纵联电流差动保护概述

纵联电流差动保护概述
纵联电流差动保护概述

纵联电流差动保护概述

摘要:纵联电流差动保护有明确的选择性,逐渐成为高压线路的主保护。本文首先重点介绍了纵联电流差动保护的保护原理,然后分析了影响纵联电流差动保护的性能因素及其解决办法,最后介绍了纵联电流差动保护在现场的对调工作。

关键字:纵联电流差动保护;选择性;原理;解决办法;对调

0、引言

根据继电保护在电力系统中所担负的任务,通常继电保护装置必须满足四个基本要求,即选择性、快速性、灵敏性和可靠性。随着微机保护技术和光纤通信技术的日益成熟,纵联电流差动保护逐渐成为高压线路的主保护,其保护原理简单,有明确的选择性和很好的速动性,可以实现线路全长范围内故障的无时限切除。

1、纵联电流差动保护原理

纵联保护在电网中可实现全线速动,理论上具有绝对的选择性。电流差动保护是较为理想的一种保护原理,其选择性不是靠延时,不是靠方向,也不是靠定值,而是靠基尔霍夫电流定律:流向一个节点的电流之和等于零【1】。

图1-1 纵联电流差动保护原理

(b)比率制动特性

设流过两端保护的电流、以母线流向被保护线路的方向规定为其正方向。以两端电流的相量和作为继电器的动作电流,如式1-1(a),该电流有时也称作差动电流、差电流。另以两端电流的相量差作为继电器的制动电流,如式1-1(b)。

式1-2 比率制动特性两折线公式

而当线路外部短路时,经计算,其工作点落在动作特性的不动作区,差动继电器不动作。差动继电器可以区分线路外部短路(含正常运行)和线路内部短路。继电器的保护范围是两端TA之间的范围。【2】

2、影响差动保护的性能因素及其解决办法

2.1 电流互感器的误差和不平衡电流

同型号的电流互感器性能也不能保证完全一致,电流互感器之间存在误差;

变压器纵联差动保护

第四节变压器纵联差动保护 一、变压器纵联差动保护的原理 纵联差动保护是反应被保护变压器各端流入和流出电流的相量差。对双绕组变压器实现纵差动保护的原理接线如下图所示。 为了保证纵联差动保护的正确工作,应使得在正常运行和外部故障时,两个二次电流相等,差回路电流为零。在保护范围内故障时,流入差回路的电流为短路点的短路电流的二次值,保护动作。应使 或 结论: 适当选择两侧电流互感器的变比。 纵联差动保护有较高的灵敏度。 二、变压器纵联差动保护在稳态情况下的不平衡电流及减小不平衡电流的措施 在正常运行及保护范围外部短路稳态情况下流入纵联差动保护差回路中的电流叫稳态不平衡电流I bp。 1.由变压器两侧电流相位不同而产生的不平衡电流 思考:由于变压器常常采用Y,dll的接线方式, 因此, 其两侧电流的相位差30o。此时,如果两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,会有一个差电流流入继电器。如何消除这种不平衡电流的影响?

解决办法:通常都是将变压器星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形。 2.由两侧电流互感器的误差引起的不平衡电流 思考:变压器两侧电流互感器有电流误差△I,在正常运行及保护范围外部故障时流入差回路中的电流不为零,为什么? 为什么在正常运行时,不平衡电流也很小? 为什么当外部故障时,不平衡电流增大? 原因:电流互感器的电流误差和其励磁电流的大小、二次负载的大小及励磁阻抗有关,而励磁阻抗又与铁芯特性和饱和程度有关。 当被保护变压器两侧电流互感器型号不同,变比不同,二次负载阻抗及短路电流倍数不同时都会使电流互感器励磁电流的差值增大。 减少这种不平衡电流影响的措施: (1)在选择互感器时,应选带有气隙的D级铁芯互感器,使之在短路时也不饱和。 (2)选大变比的电流互感器,可以降低短路电流倍数。 (3)在考虑二次回路的负载时,通常都以电流互感器的10%误差曲线为依据,进行导线截面校验,不平衡电流会更小。最大可能值为: 3.由计算变比与实际变比不同而产生的不平衡电流 思考:两侧的电流互感器、变压器是不是一定满足 或的关系? 原因:很难满足上述关系。 减少这种不平衡电流影响的措施: 利用平衡线圈W ph来消除此差电流的影响。 假设在区外故障时,如下图所示,则差动线圈中将流过电流(),由它所产生的磁势为W cd()。为了消除这个差动电流的影响,通常都是将平衡线圈W ph接入二次电流较小的一侧,应使 W cd()=W ph 4.带负荷调变压器的分接头产生的不平衡电流 思考:在电力系统中为什么采用带负荷调压的变压器会产生不平衡电流?

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流 为1 1 TA I n -2 2 TA I n = 1 I'- 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时,I1与I2 同向流入,KD的电流为: 1 1 TA I n +2 2 TA I n = 1 I'+ 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I'-(3) max max / unb st unp i k TA I K K f I n =≠ 0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达: .min .min.min () brk brk op ork brk op I I I K I I I > ≥≤+ 式中:Kst——同型系数,取0.5; Kunp——非周期性分量影响系数,取为1~1.5; fi ——TA的最大数值误差,取0.1。 为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max (Krel为可靠系数,取1.3)。Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

纵联保护原理

纵联保护原理 线路的纵联保护是指反应线路两侧电量的保护,它可以实现全线路速动。而普通的反应线路一侧电量的保护不能做到全线速动。纵联差动是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位就行比较,从而判断出区内外故障。是属于直接比较两侧电量对纵联保护。目前电力系统中运行对这类保护有:高频相差保护、导引线差动保护、光纤纵差保护、微波电流分相差动保护。纵联方向保护:反应线路故障的测量元件为各种不同原理的方向元件,属于间接比较两侧电量的纵联保护。包括高频距离保护、高频负序方向保护、高频零序方向保护、高频突变量方向保护。 先了解一下纵联差动保护: 为实现线路全长范围内故障无时限切除所以必须采用纵联保护原理作为输电线保护。 输电线路的纵联差动保护(习惯简称纵差保护)就是用某种通信通道将输电线两端的保护装置纵向连

接起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路外,从而决定是否切断被保护回路. 纵联差动保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。 高频保护的工作原理:将线路两端的电流相位或功率方向转化为高频信号,然后,利用输电线路本身构成高频电流通道,将此信号送至对端,以比较两端电流的相位或功率方向的一总保护装置。安工作原理的不同可分为两大类:方向高频保护和相差高频保护。 光纤保护也是高频保护的一总原理是一样的只是高频的通道不一样一个事利用输电线路的载波构成通道一个是利用光纤的高频电缆构成光纤通道。光纤通信广泛采用PCM调制方式。这总保护发展很快现在一般的变电站全是光纤的了经济又安全。

纵联保护原理

纵联保护原理?我们先来瞧一下反映一侧电气量变化得保护有什么不足? 对于反映单侧电气量变化得M侧保护来说,它无法区分就是本侧线路末端故障还就是下级线路始端故障。所以在保护整定上要将它瞬时段得保护范围限制在全线得70%~80%左右,也即反映单侧电气量变化得保护不能瞬时切除本线路全长内得故障。 因此,引入了纵联保护,纵联保护就是综合反映线路两侧电气量变化得保护,对本线路全长范围内得故障均能瞬时切除。 为了使保护能够做到全线速动,有效得办法就是让线路两端得保护都能够测量到对端保护得动作信号,再与本侧带方向得保护动作信号比较、判定,以确定就是否为区内故障,若为区内故障,则瞬时跳闸。这样无论在线路得任何一处发生故障,线路两侧得保护都能瞬时动作跳闸。快速性、选择性都得到了保证。?在构成保护上,就是将对侧对故障得判断量传送到本侧,本侧保护经过综合判断,来决定保护就是否应该动作。有将对侧电气量转化为数字信号通过微波通道或光纤传送到本侧进行直接计算(如纵联差动保护),有将对侧对故障就是否在本线路正方向得判断量通过高频(载波、微波)通道传送到本侧,本侧保护进行综合判别(如纵联方向保护、纵联距离保护等等) 一、实现纵联保护得方式: 1、闭锁式:也就就是说收不到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓超范围即两侧保护得正方向保护范围均超出本线路全长);高频信号采用收发同频,即单频制。 ? 2、允许式:也就就是说收到高频信号就是保护动作与跳闸得必要条件。一般应用于超范围式纵联保护(所谓欠范围即两侧保护得正方向保护范围均超过本线路全长得50%以上,但没有超出本线路全长);高频信号采

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

光纤纵联电流差动保护通道异常

1概述 光纖縱聯電流差動保護是近年來發展相當快的輸電線路保護之一,它借助光纖通道傳送輸電線路兩端的資訊,以基爾霍夫電流定律為依據,能簡單、可靠地判斷出區內、區外故障。對於線路保護來說,分相電流差動保護具有天然的選相能力和良好的網路拓撲能力,不受系統振盪、非全相運行的影響,可以反映各種類型的故障,是理想的線路主保護。光纖通信與輸電線無直接聯繫,不受電磁干擾的影響,可靠性高,通信容量大。光纖縱聯電流差動保護既利用了分相電流差動的良好判據,又克服了傳統導引線方式的種種缺陷,具有其他保護無以比擬的優勢,因此,近年來國內外各大公司均加強在該領域的研 究開發,各自相繼推出了此類保護產品。 就光纖縱差保護的應用環境來說,隨著國家電力工業的發展,通訊技術的日新月異,光纜及光纖設備費用的急劇下降,光纖通訊網在電力系統的架設越來越普遍。如廣東目前已建成了光纜1300km,SDH (Synchronous Digital Hierarchy)站點30多個,以珠江三角洲為中心的SDH自愈環電力光纖網路。目前,許多地方都把發展光纖通信主幹網作為電力通信的發展方向和重要任務,這都為繼電保護所需要的穩定、可靠的數位化資訊傳輸通道創造了有利條件。在光纖網路敷設的光纜中,除提供數據共用光纖通道介面,滿足數據通信、寬頻多媒體、圖像資訊等的需求外,還提供了繼電保護專用的纖芯,這為高壓輸電線的電流縱聯差動保護提供了複用光纖通道(與SDH共用的數

據通道)和專用光纖通道(利用光纖網路中繼電保護用纖芯構成)。另外,由於光纖電流差動保護簡單、可靠,不受線路運行方式的影響,在城網和短輸電線路中大量採用。如上海電網已把採用光纖分相電流縱差保護作為電網繼電保護“十五”規劃的一個重要配置原則來執行,目前已投運和即將投運的光纖電流差動保護達194套。因城網中輸電線大多較短,光纖芯直接接入不需附加複接設備,管理也較方便,故在城網中光纖電流差動保護以專用光纖通道方式為多。 光纖傳輸通道的穩定與否是光纖縱聯差動保護正確工作的基礎,一旦光纖傳輸通道發生故障,光纖縱聯差動保護將不能正常工作。實際上,為提高保護裝置的可靠性,當光纖傳輸通道發生故障時,保護裝置會將電流縱聯差動保護自動退出。光纖通道的可靠性雖然較高,但也有損壞的可能性,如光纜斷芯、熔纖品質不好、光纖跳線接頭鬆動、光纖受潮或接頭積灰導致損耗增大等。如1999年6月7日,塘鎮站到機場站的2158/2159兩條220kV線路光纖保護告警,故障原因是:線路龍門架上OPGW(Optical Fiber Composition Ground Wire)與站內普通光纜接線盒由於雨天受潮引起一束光纖(4根芯)衰耗增大。2000年7月20日,吳涇第二發電廠到長春站4410線的兩套光纖差動保護均通道告警,原因是該線OPGW光纜中有幾芯熔接品質不好,光纖調換到備用芯後恢復正常。 考慮光纖資訊傳輸通道有可能損壞,為保證高壓輸電線的安全運行,作為主保護的縱差保護不致由於通道故障而退出運行,確實有必要為同一套縱差保護裝置配置備用光纖通道。不論採用專用光纖通道

纵联差动保护联调方法

采样 相关概念: ?定值中的“CT变比系数”: 将电流一次额定值大的一侧设定为1,小的一侧整定为本侧电流一次额定值与对侧电流一次额定值的比值。 如:本侧CT变比1250/5;对侧2500/1,则本侧CT变比系数整定为0、5,对侧整定为1。 步骤: 本侧CT变比:a/b,对侧CT变比c/d。 ?(1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 ?(2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 模拟空充 相关概念: ?没有CT断线时差动跳闸需同时满足如下条件: 1、两侧差动保护均投入(控制字+软压板+硬压板) 2、没有通道异常 3、有差流 4、本侧保护启动 5、对侧差动信号,即给本侧发差动允许信号(a、b同时满足) a、有差流 b、对侧分位无流或对侧启动 步骤: ?①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 解释: 1、对侧分位无流+有差流->给本侧发允许信号 2、对侧不启动->对侧不跳 ?②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 相关概念: ?保护启动方式: 1、电流变化量启动 2、零序过流元件启动 3、位置不对应启动(针对偷跳) 4、弱馈启动(针对弱电源侧) 步骤: ?①两侧合位。对侧加一低于正常值电压34V(1、之所以加34V就是为了满足如下两 条:a、满足弱馈条件<65%额定,b、大于33V避开PT断线,2、其实PT断线并不影响弱馈启动,即只要加的电压满足<65%额定即可,也就就是说不加也行。),本侧加差流,则两侧跳。 解释: 1、本侧启动+有差流->给对侧发允许信号

2、对侧弱馈+本侧允许信号->对侧启动(弱馈启动方式) 3、对侧启动+有差流->给本侧发允许信号 ?②两侧合位。本侧加一低于正常值电压34V,对侧加差流,则两侧跳。 模拟远跳 步骤: 方法一: ?①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧 跳。(若点的就是TJR继电器,则对侧也跳,但保护装置跳闸灯不亮。若点的就是保护装置的TJR开入,则对侧开关不跳。) ?②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧 跳。 (注:因TJR与启动量需要时间上的配合,较难把握,可采用如下简便方法。) 方法二: ?①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ?②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 简化整组联调实用版步骤: 一、前提: 1、“通道异常”灯熄灭,两侧主保护投入(控制字+软压板+硬压板)。 2、给两套主保护并上电压、串上电流。 二、采样 本侧CT变比:a/b,对侧CT变比c/d。 (1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 (2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 三、模拟空充 ①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 ②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 ①两侧合位。对侧加一小于65%额定电压,本侧加差流,则两侧跳。 ②两侧合位。本侧加一小于65%额定电压,对侧加差流,则两侧跳。 四、模拟远跳 方法一: ①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧跳。 ②②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧跳。方法二(较简单): ①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 ③两侧恢复“远跳经本侧控制”。

纵联差动保护

6.2 纵联差动保护 6.2.1 基本原理 6.2.1.1 定义 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 6.2.1.2 基本原理 变压器纵差保护是按照循环电流原理构成的 变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2?'I -2? ''I =0,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。 (a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布 (图6.4 变压器纵差保护原理接线图) 在图6.4(a )双绕组变压器中,变压器两侧电流1?'I 、1?''I 同相位,所以电流互感器TA 1、TA 2二次的电流2?'I 、2?''I 同相位,则2?'I -2?''I =0的条件是2?'I =2? ''I ,即 2?'I =2?''I = 11i n I ?'=21i n I ? '' (6.1) 即 12i i n n =1 1?? '''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。 若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为 K I ?=2?'I -2? ''I =0 (6.3) 当区内故障时,2?''I 反向流出,则流入差动继电器的电流为

变压器差动保护原理

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流;

I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们

差动保护基本原理

精心整理差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 I1与I2之和,即 3、 现在 4、 1 ?? 2、变压器差动保护与线路差动保护的区别: ??由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得

正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应 使 1. 2.单侧 为0.5秒左右。由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的。如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除。可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,

不能有效地区分本线路末端故障与下线路始端故障。3.双侧测量保护原理如何实现全线速动为了实现全线速动保护,保护判据由线路两侧的电气量或保护动作行为构成,进行双侧测量。双侧测量时需要相应的保护通道进行信息交换。双侧测量线路保护的基本原理主要有以下三种:(1)以基尔霍夫电流定律为基础的电流差动测量;(2)比较线路两侧电流相位关系的相位差动测量;(3)比较两侧线路保护故障方向判别结果,确定故障点的位置。 上图为电流差动保护原理示意图, 点的总电流为零,正常运行时或外部故障时,线路内部故障时,即。忽略了线路电容电流后,在下线路始端发生故障时,差动电流为零;在本线末端发生故障时,差动电流为故障点短路电流,有明显的区别,可以实现全线速动保护。电流差动原理用于线路纵联差动保护、线路光纤分相差动保护 以及变压器、发电机、母线等元件保护上。 上图为相位差动保护(简称“相差保护”)原理示意图,保护测量的电气量为线路两侧电流的相位差。正常运行及外部故障时,流过线路的电流为“穿越性“的,相位差为1800;内部故障时,线路两侧电流的相位差较小。相位差动保护以线路两侧电流相位差小于整定值作为内部故障的判据,

光纤纵联电流差动保护通道异常

光纤纵联电流差动保护通道异常

作者: 日期:

1概述 光纤纵联电流差动保护是近年来发展相当快的输电线路保护之一,它借助光纤通道传送输电线路两端的信息,以基尔霍夫电流定律为依据,能简单、可靠地判断出区内、区外故障。对于线路保护来说,分相电流差动保护具有天然的选相能力和良好的网络拓扑能力,不受系统振荡、非全相运行的影响,可以反映各种类型的故障,是理想的线路主保护。光纤通信与输电线无直接联系,不受电磁干扰的影响,可靠性高,通信容量大。光纤纵联电流差动保护既利用了分相电流差动的良好判据,又克服了传统导引线方式的种种缺陷,具有其他保护无以比拟的优势,因此,近年来国内外各大公司均加强在该领域的研究开发,各自相继推出了此类保护产品。 就光纤纵差保护的应用环境来说,随着国家电力工业的发展,通讯技术的日新月异,光缆及光纤设备费用的急剧下降,光纤通讯网在电力系统的架设越来越普遍。如广东目前已建成了光缆1300km SD(Synchronous Digital Hierarchy)站点30多个,以珠江三角洲为中心的SDH自愈环电力光纤网络。目前,许多地方都把发展光纤通信主干网作为电力通信的发展方向和重要任务,这都为继电保护所需要的稳定、可靠的数字化信息传输通道创造了有利条件。在光纤网络敷设的光缆中,除提供数据共用光纤通道接口,满足数据通信、宽带多媒体、图像信息等的需求外,还提供了继电保护专用的纤芯,这为高压输电线的电流纵联差动保护提供了复用光纤通道(与SDH共用的数据通道)和专用光纤通道(利用光纤网络中继电保护用纤芯构成)。另外,由于光纤电流差动保护简单、可靠,不受线路运行方式的影响,在城网和短输电线路中大量采用。如上海电网已把采用光纤分相电流纵差保护作为电网继电保护十五”规划的一个重要配置原则来执行,目前已投运和即将投运的光纤电流差动保护达194套。因城网中输电线大多较短,光纤芯直接接入不需附加复接设备,管理也较方便,故在城网中光纤电流差动保护以专用光纤通道方式为多。 光纤传输通道的稳定与否是光纤纵联差动保护正确工作的基础,一旦光纤传输通道发生故障,光纤纵联差动保护将不能正常工作。实际上,为提高保护装置的可靠性,当光纤传输通道发生故障时,保护装置会将电流纵联差动保护自动退出。光纤通道的可靠性虽然较高,但也有损坏的可能性,如光缆断芯、熔纤质量不好、光纤跳线接头松动、光纤受潮或接头积灰导致损耗增大等。如1999年6月7日,塘镇站到机场站的2158/2159两条220kV线路光纤保护告警,故障原因是:线路龙门架上OPGWOptical Fiber Composition Ground Wire )与站内普通光缆接线盒由于雨天受潮引起一束光纤(4根芯)衰耗增大。2000年7月20 日,吴泾第二发电厂到长春站4410线的两套光纤差动保护均通道告警,原因是该线OPGV fc 缆中有几芯熔接质量不好,光纤调换到备用芯后恢复正常。 考虑光纤信息传输通道有可能损坏,为保证高压输电线的安全运行,作为主保护的纵差保护不致由于通道故障而退出运行,确实有必要为同一套纵差保护装置配置备用光纤通道。不论采用专用光纤通道或复用通道,在工程设计中,敷设的光缆要留有一定的备用芯线,当工作的纤芯由于受潮或断芯等故障导致数据传

差动保护联调试验

1两侧差动保护联调试验 1.1本试验只针对差动保护,应将距离、零序保护的压板断开。 1.2专用光纤通道 1.2.1光功率与光衰耗测试。 两侧分别在保护的光发送口(在保护装置的光发送插件背板处旋开尾纤,在3#插件背板尾纤插座上插入光功率计)测量发送功率,将接收端尾纤插头插入光功率计测量接收功率,本侧发送功率与对侧的接收功率差即光通道的衰耗,两个方向的光衰耗之差应小于2—3dB并记录备案,否则应查明原因。 1.2.2收信灵敏度和裕度的确认:装置的发信光功率为-7dB,接收光功率正常出厂为-35dB,通道裕度不小于6dB,则接收电平不得小于-29dB,即允许最大衰耗为35-7-6=22dB(当线路较长时,可通过取消插件内部的跳线L4将接收光功率整定在-40dB)。 1.2.3单相故障联动试验: 本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟单相故障,则本侧差动保护动作跳开本侧断路器。 两侧断路器在合闸位置,两侧分别进行如下试验:一侧模拟单相故障同时另一侧在模拟相电压降低到额定电压90%以下,则差动保护瞬时动作跳开两侧断路器,然后单相重合。 1.2.4相间故障联动试验。 两侧断路器在合闸位置,两侧分别进行如下试验:一侧模拟相间故障的同时另一侧三相电压正常,则差动保护不动作;两侧断路器在合闸位置,一侧模拟相间故障的同时另一侧模拟故障相电压降低至额定相电压的90%以下的条件,则两侧差动保护同时动作跳开本侧的断路器。 1.2.5如采用两套PSL-603保护,应检查光纤信号不能交叉,做其中一套保护联调时应关闭另一套保护的电源。 1.3复用PCM(光纤接口) 1.3.1光功率与光衰耗测试。 在保护的光发送口测量发送功率P1,在保护的光接收口测量接收功率P2;在光电转换器的光发送口测量发送功率P4,在光电转换器的光接收口测量接收功率P 3。保护发送功率与光电转换器的接收功率差(P1-P3)即保护至光电转换器的光衰耗,光电转换器发送功率与的保护接收功率差(P4-P2)即光电转换器至保护的光衰耗,如下图所示。两个方向的光衰耗之差应小于2-3dB并记录备案,否则应查明原因。光电转换器输出的64kbit/s音频信号以后的环节由通讯专业负责。 允许信号的含义是:本侧保护启动,收到对侧的信号,则保护动作出口。允许式保护不能收自己的信号,只能收对侧的信号。

纵联差动保护联调方法

采样 相关概念: 定值中的“CT变比系数”: 将电流一次额定值大的一侧设定为1,小的一侧整定为本侧电流一次额定值与对侧电流一次额定值的比值。 如:本侧CT变比1250/5;对侧2500/1,则本侧CT变比系数整定为,对侧整定为1。 步骤: 本侧CT变比:a/b,对侧CT变比c/d。 (1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 (2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 模拟空充 相关概念: 没有CT断线时差动跳闸需同时满足如下条件: 1、两侧差动保护均投入(控制字+软压板+硬压板) 2、没有通道异常 3、有差流 4、本侧保护启动 5、对侧差动信号,即给本侧发差动允许信号(a、b同时满足) a、有差流 b、对侧分位无流或对侧启动 步骤: ①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 解释: 1、对侧分位无流+有差流->给本侧发允许信号 2、对侧不启动->对侧不跳 ②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。

模拟弱馈 相关概念: 保护启动方式: 1、电流变化量启动 2、零序过流元件启动 3、位置不对应启动(针对偷跳) 4、弱馈启动(针对弱电源侧) 步骤: ①两侧合位。对侧加一低于正常值电压34V(1、之所以加34V是为了满足如下两条: a、满足弱馈条件<65%额定, b、大于33V避开PT断线,2、其实PT断线并不影响 弱馈启动,即只要加的电压满足<65%额定即可,也就是说不加也行。),本侧加差流,则两侧跳。 解释: 1、本侧启动+有差流->给对侧发允许信号 2、对侧弱馈+本侧允许信号->对侧启动(弱馈启动方式) 3、对侧启动+有差流->给本侧发允许信号 ②两侧合位。本侧加一低于正常值电压34V,对侧加差流,则两侧跳。 模拟远跳 步骤: 方法一: ①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量, 则本侧跳。(若点的是TJR继电器,则对侧也跳,但保护装置跳闸灯不亮。若点的是保护装置的TJR开入,则对侧开关不跳。) ②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量, 则对侧跳。 (注:因TJR与启动量需要时间上的配合,较难把握,可采用如下简便方法。)

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为 11TA I n - 22 TA I n =1I ' - 2I ' ≈0 ,故KD 不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为: 11TA I n + 22TA I n =1I ' + 2I '=2k TA I n 当 2k TA I n 大于KD 的整定值时,即 1I ' - (3)max max /unb st unp i k TA I K K f I n =≠0 ,KD 动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时, 2k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取; Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop= (Krel 为可靠系数,取)。越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。对于大、中型发电机,即使轻微故障也会造成严重后果。为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。显然,图所示的差动保护整定的动作电流已大于额定电流,无法满足这种要求。 具有比率制动特性的差动保护 保护的动作电流Iop 随着外部故障的短路电流而产生的Iunb 的增大而按比例的线性增大,且比Iunb 增大的更快,使在任何情况下的外部故障时,保护不会误动作。这是把外部故障

输电线路光纤电流差动保护原理及校验

输电线路光纤电流差动保护原理及校验 摘要:本文分析输电线路光纤差动保护的基本原理;并以永丰变220kV早颜永线三侧线路光纤差动保护RCS-931ATMV为例,深入分析了该装置的光纤电流差动保护的构成特性及其校验方法。 1引言 近年来随着计算机技术及光纤通信技术的迅速发展,110kV及以上电压等级线路保护的快速主保护也在发生变化,逐步由原来的纵联高频保护和距离保护过渡到以光纤差动保护作为全线速动保护的发展阶段。本文结合工作实际,分析输电线路光纤电流差动保护的基本原理,并以220kV早颜永线为例,分析探讨娄底局第一套三侧线路光纤差动保护装置RCS-931ATMV的构成原理及校验方法。 2输电线路光纤纵联电流差动保护原理 输电线路两端的电流信号,通过采样、编码、光电信号转换、光纤传输到对端,保护装置接收到对端传过来的光信号转换成电信号再与本端电流信号构成纵联电流差动保护。基于光纤通信容量很大的优点,输电线路纵联保护采用光纤通道后,所以往往做成分相式的光纤纵联电流差动保护。输电线路分相电流差动保护具有良好的选相功能,哪一相电流差动保护动作那一相就是故障相,从而为220kV及以上电压等级的线路保护分相跳闸提供了高可靠性的判据。 输电线路光纤纵联电流差动保护的基本原理可结合图1来分析。如图所示流过保护两端的电流相量IM、IN,如图1中箭头所示以母线流向被保护线路的方向为正方向,虚线部分表示短路故障情况下的故障电流IK。以两端电流的相量和的幅值作为作为差动电流Id,如式 2,稳态相差动继电器 稳态相差动继电器的动作特性根据差动电流与制动电流的倍数关系分成二段特性动作方式。I段相差动制动系数较大为瞬动段,针对严重故障下的保护。首先介绍I段相差动继电器动作方程: IQ为电流差动启动定值。其动作特性范围可描述为如图3中线段1和线段2之间的部分区域。当满足上述稳态Ⅱ段相差动动作条件时,稳态Ⅱ段相差动继电器经25ms延时动作。 3,零序差动继电器 对于经高电阻接地故障时,由于短路电流比较小,故采用零序差动继电器具有较高的灵敏度,由零序差动继电器动作,通过低比率制动系数的稳态差动元件选相,构成零序差动继电器,经过45ms延时动作。其动作方程如式(7),ICD0

变压器纵联差动保护..

第四节 变压器纵联差动保护 一、变压器纵联差动保护的原理 纵联差动保护是反应被保护变压器各端流入和流出电流的相量差。对双绕组变压器实现纵差动保护的原理接线如下图所示。 为了保证纵联差动保护的正确工作,应使得在正常运行和外部故障时,两个二次电流相等,差回路电流为零。在保护范围内故障时,流入差回路的电流为短路点的短路电流的二次值,保护动作。 应使 22112 2 TA TA n I n I I I ‘’‘‘’‘=== 或 T TA TA n I I n n ==‘’‘1 1 12 结论: 适当选择两侧电流互感器的变比。 纵联差动保护有较高的灵敏度。 二、变压器纵联差动保护在稳态情况下的不平衡电流及减小不平衡电流的措施 在正常运行及保护范围外部短路稳态情况下流入纵联差动保护差回路中的电流叫稳态不平衡电流I bp 。 1.由变压器两侧电流相位不同而产生的不平衡电流 思考:由于变压器常常采用Y ,dll 的接线方式, 因此, 其两侧电流的相位差30o。此时,如果两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,会有一个差电流流入继电器。如何消除这种不平衡电流的影响? 解决办法:通常都是将变压器星形侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形。

2.由两侧电流互感器的误差引起的不平衡电流 思考:变压器两侧电流互感器有电流误差△I ,在正常运行及保护范围外部故障时流入差回路中的电流不为零,为什么? 为什么在正常运行时,不平衡电流也很小 ? 为什么当外部故障时,不平衡电流增大? 原因:电流互感器的电流误差和其励磁电流的大小、二次负载的大小及励磁阻抗有关, 而励磁阻抗又与铁芯特性和饱和程度有关。 当被保护变压器两侧电流互感器型号不同,变比不同,二次负载阻抗及短路电流倍数不同时都会使电流互感器励磁电流的差值增大。 减少这种不平衡电流影响的措施: (1)在选择互感器时,应选带有气隙的D 级铁芯互感器,使之在短路时也不饱和。 (2)选大变比的电流互感器,可以降低短路电流倍数。 (3)在考虑二次回路的负载时,通常都以电流互感器的10%误差曲线为依据,进行导线截面校验,不平衡电流会更小。最大可能值为: tx TA max .d bp K n I 0.1 I = 3.由计算变比与实际变比不同而产生的不平衡电流 思考:两侧的电流互感器、变压器是不是一定满足 T 1TA 2 TA n 3 n n = 或 T 1TA 2 TA n n n =的关系? 原因:很难满足上述关系。

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,差动保护是输入的两端CT电流矢量差,当两端CT电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律, = ∑?I;式中∑?I表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

相关文档
最新文档