霍尔传感器开环和闭环的介绍

霍尔传感器开环和闭环的介绍
霍尔传感器开环和闭环的介绍

霍尔传感器开环和闭环的介绍

霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall, 1855-1938)于1879年在研究金属的导电机构时发现的。后来发现半导体,导电流体等也有这种效应,而半导体的效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术,检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型,载流子浓度及载流子迁移率等重要参数。

开环的传感器是霍尔直放式原理,闭环的是磁平衡原理。所以闭环的在响应时间跟精度上要比开环的好很多。开环和闭环都可以监测交流电,一般开环的适用于大电流监测,闭环适用于小电流监测。往往开环的传感器输出

霍尔电流传感器工作原理

霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。2 O! N# k- o. U) O ?

直放式电流传感器(开环式)工作原理:

众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。

磁平衡式电流传感器(闭环式)工作原理:

磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)

磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流

产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过Is来平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。& R5 E" `1

霍尔电流传感器的应用

近年来,自动化系统中大量使用大功率晶体管、整流器和可控硅,普遍采用交流变频调速及脉宽调制电路,使得电路中不再只是传统的50周的正弦波,出现了各种不同的波形。对于这类电路,采用传统的测量方法不能反应其真实波形,而且电流、电压检出元件也不适应中高频、高di/dt电流波形的传感和检测。+ K _/ d( r. B. f8 B' x$ V

霍尔效应传感器,可以测量任意波形的电流和电压。输出端能真实地反映输入端电流或电压的波形参数。针对霍尔效应传感器普遍存在温度漂移大的缺点,采用补偿电路进行控制,有效地减少了温度对测量精度的影响,确保测量准确;具有精度高、安装方便、售价低的特点。霍尔效应传感器广泛应用于变频调速装置、逆变装置、UPS电源、通信电源、电焊机、电力机车、变电站、数控机床、电解电镀、微机监测、电网监测等需要隔离检测电流电压的设施中。

霍尔传感器:开环和闭环的工作原理_区别

1. 开环霍尔传感器工作原理:

原边电流(Ip)产生的磁通量集中于磁性回路,通过气隙中的霍尔器件感应到这些磁通量,从而进行测量。霍尔器件输出的信号准确反映了原边电流的输出情况。

特征:封装尺寸小,测量范围广,重量轻,低电源损耗,无插损

2. 闭环霍尔传感器工作原理:

副边电流产生的补偿磁通平衡了原边电流Ip产生磁通量。霍尔器件和辅助电路产生的副边补偿电流准确反映了原边电流的大小。

特征: 频率范围宽,精度高,快速响应,低温漂,线性度好,无插入损耗

闭环霍尔电流传感器的工作原理

闭环霍尔电流传感器(以下简称传感器)在车用电源系统中的应用,实现了对电源系统输出电流的隔离测量,并通过反馈控制电源系统的输出电流。当电源的输出电流接近电源系统的设计功率输出时,电源输出电流将不再增加,从而限制了电源系统的输出功率,保护了电源系统不会因用电负载的变化而损坏。

2 闭环霍尔传感器的工作原理

自1879年美国物理学家Edwin Herbert Hall发现霍尔效应以来,霍尔技术被越来越多地应

用于工业控制的各个领域。随着元器件工艺技术的发展,由霍尔器件应用开发的霍尔电流、电压传感器的性能也有了很大提高,特别是闭环霍尔电流、电压传感器的研制成功,大大地扩展了该项技术的应用领域。

2.1 霍尔效应及霍尔器件

霍尔效应是霍尔技术应用的理论基础,当通有小电流的半导体薄片置于磁场中时(如图1),半导体内的载流子受洛伦兹力的作用发生偏转,使半导体两侧产生电势差,该电势差即为霍尔电压V H,V H与磁感应强度B及控制电流I C成正比,经过理论推算有式(1)关系。

V H=(R H/d)×B×I C(1)

式中:B为磁感应强度;

I C为控制电流;

R H为霍尔系数;

d为半导体厚度。

式(1)中,若保持控制电流I C不变,在一定条件下,可通过测量霍尔电压推算出磁感应强

度的大小,由此建立了磁场与电压信号的联系。根据这一关系式,人们研制出了用于测量磁场的半导体器件,即霍尔器件。

图1 霍尔效应原理

2.2 闭环霍尔电流传感器的工作原理

闭环霍尔电流传感器是利用霍尔器件为核心敏感元件用于隔离检测电流的模块化产品,它的工作原理是霍尔磁平衡式(或称霍尔磁补偿式、霍尔零磁通式)。众所周知,当电流流过一根导线时,将在导线周围产生磁场,磁场的大小与流过导线的电流大小成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场的变化与霍尔器件的输出电压信号有良好的线形关系,因此,可利用霍尔器件测得的输出信号,直接反映出导线中的电流大小,即

I∝B∝V H(2)

式中:I为通过导线的电流;

B为导线通电流后产生的磁感应强度。

当选择适当的比例系数后,上述关系可以表示为等式。

对于霍尔输出电压信号V H的处理,人们设计了许多种电路,但总体来讲可分为两类,一类为开环(或称直测式、直检式)霍尔电流传感器;另一类为闭环(或称零磁通式、磁平衡式)霍尔电流传感器。

针对霍尔传感器的电路形式而言,人们最容易想到的是将霍尔器件的输出电压用运算放大器直接进行信号放大,得到所需要的信号电压,由此电压值来标定原边被测电流大小,这种形式的霍尔传感器通常称为开环霍尔电流传感器。开环霍尔传感器的优点是电路形式简单,成本相对较低;其缺点是其精度、线性度较差,响应时间较慢,温度漂移较大。为了克服开环

传感器的不足,上世纪80年代末期,国外出现了闭环霍尔电流传感器。1989年,北京七○

一厂引进国外技术在国内率先开展闭环霍尔电流传感器的研制和生产。经过十几年的努力,这种传感器在国内逐渐为广大用户了解和应用。

闭环霍尔电流传感器的工作原理是磁平衡式的(如图2),即原边电流(I N)所产生的磁场,

通过一个副边线圈的电流(I M)所产生的磁场进行补偿,使霍尔器件始终处于检测零磁通的工作状态。当原副边补偿电流产生的磁场在磁芯中达到平衡时,即

N1×I N=N2×I M(3)

式中:N1为原边线圈的匝数;

N2为副边线圈的匝数。

由式(3)可以看出,当已知传感器原边和副边线圈匝数时,通过测量副边补偿电流I M的大小,即可推算出原边电流I N的值,从而实现了原边电流的隔离测量。

图2 闭环霍尔电流传感器的工作原理

3 闭环霍尔电流传感器的主要性能

闭环霍尔电流传感器是近10年来出现的高技术模块化产品,其性能大大优于开环霍尔电流

传感器,同时与传统的分流器或互感器的电流测量方法相比亦有许多优点。闭环霍尔电流传感器主要有以下特点:

1)可以同时测量任意波形电流,如:直流、交流、脉冲电流;

2)副边测量电流与原边被测电流之间完全电气隔离,绝缘电压一般为2kV~12kV;

3)电流测量范围宽,可测量额定1mA~50kA电流;

4)跟踪速度d i/d t>50A/μs;

5)线性度优于0.1%I N;

6)响应时间<1μs;

7)频率响应0~100kHz。

4 传感器在车用电源系统中的应用

闭环霍尔电流传感器的应用范围很广,目前已成功地应用于逆变焊机,发电及输变电设备,电气传动,数控机床等工业产品上。表1以额定电流为300A的CHB-300S型霍尔电流传

感器为例,说明这种传感器的应用。

表1 CHB-300S型霍尔传感器的主要性能参数

符号名称参数

型号CHB-300S/SP1

I N额定电流300A(RMS)

I P测量范围0~500A

I M输出电流150mA对应原边300A

X精度(T a=25℃)I N的±0.5%

K N匝比1:2000

L线性度<0.1%

di/dt >50A/s

I off失调电流±0.3mA(典型)

t r响应时间1μs

V c电源电压+20~30V(±5%)

I C耗电28mA+I M

t a工作温度-40℃~85℃

t s贮存温度-55℃~100℃

在某型地面车辆上装备了一套独立的大功率发电系统,该发电系统设计选用了CHB-300S 型闭环霍尔电流传感器作为系统电流检测部件,通过对传感器的输出信号进行处理,设定限流工作点,确保发电系统的输出功率不高于发电机的额定功率。闭环霍尔电流传感器CHB -300S的应用,很好地实现了上述应用目的。如图3所示,发电机G输出正端汇流母线穿过CHB-300S/SP1的原边电流穿孔,由传感器CHB-300S/SP1检测发电机的输出电流,传感器的输出I M与发电机控制盒相连,由发电机控制盒设定发电机的输出电流控制点,依

据此信号,对发电机的输出电流加以限制,避免发电机因输出功率过高而发生故障或损坏,从而保证发电系统正常工作。

图3 CHB-300S传感器的应用

5 总结

该传感器能够满足车用发电系统对电流检测的技术要求,已在多套地面车辆的发电系统中应用,并按相关标准进行了实验测试,测试结果受到专家的肯定。

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

霍尔电流传感器的应用场合

霍尔电流传感器的应用场合 1、继电保护与测量:在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用:在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用:在逆变器中,用霍尔电流传感器可进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用:在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,霍尔电流传感器2发出的信号控制逆变器,霍尔电流传感器3控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用:在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制:电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用:用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理:霍尔电流传感器,可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全。用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等。

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

简单易懂的霍尔电流传感器使用原理及相关霍尔型号

1、开环(直放式)霍尔电流传感器 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件(如HG-302C)进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。开环霍尔电流传感器的优点是结构简单,可靠性好,过载能力强,体积较小,开环式霍尔电流传感器一般线性度角差,且原边信号在上升和下降过程中副边输出会有不同。开环式霍尔电流传感器精度通常劣于1%。?一般开环电流传感器采用的霍尔是 HG-106A,HG-106C,HG-166A,HG-302A,HG-302C,HG-362A,SS495A,SS495A1。 2、闭环(磁平衡式)霍尔电流传感器 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件(如HW-300B,HW-302B)处于检测零磁通的工作状态。 当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件(HW-300B,HW-302B)就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不

霍尔传感器的直流激励特性实验

霍尔传感器的直流激励特性实验 一、实验目的:了解霍尔传感器的直流激励特性。 二、实验内容: 给霍尔传感器通以直流电源,经差动放大器放大,当测微头随振动台上、下移动时,就有霍尔电势输出,从而可以测出霍尔传感器在直流激励下的输出特性。 三、实验原理: 由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件(霍尔片)通过底座连接在振动台上。当霍尔片通以恒定电流时,将输出霍尔电势。改变振动台的位置,霍尔片就在梯度磁场中上下移动,霍尔电势V值大小与其在磁场中的位移量X有关。 四、实验要求 1、按图1接线,插接线插接要牢靠。 2、直流激励电压为±2V,不能任意加大,否则将损坏霍尔片。 五、实验装置: 1.传感器系统实验仪CSY型1台 2.通用示波器COS5020B 1台 3.系统微机1台 4.消耗材料: 霍尔片(专用) 1个 插接线(专用) 10根 图1 霍尔传感器实验接线图 六、实验步骤: 1.按图1接线,使霍尔片位于梯度磁场中间位置,差放调零。 2.上、下移动振动台并调节差放增益与电桥WD电位器,使得电压表双向指示基本对称且趋近最大。 3.将测微头与振动台吸合,并调节霍尔片使之处于梯度磁场的中间位置。 4.用测微头驱动霍尔片输入位移量X, 每次变化0.5mm,量程为:-3mm +3mm,读取相应的输出电压值,填入表中。 七、实验数据及处理: 1.整理实验数据,作出V-X曲线,求出灵敏度及线性区 2.给出位移测量系统的适宜量程

1.计算灵敏度:S=0.587V/mm 则拟合直线方程为:V=0.857X+0.334 由图像得,当X在(-1.00,3.00)之间时,图像具有线性。当X〉3.00时,图像失去线性。 其线性区间为(-1.00,3.00)单位:mm 2.系统的适宜量程: 霍尔传感器在线性区内测量有效,适宜量成为:(-1.00,3.00)单位:mm

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

实验 线性霍尔式传感器位移特性实验

实验 线性霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板 图28—1霍尔效应原理 的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数; K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。 具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1μm 左右。 霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,

霍尔电流传感器及其应用

霍尔电流传感器及其应用 在现代社会中,信息化的需求越来越庞大,传感器在信息采集中发挥了重要作用。他们可以把各种物理信息,按照一定的规则,为可测量的电信号。我们所测量的电信号,以及相关物理信息的关系的变化的基础上,我们可以得到所测量的物理的变化或大小。 根据该传感器的工作原理,我们可以划分成多种类型的传感器,如光电传感器,电荷传感器,电位型传感器,半导体传感器,电传感器,磁传感器,谐振式传感器,电动化学式传感器等等。 霍尔传感器是利用霍尔元件的霍尔效应原理,(可以音乐会的物理信息),如电流,磁场,位移,压力等,为电动势输出。它属于电位型传感器。当前,这种传感器主要是霍尔集成电路,核心单元是基于霍尔效应。这是由通过集成电路技术。因此,它不仅仅是一种集成电路,而是一种磁传感器。 本文根据实际应用,主要是霍尔电流传感器。 1 霍尔效应 在金属或半导体晶片放置在磁场中,并且如果有一个通过它的电流,会产生电动势,(在垂直方向上的电场和磁场,调用此种物理现象霍尔效应。) 在磁场中产生的洛伦兹力的作用下,通电的半导体芯片的载体,分别偏移积累到芯片的两侧,从而形成一个电场,称霍尔电场。霍尔电场产生的电场力,是相反的洛伦兹力,阻碍了继续堆积,直到(大厅)电场力和洛伦兹力。此时,芯片的两侧,将设置一个稳定的电压,这是霍尔电压。 2 霍尔电流传感器 随着城市人口和城市建设规模的扩大,以及各种电气设备的增加,功耗也越来越大。城市的供电设备经常超载,而电源环境越来越差,“测试”的权利越来越严重。因此电源问题越来越多的显现出来。现在,小功率电源设备已经越来越多的与新技术相结合。例如,开关电源,硬切换,软切换,参数稳压器,线性反馈稳压器,磁放大器技术,数控压力调节,PWM,,SPWM,电磁兼容等实际需求直接推动电源技术的发展和进步。为了检验并显示当前自动,自动保护功能和更先进的智能控制,过电流,过电压的危害。如发生时,电源技术与传感检测,传感采样,传感保护已成为一种趋势。传感器检测电流或电压,所谓的霍尔电流传感器应运而生,(并迅速成为最喜爱的设计师在我国的电源). 2.1 霍尔电流传感器的性能特性 霍尔电流传感器具有优越的性能,并且它是一种先进的电检测元件,它可以隔离主回路和电子控制电路。它有变压器和分流器的所有优点,并且在同一时间,克服了他们的缺点(变压器可以只施加的电源频率的测量,50赫兹,分流器是无法做隔离测量),使用同一个霍尔电流传感器模块检测元素,不仅可以测量AC,也可以检测直流,甚至可以检测瞬时峰值。它具有以下性能特点。 (1)测量任意波形的电流,如DC,AC乃至瞬态峰值参数测量的; (2)精度高。在工作区中的一般霍尔电流传感器模块的精度高于1%,并且是适用于任何波形测量精度; (3)线性度优于0.5%; (4)良好的动态性能。一般的电流传感器模块的动态响应时间小于7us,跟踪速度di|dt 是上述50A|us; (5)工作频段宽。它可以工作在频率范围从0到20KHZ非常好; (6)过载能力强。测量范围宽(0-10000A); (7)高可靠性。平均无故障工作是超过5*10000小时; (8)体积小,重量轻,易于安装系统,不会带来任何损失。

霍尔传感器位移特性实验

实验14直流激励时霍尔传感器位移特性实验 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H =K H IB,当霍尔元件处在梯度磁场中运动时,它的电势 会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出Vo1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。 表14 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2 (1)由上图可知灵敏度为S=ΔV/ΔX=mm (2)由上图可得非线性误差: 当x=1mm时, Y=×1+= Δm== yFS= δf=Δm/yFS×100%=% 当x=3mm时: Y=×3+= Δm=Y-()= yFS= δf=Δm/yFS×100%=% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。 实验15 交流激励时霍尔传感器位移特性实验 一、实验目的: 了解交流激励时霍尔式传感器的特性。

开环式及闭环式霍尔电流传感器工作原理及磁饱和问题

开环式及闭环式霍尔电流传感器工作原理及磁饱和问题 一回顾电磁式电流互感器磁饱和问题 01磁饱和现象 所谓磁饱和是指电磁式电流互感器铁芯中磁通密度大于饱和磁通密度之后,磁通密度不再因一次电流的增大而增大。 02磁饱和原因 磁通密度为交变量,未发生磁饱和时,互感器铁芯磁通密度的最大值为:Bm=E2/(4.44*f*N2*S) 式中,E2为二次绕组感应电动势,约等于二次绕组输出电压。N2为二次绕组匝数,S为铁芯截面积。对于固定的互感器而言,N2和S为恒定值。 因此,铁芯磁通密度正比于二次电压,反比于电流频率。 二次电压由二次电流和二次负荷共同决定,可见,电磁式电流互感器的磁饱和原因有: A、一次电流过大,大于额定电流; B、二次负荷过大,大于额定二次负荷; C、电流频率过低,低于额定频率。 03磁饱和危害 电流互感器发生磁饱和后,一次电流与二次电流不再成比例关系,电流互感器不能起到正常的测量或保护作用,引发安全事故。此外,磁饱和状态下,铁芯中磁通密度大,涡流损耗和磁滞损耗大,铁芯发热,容易损坏互感器。 二霍尔电流传感器工作原理 霍尔电流传感器依据工作原理不同分为开环式霍尔电流传感器和闭环式霍尔电流传感器。 01开环式霍尔电流传感器工作原理 开环式霍尔电流传感器也称:直放式霍尔电流传感器、直检式霍尔电流传感器等。 如图1,开环式霍尔电流传感器由磁芯、霍尔元件和放大电路构成。磁芯有一开口气隙,霍尔元件放置于气隙处。当原边导体流过电流时,在导体周围产生磁场强度与电流大小成正比的磁场,磁芯将磁力线集聚至气隙处,霍尔元件输出与气隙处磁感应强度成正比的电压信号,放大电路将该信号放大输出,该类传感器通常输出±10V左右的电压信号,也有部分传感器为了增强电磁兼容性,变换为电流信号输出。 图1 开环式霍尔电流传感器工作原理 02闭环式霍尔电流传感器工作原理 闭环式霍尔电流传感器也称:零磁通霍尔电流传感器、零磁通互感器、磁平衡式霍尔电流传感器等。 如图2,闭环式霍尔电流传感器包括磁芯、霍尔元件、放大电路和副边补偿绕组。与开环式霍尔电流传感器相比,闭环式霍尔电流传感器多了副边补偿绕组,正是副边补偿绕组,将闭环式霍尔电流传感器的性能进行了大幅度提升。

霍尔电流传感器工作原理

1、直放式(开环)电流传感器(CS系列) 当原边电流IP流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压VS精确的反映原边电流IP。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,

这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列) 霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

霍尔传感器工作原理及其应用

霍尔传感器工作原理及其应用 | [<<][>>]一、霍尔齿轮传感器 差动霍尔电路制成的霍尔齿轮传感器,如图1所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图2所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。

图1霍尔速度传感器的内部结构 1.车轮速度传感器 2.压力调节器 3.电子控制器 图2 ABS气制动系统的工作原理示意图 二、旋转传感器 按图3所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。

霍尔电流传感器的应用

霍尔电流传感器的应用 霍尔电流传感器广泛应用在变频调速装置、逆变装置、UPS电源、通信电源、电焊机、电力机车、变电站、数控机床、电解电镀、微机监测、电网监测等需要隔离检测电流的设施中以及新兴的太阳能、风能和地铁轨道信号、汽车电子等领域。 1、继电保护与测量: 在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用: 在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用: 在逆变器中,用霍尔电流传感器可进行接地故障检测、直接测和交流测的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用: 在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用①霍尔电流传感器发出信号并进行反馈,以控制晶闸管的触发角,②霍尔电流传感器发出的信号控制逆变器,③

霍尔电流传感器控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用: 在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制: 电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用: 用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理: 霍尔电流传感器可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

相关文档
最新文档