐量简述吞吐量测试的要点 答:吞吐量是描述路由器性能优劣的最基本参数,路由设备说明书和性能测试文档中都包含该参数。是指在没有丢包的情况下,路由设备能够转发的最大速率。要点:零丢包率。什么是延迟为什么RFC2544规定延迟测试发包速率要小于吞吐量答:延迟是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率测试的目的是什么简述丢包率与吞吐量之间的关系 答:丢包率测试的目的是确定DUT在不同的负载和帧长度条件下的丢包率。 什么是背对背什么情况下需要进行背对背测试 答:背对背指的是在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。该指标用于测试路由器缓存能力。 大量的路由更新消息、频繁的文件传送和数据备份等操作都会导致数据在一段时间内急剧增加,甚至达到该物理介质的理论速率。为了描述此时路由器的表现,就要进行背对背突发的测试。 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。 背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(Mpps),即交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某端口进行的数据包转发能力,单位通常使用pps(包每秒)来衡量。

抖动测试-UI

第六部分抖动测试 6、1 抖动特性 一、抖动的概念 在理想情况下,数字信号在时间域上的位置是确定的,即在预定的时间位置上将会出现数字脉冲(1或0)。然而由于种种非理想的因素会导致数字信号偏离它的理想时间位置。我们将数字信号的特定时刻(例如最佳抽样时刻)相对其理想时间位置的短时间偏离称为定时抖动,简称抖动。这里所谓短时间偏离是指变化频率高于10Hz的相位变化,而将低于10Hz的相位变化称为漂移。事实上,两者的区分不仅在相位变化的频率不同,而且在产生机理、特性和对网络的影响方面也不尽相同。 定时抖动对网络的性能损伤表现在下面几个方面: *对数字编码的模拟信号,解码后数字流的随机相位抖动使恢复后的样值具有不规则的相位,从而造成输出模拟信号的失真,形成所谓抖动噪声,影响业务信号质量,特别是图像信号质量。 *在再生器中,定时的不规则性使有效判决点偏离接收眼图的中心,从而降低了再生器的信噪比余度,直至发生误码。 *对于需要缓存器和相位比较器的数字设备,过大的抖动会造成缓存器的溢出或取空,从而导致不可控滑动损伤。 二、抖动机理

1、PDH与SDH共有的抖动源 (1)、随机性抖动源 * 各类噪声源 * 定时滤波器失谐 * 完全不相关的图案抖动 (2)、系统性抖动源 * 码间干扰 * 有限脉宽作用 * 限幅器的门限漂移 * 激光器的图案效应 2、SDH设备特有的抖动机理 (1)、指针调整抖动 SDH设备的支路信号的同步机理采用所谓的指针调整,即利用指针值的增减调整来补偿低速支路信号的相位变化和频率变化,由于指针调整是按字节为单位进行的,调整时将带来很大的相位跃变。带有这些相位跃变的数字信号通过带限电路时将会产生很长的相位过滤过程。处于正常同步工作的SDH网中的指针调整主要是由于同步分配过程中的随机噪声引起的,因而由之引起的相位跃变的出现时刻是不规律的,整个相位调整的时间可能很长。因此,指针调整与网同步的结合将在SDH/PDH边界产生很低频率的抖动或漂移,这种抖动称为指针调整抖动。 (2)、映射抖动

丢包率

丢包率 丢包,是指数据在INTERNET上的传输方式数据在INTERNET上是以数据包为单位传输的,每包nK,不多也不少。这就是说,不管你的网有多好,你的数据都不会是以线性(就象打电话一样)传输的,中间总是有空洞的。数据包的传输,不可能百分之百的能够完成,因为种种原因,总会有一定的损失。碰到这种情况,INTERNET会自动的让双方的电脑根据协议来补包。如果你的线路好,速度快,包的损失会非常小,补包的工作也相对较易完成,因此可以近似的将你的数据看做是无损传输。但是,如果你的线路较差(如用猫),数据的损失量就会非常大,补包工作也不可能百分之百完成。在这种情况下,数据的传输就会出现空洞,造成丢包。 丢包率(Loss Tolerance或packet loss rate)是指测试中所丢失数据包数量占所发送数据包的比率,通常在吞吐量范围内测试。丢包率与数据包长度以及包发送频率相关。通常,千兆网卡在流量大于200Mbps时,丢包率小于万分之五;百兆网卡在流量大于60Mbps时,丢包率小于万分之一。 丢包率的原因 网络丢包率的原因主要有物理线路故障、设备故障、病毒攻击、路由信息错误等,下面我们结合具体情况进行说明。 物理线路故障 网管员发现广域网线路时通时断,发生这种情况时,有可能是线路出现故障,也可能是用户方面的原因。为了分清是否是线路故障,可以做如下测试。 如果广域网线路是通过路由器实现的,可以登录到路由器,通过扩展ping 向对端路由器广域网接口发送大量的数据包进行测试。 如果线路是通过三层交换机实现,可在线路两端分别接一台计算机,并将IP地址分别设为本端三层路由交换机的广域网接口地址,使用“ping 对端计算机地址 -t”命令进行测试。 如果上述测试没有发生丢包现象,则说明线路运营商提供的线路是好的,引起故障的原因在于用户自身,需要进一步查找。

丢包率

2.3.1 丢包率 Packet-loss-rate 2.2.1 丢包率 丢包率[8],是指测试中所丢失数据包数量占所 发送数据包的比率,通常在吞吐量范围内测试。设在Dx 收到短分组的情况记为X , 111212{,,...,,...,,}ij n n X x x x x x =,1≤i ≤n , j=1,2 ,当第i 个三元分组列车的第j 个短分组成功到达Dx ,记ij x =1;否则ij x =0。 在Dy 收到长分组的情况记为Y , 1{,...,,...,}k n Y y y y =,1≤k ≤n ,当第 k 个长 分组成功到达Dy 时,记 k y =1;否则k y =0。 根据目的节点Dx 和Dy 上收到包的情况,用式(2)计算从根节点到Dx 和Dy 的父节点的链路上的丢包率,即共享链路的丢包率。 2 1211 1 12(2) n n ij k i j k DxDy x y E n ξξξξ===+= +∑∑∑ (2) 式中,1ξ、2ξ 分别表示短分组和长分组的包长;n 表示源节点发送三元分组列车的总数。 2.3.2 时延抖动 由于分组在传输过程中的丢失是相互独立的,所以在收集到的原数据集S 中,可能存在某些不配对数据,将这些数据用于时间抖动的计算,会给最终结果造成很大的误差。所以在计算前须将这些不配对数据从原始数据集S 中剔除,筛选出成对短分组的到达时间(分组列车的序号相同而编号不同的两个短分组为一对),得到集合 111221221212{,,,...,...,}x i i n n T T T T T T T T T =(0)n N ≤≤, 其中1i T 和2i T 分别表示第i 个列车的第1个和第2个短分组的到达时间;n 为成功到达Dx 的短分组对的个数。用Y 表示时延抖动,_ Y 表示Y 的均值,则第n 个列车经过(,)s a i j →这段共享路径之 后的时延抖动[9] 为: 21()n n n Y T T T =-- 同理第i 个列车的时延抖动为: 21()i i i Y T T T =-- 则:_ 12...n Y Y Y Y n +++= 1211 222121()()...()n n T T T T T T T T T n --+--++--= (3) 整理(3)式得: _ 1222211211(...)(...)n n T T T T T T nT Y n +++-+++-= 2 111n n i i i i T T nT n ==--= ∑ ∑ (4) 2.2.3 相关性值 将丢包率和时延抖动两个参数相结合,计算节 点间的相关性,使得此算法在任何网络负载下都能 推断出正确的结果。为了适应背景流量动态变化的网络,本文中使用报文丢包率来平衡丢包率和时延抖动在节点相关性计算中所占的比重,由于丢包率和时延抖动是两个不同量纲的参数,故先将这两个参数标准化,之后对它们加权求和。 设D(T)、D(E)分别是T 和E 的方差;M(T)和M(E) 分别是T 和E 的最小值;ij T 表示目标节点对为(i,j)时的时延抖动;ij E 表示目标节点对为(i,j)时的丢包 率,其平均值简单记为ε;ij M 为节点对i 和j 之间的相关性值。对T 和E 的标准化公式如下: _()()ij ij T M T T E M E E = = ?-?=?? -?=?? (5) 加权公式: *(1)*ij ij ij M T E εε= = =-+ (6) 上述计算相关性的方式,在丢包较严重时主要依据为丢包率,而在丢包较轻时,主要依据为时延抖动,达到在任何负载情况下都能准确表征节点之间的相关性。 2. 4 网络拓扑推断算法 2.4.1 逻辑拓扑的推断 算法的思路:按节点的层次信息将叶节点进行聚类,并依据双参数结合得到的相关性值逐层向上推断网络的拓扑树。

结合抖动测试方法

ANT-20E结合抖动测试方法 (仅供内部使用) 拟制:日期: 审核:日期:yyyy/mm/dd 审核:日期:yyyy/mm/dd 批准:日期:yyyy/mm/dd 华为技术有限公司 版权所有不得复制

目录 1 结合抖动的定义和指标描述 (3) 1 E1信号结合抖动测试方法和步骤 (4) 2 E3信号结合抖动测试方法和步骤 (11) 3 E4信号结合抖动测试方法和步骤 (16)

结合抖动的定义和指标描述 SDH设备的结合抖动是支路映射和指针调整结合作用,在设备解复用侧的PDH支路输出口所产生的抖动。在ITU-T规范的四种特定指针调整序列下的结合抖动指标见下表。 测试用指针序列a、b、c、d分别定义如下: a-极性相反的单指针; b-规则指针加一个双指针; c-漏掉一个指针的规则单指针; d-极性相反的双指针。 下面以2M信号为例,解释各个指针序列的定义: a指针序列:比如说目前的指针值为522相隔T1时间后将指针值减一即为521,再相隔T1时间后将指针值在加一即为522,就这样循环往复就形成了指针序列a。

b指针序列:比如说目前的指针值为522相隔T2时间后将指针值加一即为523,再相隔T2时间后将指针值加一即为524,如此循环4次后再隔T3的时间将指针值加一。就这样按照四个T2加一个T3为一个循环周期,循环往复就形成了指针序列b。 c指针序列:比如说目前的指针值为522相隔T2时间后将指针值加一即为523,再相隔T2时间后将指针值加一即为524,如此循环4次后再隔T2的时间指针值不变。就这样按照五个T2为一个循环周期,循环往复就形成了指针序列c。 d指针序列:比如说目前的指针值为522相隔T3时间后将指针值加一即为523,再相隔T1时间后将指针值减一即为522,再相隔一个T3时间后将指针值加一即为521,再相隔一个T1时间后将指针值加一即为522。就这样以两个T1加T3为周期,循环往复就形成了指针序列d。 1E1信号结合抖动测试方法和步骤 1、按下图接好电路和仪表。 图1 2、选择“Instruments”下拉式菜单,在此菜单中选择“Add&Remove...”选项,见图2。

VOLTE-RTP丢包率全参数实验专项报告材料

RTP丢包率参数实验专项报告

目录 1、实验背景 (3) 2、参数介绍及实验思路 (3) 2.1参数介绍 (3) 2.2实验思路 (4) 3、参数实验准备工作及调整情况 (4) 3.1实验路线及方法 (4) 3.2测试规范及要求 (5) 3.3涉及相关参数调整实验方案 (5) 4、实验效果统计对比 (6) 4.1DT语音业务测试效果验证对比 (7) 4.2KPI统计指标对比 (10) 5、参数实验总结及建议 (10) 5.1实验总结 (10) 5.2调整建议 (11)

1、实验背景 根据VoLTE网络质量提升百日会战的要求,为提升VoLTE语音DT测试指标,提升用户感知,对可能与测试指标相关联的参数进行分析研究,通过对相应参数的调整实验寻找合适于网络需求的参数优化值,提升DT测试中各项指标; 此次参数实验主要是针对VoLTE语音DT测试指标中的RTP丢包率相关的参数PDCPPROF101TDISCARD,期望通过对该参数的调整试验,同时观察对其他指标的影响,找到有益于指标和感知的实验值。 2、参数介绍及实验思路 2.1参数介绍 参数ID:PDCPPROF101TDISCARD 含义:该参数表示PDCP丢弃定时器的大小 界面取值范围:100ms(0),150ms(1),300ms(2),500ms(3),750ms(4),1500ms(5),infinity(6) 缺省值:QCI 1取值100 现网值:QCI 1现网取值为100 影响范围:基站级,该参数修改不需要闭站,操作不影响业务。 附RTP丢包率公式: RTP丢包率=(发送RTP数-接收到RTP数)/发送RTP数×100%;

C-RAN组网时的CPRI时延抖动测试方法

C-RAN组网时的CPRI时延抖动测试 是德科技(中国)有限公司李凯 摘要: 集中基带池和分布式射频拉远技术是4G/B4G/5G无线接入网组网的发展趋势。为了节省光纤资源,会把基带池和多个射频拉远模块间的CPRI链路复用在一根光纤上进行传输,由此增加的时延抖动是否会影响系统可靠性是设计组网方案时要重点考虑的因素。本文介绍了一种利用是德公司(原安捷伦公司电子测量仪器部)的高带宽实时示波器进行C-RAN组网时的CPRI 时延抖动测试的方法,并根据实际测试结果对彩光直驱和OTN承载两种方式的时延抖动进行了分析。 关键词: C-RAN,CPRI,时延精度,抖动 一、前言 4G移动通信技术已经进入商用阶段, 5G关键技术业已进入研发。目前及未来的更长时间,运营商需要在有限的频谱资源下提供更高的容量和数据传输速率。LTE/LTE-A中高带宽及高阶调制技术的引入,使得对于信噪比要求更高,因此单个LTE基站的覆盖范围会比采用3G技术时要小。密集组网和基站间协作的要求带来了基站站点数量扩容的巨大需求,相应地带来了选址、功耗、海量光纤资源的巨大挑战。因此,合适的组网和传输方案是推进高速数据网络应用普及的关键技术。 为此,各大运营商都在进行新的无线接入网组网方式的研究。比如中国移动的C-RAN是基于集中化处理(Centralized Processing)、协作式无线电

(Collaborative Radio)、实时云计算构架(Real-time Cloud Infrastructure)的绿色无线接入网构架(Clean system)。其本质是通过将基带单元BBU集中放置以减小站址数量,并把室外的远端射频单元RRU通过合适的传输方案拉远到需要覆盖的区域。这种组网方式大大减少了机房的数量,从而减少了建设、运维费用,同时可以采用协作化、虚拟化技术,实现资源共享和动态调度,提高频谱效率,以达到低成本,高带宽和灵活度的运营。图1是C-RAN的组网方式(参考资料:https://www.360docs.net/doc/c610665019.html,) 图1 C-RAN无线接入网组网方式 但是这种组网方式也带来了新的挑战,其中一个要考虑的就是BBU和RRU间的CPRI信号经过传输后的时延抖动是否还满足CPRI规范的要求。

网络丢包率如何解决

网络丢包率如何解决 网络丢包是我们在使用ping(检测某个系统能否正常运行)对目站进行询问时,数据包由于各种原因在信道中丢失的现象。ping使用了ICMP回送请求与回送回答报文。ICMP回送请求报文是主机或路由器向一个特定的目的主机发出的询问,收到此报文的机器必须给源主机发送ICMP回送回答报文。这种询问报文用来测试目的站是否可到达以及了解其状态。需要指出的是,ping是直接使用网络层ICMP的一个例子,它没有通过运输层的UDP或TCP。 网络丢包的原因主要有物理线路故障、设备故障、病毒攻击、路由信息错误等,下面我们结合具体情况进行说明。 物理线路故障 网管员发现广域网线路时通时断,发生这种情况时,有可能是线路出现故障,也可能是用户方面的原因。为了分清是否是线路故障,可以做如下测试。 如果广域网线路是通过路由器实现的,可以登录到路由器,通过扩展ping向对端路由器广域网接口发送大量的数据包进行测试。 如果线路是通过三层交换机实现,可在线路两端分别接一台计算机,并将IP地址分别设为本端三层路由交换机的广域网接口地址,使用“ping 对端计算机地址-t”命令进行测试。 如果上述测试没有发生丢包现象,则说明线路运营商提供的线路是好的,引起故障的原因在于用户自身,需要进一步查找。 如果上述测试发生丢包现象,则说明故障是由线路供应商提供的线路引起的,需要与线路供应商联系尽快解决问题。 由物理线路引起的丢包现象还有很多,如光纤连接问题,跳线没有对准设备接口,双绞线及RJ-45接头有问题等。另外,通信线路受到随机噪声或者突发噪声造成的数据报错误,射频信号的干扰和信号的衰减等都可能造成数据包的丢失。我们可以借助网络测试仪来检查线路的质量。 设备故障 设备故障主要是指设备硬件方面的故障,不包含软件配置不当造成的丢包。如网卡是坏的,交换机的某个端口出现了物理故障,光纤收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。 笔者近日在工作中发现一交换机端口的光纤模块故障造成的丢包现象,该交换机在通信一段时间后死机,即不能通信,重启后恢复正常。在经过一段时间观察后发现,某光纤模块存在问题,取一块新的模块替换,一切正常。究其原因,交换机会对所有接收到的数据包进行CRC错误检测和长度校验,将检查出有错误的包丢弃,正确的包转发出去。但这个过程中有些有错误的包在CRC错误检测和长度校验中都均未检测出错误,这样的包在转发过程中不会被发送出去,也不会被丢弃,它们将会堆积在动态缓存中,永远无法发送出去,等到缓存中堆积满了,就会造成交换机死机的现象。最终结果是,数据包无法到达目的主机。 网络拥塞 网络拥塞造成丢包率上升的原因很多,主要是路由器资源被大量占用造成的。 如果发现网速慢,并且丢包率呈现上升的情况,这时应该show process cpu和show process m em,一般情况下发现IP input process占用过多的资源。接下来可以检查fast switching在大流量外出端口是否被禁用,如果是,则需要重新使用。 再看一下Fast switching on the sam e interface是否被禁用,如一个接口配有多个网段并且这些网段间流量很大时,路由器工作在process-switches方式,这种情况下要在接口上执行命令“enable ip route-cache sam e-interfac e”。 接下来,用show interfaces和show interfaces switching命令识别大量包进出的端口。一旦确认进入端口后,打开IP accounting on the outgoing interface看其特征,如果是攻

相关文档
最新文档