金属材料系列冲击实验与低温脆性

金属材料系列冲击实验与低温脆性
金属材料系列冲击实验与低温脆性

金属材料系列冲击实验与低温脆性

陈国滔材科095 40930366

一、实验目的

1.了解材料韧性的特点及冲击实验对材料韧性检测的效果;

2.通过测定低碳钢、工业纯铁和T8钢在不同温度下的冲击吸收功,观察比较

金属韧脆转变特性;

3.学习低碳合金钢韧脆转化温度的测定方法,通过结合夏比冲击实验归纳找

出降低金属韧性的致脆因素。

二、实验原理

1.金属夏比冲击实验原理

夏比冲击实验是将具有规定形状、尺寸和缺口类型的试样,放在冲击实验机的试样支座上,使之处于简支梁状态。然后用规定高度的摆锤对试样进行一次性打击,实质上就是通过能量转换过程,测量试样在这种冲击下折断时的冲击吸收功。试样的冲击吸收功在实验中用摆锤冲击前后的位能差测定如下所示:

A—摆锤起始位能; A1—摆锤打击试样后的位能。

如不考虑空气阻力及摩擦力等能量损失,则冲断试样的吸收功为:

F—摆锤的重力,N; L—摆长(摆轴至锤重心之间的距离),mm;

α—冲击前摆锤扬起的最大角度,弧度;β—冲击后摆锤扬起的最大角度,弧度。

2.钢铁韧脆转变温度原理

脆性断裂是一种快速的断裂,断裂过程吸收能量很低,断裂前及伴随着断裂

过程都缺乏明显的塑性变形。而对于bcc 结构的钢铁,在一个有限的温度范围内,受到冲击载荷作用发生断裂时吸收的能量会发生很大的变化。这种现象就是韧脆转变。

当足够高温时,钢铁一般是晶体结构,温度的上升会导致晶体键的断裂,而钢仍为较硬的固态,所以此时的钢铁变脆容易折断。

当足够低温时,脆性受临界解理应力和临界分切应力的影响,两者随着温度降低而升高,在某一温度两者相等,其对应温度就是Tc ,这个温度就是韧脆转变温度。继续降温,屈服强度继续升高,大于断裂强度,所以低温下材料在没有塑性变形的条件下已经发生脆性断裂。材料的断裂强度受温度影响较小。

当温度低于某一温度tk 时,材料由韧性状态转变为脆性状态,此时的温度为韧脆转变温度。

3. 韧脆转变温度确定原理

实验通过改变实验温度,进行一系列冲击实验以确定材料从人性过渡到脆性的温度范围,称为“系列冲击实验”。韧脆转变温度就是A k -T 曲线上A k 值显著降低的温度。曲线冲击功明显变化的中间部分称为转化区,脆性区和塑性区各占50%时的温度称为韧脆转变温度(DBTT )。当断口上结晶或解理状脆性区达到50%时,相应的温度称为断口形貌转化温度(FATT )。

脆性断裂百分数的测量:在显微镜下观察断裂试样的断裂面,脆性断裂部分一般是白亮的梯形,通过测量计算可得出梯形的面积,按下式计算出脆性断裂百分数:

%100%

η=

?脆性区面积脆性断裂百分数端口横截面积

三、 实验器材

1、实验材料:低碳钢(Q235)、工业纯铁和T8钢。

2、实验器材:①冲击实验机(摆锤式冲击实验机主要由机架、摆锤、试样支座、指示装置及摆锤释放、制动和提升机构等组成);

②本实验中采用夏比试样,即截面为

的方棒,一面中间有深

为的型缺口试样。冲击试样开缺口的目的是使缺口附近造成应力集中,保证在缺口处破断。缺口的深度和尖锐程度对冲击吸收功影响显著。缺口越深、越尖锐,值越小,材料表现的脆性越大;

③工具显微镜(型号);

④控温及测温仪器:加热用电炉和保温瓶温度计;

⑤介质:酒精,水,液氮;

⑥其他器材:镊子。

四、实验设备参数

1.钢铁:低碳钢含碳量从0.10%至0.30%,工业纯铁含碳量在0.04%以下,T8属于碳素工具钢,含碳量>0.7%

2.实验冲击机,最大打击能量分别为300J(±10J)和15OJ(±10J)两档,打击瞬间摆锤的冲击速度在5.0~5.5m/s之间,这些均符合GB/T229-1994标准的要求。其他技术条件应符合GB 3808规定,并应定期按JJG 145检定。

3.测温仪器,高温冲击实验时,一般采用热电偶测温,低温冲击实验时,一般采用最小分度值不大于1℃的玻璃温度计。测温仪器(数字指示装置或电位差计)的误差应不超过±0.1%。热电偶参考端温度应保持恒定,偏差应不超过±0.5℃。

4.介质:在高温或低温冲击实验中,可使用各种方法加热或冷却试样,实验用介质应安全、无毒,不腐蚀金属。使用的介质如下所示:

使用液体介质加热或冷却试样时,恒温槽应有足够容量和介质,并应有使介质温度均匀的装置。

对于高温或低温冲击实验,温度控制装置应能将实验温度稳定在规定值的±2℃之内。

五、实验步骤

1、检查摆锤空打时被动指针的回零差。回零差不应超过最小分度值的四分之一;检查试样尺寸的量具最小分度值应不大于0.02mm;

2、确定样品各测量温度。并为Q235、纯铁、T8等不同温度下的试样进行标号;

3、调试温度,以达到试样规定的实验温度。高温样品用热水升温,低温样品用液氮和酒精降温,从而得到不同所需温度的样品;

4、读出保温瓶中温度计示数并记录下来,作为样品的冲击温度,然后独立进行冲击实验操作,得出冲击功并记录下来;试样从液体介质中移出至打击的时间应在2s之内,试样离开气体介质装置至打击的时间应在1s之内。如果不能满足上述要求,则必须在3-5s内打断试样,此时应采用过冷或过热试样的方法补偿温度损失。对于高温实验,应充分考虑过热对材料性能的影响。

5、在工具显微镜上观察冲击试样断口;

6、计算脆性断面率;

7、整理实验仪器及样品;

8、数据处理及分析。

六、实验数据

以下表1和表2是小组1和小组2测量各种钢铁在不同温度下的冲击吸收功

和脆性断面率。

七、实验数据处理及分析

根据上述表中数据。绘制冲击功A k- T曲线和断口脆性区面积百分数-温度T 曲线,综合两个小组的数据,得到如下:

①Q235低碳钢:利用origin进行拟合,获得其韧脆转变温度曲线如下:

图1

拟合过程所得参数及由图像读出的韧脆转变温度列表如下:

所以低碳钢的 DBTT 为19℃,FATT 为20℃。

②T8钢:利用origin进行拟合,获得其韧脆转变温度曲线如下:

图2

拟合过程所得参数及由图像读出的韧脆转变温度如下:

由于T8 钢是含碳量高的 BCC 碳钢,并不是所有的 BCC 合金都会有明显的韧脆转变现象,所以T8 钢没有明显的韧脆转变现象。

③工业纯铁:利用origin进行拟合,获得其韧脆转变温度曲线如下:

图3

拟合过程所得参数及由图像读出的韧脆转变温度如下:

所以工业纯铁的 DBTT 为 -38℃,FATT 为-38℃。

八、实验结论

工业纯铁的断口解理面积最小,冲击功最大,韧脆转变温度最低,而工业

纯铁的含碳量是三者中最低的。

T8的断口解理面积最大,冲击吸收功最小,韧脆转变温度最高,而T8钢的含碳量是三者中最高的,随着碳含量的增加,碳原子作为间隙原子会形成柯垂尔气团,阻碍位错的运动,材料的塑性变形困难,从而显示脆性。

低碳钢Q235的含碳量是位于三者的中间位置,钢属于中低强度钢,体心立方结构,其冲击功,断口解理面积,韧脆转变温度都处于三者之间。低温下显示冷脆性,高温下具有很好的塑性。

工业纯铁与钢有明显的韧脆转变温度的原因是它们都是bcc结构,低

温下,点阵阻力增大,阻碍位错开动,塑性变形困难,显示冷脆性;高温时,点阵阻力减小,位错容易运动,显示塑性。

因而可以得出同种材料在不同温度下,其塑性不同。随着温度的降低,同种材料的冲击功下降,断口解理面积增大。所以,随着温度的下降,同种材料的塑性下降,脆性上升。

参考文献

①杨王玥,强文江.《材料力学行为》.北京:科学出版社.2009

②余永宁.《材料科学基础》.北京.高等教育出版社.2006

③GB/T 229-1994 金属材料系列冲击试验方法,1994

冷脆

冷脆 冷脆具有体心立方点阵的合金钢,当试验温度降低时,将由韧性断裂转变为脆性断裂。许多工业用钢在室温到零下温度范围将发生脆化,称为冷脆性。

图1 滑移过程形成的裂纹 a--位错塞积;b--两个{110)滑移带相交 合金钢的冷脆性(或低温脆化倾向)用韧性一脆性转化温度Tc表示。高纯铁(0.01%C)的Tc在一100。C,低于此温度则完全处于脆化状态。钢中大多数合金元素都升高钢的韧性一脆性转化温度,增加冷脆倾向。在室温以上韧性断裂时,合金钢的断口为韧窝型断口,而在低温下脆性断裂时为解理断口。合金钢的低温脆化的原因是:(1)形变时位错源产生的位错被障碍物(如晶界、第二相等)阻塞时,局部应力超过钢的理论强度而产生微裂纹(见图1a)。(2)几个塞积的位错在晶界合成一个微裂纹。(3)两个{110)滑移带相交处反应,引起不动位 错%26lt;010%26gt;,呈楔形微裂纹,它可沿{100}解理面裂开(见图1b)。 增加钢冷脆的因素有:(1)固溶强化元素。磷升高韧性一脆性转化温度最强烈;还有钼、钛和钒;含量低时影响不大而含量高时升高韧性一脆性转化温度的元素有,硅、铬和铜;降低韧性一脆性转化温度的有镍,先降低后升高韧性一脆性转化温度的有锰。(2)形成第二相的元素。以第二相增加钢冷脆最重要的元素为碳,随钢中碳含量增加,钢中珠光体含量增加,平均每增加1%珠光体体积,韧性一脆性转化温度平均升高2.2℃。图2为铁素体一珠光体钢中碳含量对脆性的影响。加入钛、铌和钒等微合金化元素,形成弥散分布的氮化物或碳氮化物,引起钢的韧性一脆性转化温度上升。(3)晶粒尺寸影响韧性一脆性转化温度,随晶粒粗化,韧性一脆性转化温度升高。细化晶粒则降低钢的冷脆倾向,这是广为应用的方法。 图2 铁素体-珠光体钢中碳含量对脆性的彰响

低温技术试验

第3章 低温技术实验 低温实验中使用低温液体的注意事项 1、所有盛低温液体的容器都不能完全封死。必须流有供蒸汽逸出的通道,否则由于不 可避免的外界漏热使低温液体逐渐气化,容器中的压强逐渐升高,最后会导致装置损坏甚至 爆炸。实验结束时尤其不可疏忽大意,一定要把可能存有低温液体的密封部件的封口打开。 2、盛有低温液体的杜瓦容器真空夹层的封口必须保护好,切不可突然打开或充入过量 的气体,否则由于绝热破坏,容器内液体迅速蒸发,有可能造成事故。 3、使用玻璃杜瓦瓶时,应小心,要避免骤冷骤热。否则玻璃杜瓦瓶可能破裂。 4、当心不要让低温液体触及人体,否则会造成冻伤。 5、氦气必须回收,使用液氦时必须按照操作规程进行。 实验7 低温固体热导率测量 该实验是使操作者对低温下的热测量有初步的了解,并对纯金属热导率随温度的变化有一些感性的认识。 【预习要求】 了解金属传热的物理过程,热导率与温度的关系。实验表明;金属热导率随温度的变化 在纯金属的传热中晶格热导部分占的比例很小,热量几乎全部都是由自由电子传导的。热阻和电阻的来源相同,一是晶格的热振动,及声子的散射;二是杂质和缺陷的散射。因此,和电阻类似,热阻也可近似表达成 W W W r i =+ (3-7-1) w i 和 w R 分别为声子和杂质因起的热阻 。电阻R和热阻之间的关系由魏弗兰茨(Wiedmann-franz )定律给出: L WT R = (3-7-2) 式中L 称为洛伦兹(Lorentz )常数,数值为2·45×10-8W ·Ω·K -2。公式中分母出现T 的原因是,自由电子 运载的电荷是常数,但运载的热能却正比于温度T 并随温度的一次方变化。这个定律在低温区(杂质散射为主)和高温区(电子散射时能量变化比kT 小得多时)是正确的,在中温区不够满意。 利用(3-7-2)式,我们可以从()T R 的行为推断出()T W 的变化。对杂质散射,R r 是常数,W r 应正比于T -1,在高温区R i ∝T ,W i 应为常数;在中温区,R i 一般按T 5变化,按式(3-7-2),w i 应正比于T 4,实际上W i 是正比于T 2 ,表现和式(3-7-2)的偏离。图3-7-1是热阻W 随温度的变化;图3-7-2是相应的热导λ=1∕W 随问度T 的变化。 图3-7-1 图3-7-2

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法 中文版

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法中文版 第一部分:测试方法(V和U型缺口) 实施对象和领域: 本标准详细的描述了金属材料夏比冲击试验的的细节。 3、试验原理: 用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸取功。 4、名词: 本标准所适用的名词如表1和图1、图2: 表1——名词 5、试样: 5.1 取样数量和取样位置应该在相应的产品标准中作出详细讲明。 5.2 标准试样应该是55mm长,同时它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细讲明如下:

a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,能够采纳宽度7.5mm或5mm等小尺寸试样,缺口应该开在狭窄的一面。 B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。 除了铸造试样缺口所在的两平行表面达到所需要的周密度则能 够不进行机加工以外,原则上试样应该机加工完成。 5.3 缺口所在平均平面应垂直于试样的纵轴线。 5.4 试样详细尺寸公差在表2中给出。 表2——试样尺寸许用公差

5.5 。。。。。。如果相应的产品标准只能承诺,不管如何,只有两个试样的形状和尺寸相同,那他们的结果比较才有意义。 5.6 机加工应该尽可能的不改变试样的性能,例如,冷热加工应该把对试样的阻碍减到最小。开缺口应该专门小心。 6.1 试验机应该被严格的制造和安装并符合欧洲标准10 045-2的要求。 试验机要紧的特点含义见表3。 表3——试验机特点

6.2 当摆锤式冲击试验机的冲击能量为(300±10)J并采纳标准试样时,则试验视为在正常条件下进行。在上述条件下确定的缺口冲击功的缩写符号为: ——KU 适用于U型冲击试样 ——KV 适用于V型冲击试样 例如: ——KV=121J: ——名义能量300J ——标准V型缺口试样 ——断裂吸取功121J 6.3 试验机有不同的承诺冲击能量,因此在刻度盘上指针所指的冲击能量前应增加KU或KV的标记。 例如: KV 150:承诺能量150 J KU 100:承诺能量100 J ——KU 100=65 J ——承诺最大能量100J ——标准U型缺口试样 ——冲击功65 J 6.4 关于V型缺口辅助试样,KV符号后应补上实验机承诺冲击能量和试样的宽度。 例如: ——KV300/7.5:可用最大冲击功300 J,试样宽度7.5 mm ——KV150/5:可用最大冲击功150 J,试样宽度5 mm ——KV150/7.5=83 J

有关PPR低温脆性的解释

有关PPR低温脆性的解释 1、PPR管为什么存在低温脆性 答:PP-R是无规共聚聚丙烯,也就是我们所说的Ⅲ型聚丙烯。它是由丙烯单体和少量乙烯单体在加热、加压和催化剂作用下无规共聚得到的。乙烯单体随机地分布到丙烯长链中,其中乙烯单体一般控制在3-5%之间。乙烯含量和乙烯与丙烯的聚合方式决定了其具有冷脆性的特点。在气温较低的情况下,尤其冬季施工过程中,管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材直线开裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。 2、PPR管材冷脆性在实际应用中的表现形式 答:当环境温度较低时,PPR管材韧性降低,表现为脆性,当管材受到外力的冲击或者重压时,会出现直线开裂现象,并且开裂情况是由内管开始,向外管延伸。管材受到一个点的作用力造成的开裂后,在瞬间内,这种开裂会沿着管材的轴线方向快速增长,这个特性叫做快速裂纹增长。另冬季管材在运输、在工地及安装过程中因外力致伤,会在使用过程中出现脆性和韧性(输送热水时)爆管。 3、大家经常会走入的误区----能砸裂的PPR水管就是差水管 答:这种判断方法是错误的,能否砸裂PPR管,这是一种判断PPR好坏的误区,这并不能检验PPR好坏与否,因为PP-R材料本身性能随着环境温度而发生一定程度的改变。在气温较低的情况下,尤其冬季管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材断裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。反而是一些添加其它原料的假冒伪劣PPR管,倒是不易砸坏!真正的既能输送高温热水又能输送冷水可管用

冷热冲击测试规范(中英文)

德信诚培训网 更多免费资料下载请进:https://www.360docs.net/doc/c617470893.html, 好好学习社区 冷热冲击测试规范 Thermal Shock Test Procedure 1.0 PURPOSE (目 的): 1.1The Thermal shock test is designed to determine the effects on the product due to high and low temperatures and humidity. This is an accelerated test to uncover weakness in components, assemblies, and processes, which may appear in the field during normal handling. The test limits include stress testing. Any failures found in during the test does not represents any non-conformity to the product specification and should be followed up with further investigation of the failure mode due to components, process, or design problems. 1.1 冷热冲击是设计用来判定产品在高温与低温间的影响,这是一个加速的试验,用来揭露在测试过程中各组成原件的弱点,在试验期间所发生的任何损坏,不能表示任何产品规格的不符合,而需要继续进一步的对损坏做研究调查。 2.0 SCOPE (范 围): 2.1This test describes the maximum and minimum storage temperature specification under which products are to storage. 2.1 这个试验描述产品最高温及最低温储存温度规格。 3.0 SPECIFICATIONS (规 格): 3.1Class 1 product - Switching Power supply and Linear Power Supply

金属材料检测检验检测标准

金属材料检测检验检测标准 金属材料检测范围涉及对黑色金属、有色金属、合金、铸件、机械设备及零部件等的机械性能测试、化学成分分析、金相分析、精密尺寸测量、无损探伤、耐腐蚀试验和环境模拟测试等。青岛科标检测中心出具权威资质认证国家认可的检测报告。 检测项目: 常规元素分析 品质(成份分析)、硅(Si)、锰(Mn)、磷(P)、碳(C)、硫(S)、镍(Ni)、铬(Cr)、铜(Cu)、镁(Mg)、钙(Ca)、铁(Fe)、钛(Ti)、锌(Zn)、铅(Pb)、锑(Sb)、镉(Cd)、铋(Bi)、砷(As)、钠(Na)、钾(K)、铝(Al)、牌号测定等 贵金属元素分析 银(Ag)、金(Au)、钯(Pd)、铂(Pt)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os) 物理性能:磁性能、电性能、热性能、抗氧化性能、耐磨、盐雾、腐蚀、密度、热膨胀系数、弹性模量、硬度; 化学性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀; 力学性能:拉伸、弯曲、屈服、疲劳、扭转、应力、应力松弛、冲击、磨损、硬度、耐液压、拉伸蠕变、扩口、压扁、压缩、剪切强度等; 工艺性能:细丝拉伸、断口检验、反复弯曲、双向扭转、液压试验、扩口、弯曲、卷边、压扁、环扩张、环拉伸、显微组织、金相分析; 检测产品: 钢铁材料:结构钢、铜、铝、铁、不锈钢、耐热钢、高温合金、精密合金等 金属及其合金:轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等; 特种金属材料:功能合金、金属基复合材料等; 金属材料制品:生铁、铝管、铁板、铁管、钢锭、钢坯、型材、线材、金属制品、有色金属及其制品等。 检测标准: 978-7-5066-5282-7 无机非金属材料检测标准手册胶凝材料卷 CB 1369-2002 舰船用金属材料进货检验及验收规则 CB 1370-2002 舰船用非金属材料进货检验及验收规则 CB/Z 264-1998 金属材料低周疲劳表面裂纹扩展速率试验方法

金属材料硬度对照表

布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同,●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。●HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度;布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。另外: 1.HRC含意是洛式硬度C标尺, 2.HRC和HB在生产中的应用都很广泛 3.HRC适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛式硬度A标尺HRA。若硬度低于此范围则用洛式硬度B标尺HRB。布式硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。布氏硬度计之压头为淬硬钢球(HBS)或硬质合金球(HBW),试验载荷随球直径不同而不同,从3000到31.25公斤力。 5.洛式硬度压痕很小,测量值有局部性,须测数点求平均值,适用成品和薄片,归于无损检测一类。布式硬度压痕较大,测量值准,不适用成品和薄片,一般不归于无损检测一类。 6.洛式硬度的硬度值是一无名数,没有单位。(因此习惯称洛式硬度为多少度是不正确的。)布式硬度的硬度值有单位,且和抗拉强度有一定的近似关系。 7.洛式硬度直接在表盘上显示、也可以数字显示,操作方便,快捷直观,适用于大量生产中。布式硬度需要用显微镜测量压痕直径,然后查表或计算,操作较繁琐。 8.在一定条件下,HB与HRC可以查表互换。其心算公式可大概记为:1HRC≈1/10HB。硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 金属材料硬度对照表 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。

冷热冲击试验研究

冷热冲击试验研究 目前,各工程师在制定标准,执行标准时对于温度变化类的试验有很多不同的见解,且此类试验名称过多,导致实际应用中出现了一些不恰当的使用方法。本文特对温度变化类试验进行解读,一方面对各类试验项目进行分析,另一方面推荐使用合适的标准项目,以供各工程师参考使用。 温度变化类试验项目有众多名称:温度变化、温度循环、温度交变、快速温变、温度冲击、冷热冲击、温度梯度、分级温度等名称。且不同体系的标准中应用的试验方法是不同的,如何区分这些试验项目,如何选择试验项目,这需要对各类型试验的来源以及其区别进行分析。 本文针对的试验项目是温度变化类的,对于湿热类,温湿度循环等试验项目后续再以专题叙述。 1、温度变化试验 1.1 来源 各类标准中的温度变化试验均来源于IEC 60068-2-14 试验方法N:温度变化中的Nb 。在特定温度变率之温度变化试验。 1.2 定义 温度变化试验,为设置一定的温度变化速率进行高温与低温之间的转变。故在实际应用中有两类:一类为慢速的温度变化试验,其温度变化速率<3℃/min(一般各标准经常选择参数为1℃/min),也既一般应用中的温度变化、温度循环、温度交变试验(此三类为一种试验);另一类为快速的温度变化试验,其温度变化速率≥3℃/min(一般各标准经常选择参数为3℃/min、4℃/min、5℃/min、7℃/min、10℃/min),也既一般应用中的快速温变试验。温度变化速率越快,考核越严酷。 1.3 目的及应用范围 本试验适用于组件、装备或其它产品。为产品模拟带电工作时随温度的变化,如在系统/组件工作时快速改变周围温度。如果系统/组件处在热浸透温度(例如安装在发动机上的系统/组件),高温阶段附加的短暂温度峰值要确保产品在这期间的基本功能。为避免系统/组件内的电热扩散抑制系统/组件达到低温的效果,故在降温阶段将产品关闭。失效模式为温度变化引起的电气故障。 注:本试验不是寿命试验。 1.4 试验方法及参数 1.4.1 温度变化试验: 各类标准中建议采用ISO 16750-4 5.3.1 温度变化试验,具体试验程序见图1及图2,图1应用于非发动机舱产品,图2应用于发动机舱中零部件,因为其具有发动机熄火后的余热考核,故在温度变化中加入了极限高温贮存的考核。

EN+金属材料夏比冲击试验(中文)

EN+金属材料夏比冲击试验(中文)

————————————————————————————————作者:————————————————————————————————日期:

EN10045 中文版 金属材料夏比冲击试验 第一部分:测试方法(V和U型缺口) 1、实施对象和领域: 1.1本标准详细的描述了金属材料夏比冲击试验的的细节。 2、涉及标准: 3、试验原理: 用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸收功。 4、名词: 本标准所适用的名词如表1和图1、图2: 表1——名词 涉及名词 名称单位 (看图1和 图2) 1 试样长度mm 2 试样厚度mm 3 试样宽度mm 4 缺口处材料厚度mm 5 缺口角度Degree 6 缺口半径mm 7 砧骨距离mm 8 砧骨半径mm 9 每个枕骨锥形角度Degree 10 摆锤锥形角度Degree 11 摆锤弯曲半径mm 12 摆锤宽度mm KU或KV冲击功Joule

5、试样: 5.1 取样数量和取样位置应该在相应的产品标准中作出详细说明。 5.2 标准试样应该是55mm长,并且它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细说明如下: a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,可以采用宽度7.5mm或5mm等小尺寸试样,缺口应该开在狭窄的一面。 B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。 除了铸造试样缺口所在的两平行表面达到所需要的精密度则可以不进行机加工以外,原则上试样应该机加工完成。 5.3 缺口所在均匀平面应垂直于试样的纵轴线。 5.4 试样详细尺寸公差在表2中给出。 表2——试样尺寸许用公差 名称 U型冲击试样V型冲击试样 名义尺 寸 机械公差 名义尺 寸 机械公差 ISO符 号 ISO符 号 长度55mm ±0.60m m j s 15 55mm ±0.60mm j s 15 厚度10mm ±0.11m m j s 13 10mm ±0.60mm j s 12 宽度 标准试样10mm ±0.11m m j s 13 10mm ±0.11mm j s 13 小尺寸试样7.5mm ±0.11mm j s 13 小尺寸试样5mm ±0.06mm j s 12 缺口角度45o±2o 缺口处材料厚度5mm ±0.09m m j s 13 8mm ±0.06mm j s 12 缺口半径1mm ±0.07m j s 12 0.25mm ±0.025m

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

三种高低温摆锤冲击实验方法的比较说明

三种高低温摆锤冲击实验方法的比较说明 关于(高温)低温摆锤冲击实验方法,现世界上主要有三种方式。 1、目前世界上绝大多数用户的实验室所选用的传统方式:预先将样品在另一个(高)低温恒温箱中冷冻(加热)至所需温度,然后迅速取出后放置于夹具上快速冲击。误差取决于环境温度的散热及取出样品至冲击结束的时间。 2、专用冲击低温箱方式:将样品试验台(包括样品)一块儿冷冻(通常不能加热做高温试验),达到所需温度并且稳定后再打开低温箱开始冲击实验。误差取决于低温箱温度准确性、稳定性,样品及夹具稳定时间的长短以及打开低温箱后至冲击结束所需时间。 3、整体冷冻方式:将整个冲击仪密封在一个小型低温恒温室内或整个操作间低温恒温。由于小型恒温室价格昂贵,工作人员在低温环境中工作不便,此种方式很少使用。由于环境温度对冲击仪有较大影响,该方式不能做高温试验及很低的低温实验。误差取决于恒温室温度的稳定性、准确性以及仪器对环境温度变化的影响。 意大利ATS公司设计经理Mr. Segrio Martiotti(原CEAST公司的主设计师)是一位在该方面的资深专家。中国很多用户的RESIL25摆锤冲击仪都是他设计的,销售了十几年。经向Mr. Martiotti询问,他提出:设计一个摆锤低温箱是非常容易的,但ATS经过试验考察后,不采用该方案,原因是: 1、低温箱的温度稳定度及准确度在±1-2℃左右(摆锤冷冻箱设定与实际稳定温度差值为±2℃,需长时间稳定);而在低温状态下,0.1℃的温度误差即产生很大的冲击误差(根据不同材料的变化,测试值也不同。),其影响远远大于冲击仪自身的误差。 2、98年才开始设计生产的低温箱工艺材料等均不完全成熟,世界上生产类似摆锤低温箱的也很少。而目前世界上用旁边放低温柜,用迅速夹持冲击方法的占绝大多数。传统低温柜,世界上有近千家厂家,几百万台生产量。材料、工艺、性能均有保障。在低温冷冻箱基础上,为设备专门进行改动,使取样更方便和快速,温度精度0.1℃,稳定性0.2℃。除低温外,还可以做高温材料冲击实验和用于其它用途。 3、ATS的快速恒应力夹具加上设计取样方便的低温柜,使从取样到冲击完毕时间很快,约几秒至十几秒。样品只表面温度略有变化,对实质性影响不大,同用专用的摆锤冲击箱开箱后再冲击的时间基本是一样的;而平均样品误差值小于摆锤冲击箱(温度一致性比摆锤冲击箱好得多)。一般的冲击低温箱还需另外配一只低温柜,将样品深冷冻后再取出放在箱内冷冻,否则样品不能深冷冻,温度误差更大;增加了成本。 4、专用摆锤低温箱不实用。从做实验开始到恒定所需温度值需很长时间,每次样品间隔需长时间温度稳定,否则一致性很差。另外,消耗液氮也多,成本高。如果包括人工,则成本昂贵,因此意大利及欧洲乃至世界上很少用此种方式。 5、整体仪器冷冻方式由于仪器所处环境经常变化及温度波动性较大,并且造价昂贵、操作条件恶劣,因此也不是常用方式。

CRS-RBT70橡胶低温脆性试验机(单试样法)

苏州亚诺天下仪器有限公司YANUO WORLD Physical testing equipment expert CRS-RBT70橡胶低温脆性试验机(单试样) 产品介绍

一、特点及用途:测定硫化橡胶在规定条件下试样受冲击出现破坏时的最高温度,即为脆性温度,可以对塑料及其他弹性材料在低温条件下的使用性能作比较性鉴定。可以测定不同橡胶材料或不同配方的硫化橡胶的脆性温度和低温性能的优劣。因此无论在科学研究材料及其制品的质量检验,生产过程的控制等方面均是不可缺少的。本仪器各项技术指标符合GB/T1682-2014硫化橡胶低温脆性单试样法等国家标准的要求。本仪器再原有设计中,增加了冷井搅拌器,使容器四周温度更均匀,下降温度更快,节约时间,降低了能耗。 二、技术参数 1、试验温度:-60℃—0℃:-70℃—0℃:-80℃—0℃【客户自选】 2、冲击速度:2m/s±0.2m/s 3、恒温后,试验3min时间内温度波动:<±0.5℃ 4、冲击器中心到夹持器下端距离:11±0.5mm 5、外型尺寸:720×700×1380mm 6、功率:1100W 7、冷井容积:3L 三、结构原理 3.1升降夹持器 升降夹持器由带有夹持器的气缸和气缸座组成。 从试样受冲击部位,到夹持器下端的距离为11.0±0.5mm 3.2冲击装置 冲击装置由冲击器和弹簧组成。 3.3冲击器 冲击器头部形状和尺寸。冲击器的重量为200±20g,其工作行程为40±1mm。冲击气缸在复位状态下,冲击器端部到试样的距离为25±1mm。 四、使用方法 4.1接通电源,温控仪和计时器显示灯亮。 4.2向冷井中注入冷冻介质(一般为工业乙醇),其注入量应保证夹持器的下端到液面的距离为75±10mm。 4.3将试样垂直夹在夹持器上。夹的不宜过紧或过松,以防止试样变形或脱落。 4.4按下夹持器,开始冷冻试样,同时启动时序控制开关(或按动秒表)计时。试样冷冻时间规定为3.0±0.5min。试样冷冻期间,冷冻介质温度波动不得超过±1℃。 4.5提起升降夹持器,使冲击器在半秒钟内冲击试样。 4.6取下试样,将试样按冲击方向弯曲成180°,仔细观察有无破坏。 4.7试样经冲击后(每个试样只准冲击一次),如出现破坏时,应提高冷冻介质的温度,否则降低其温度,继续进行试验。 通过反复试验,确定至少有两个试样不破坏的最低温度和至少一个试样破坏的最高温度,如这两个结果相差不大于1℃时,即试验结束。 五、试验标准 5.1规格 试样的长为25.0±0.5mm,宽为6.0±0.5mm,厚为2.0±0.3mm。 5.2要求 试样的表面应光滑,无外来杂质及损伤。成品应经打磨后裁制成相应尺寸。

金属材料冲击实验指导书

实验二金属材料冲击实验 一、实验目的 1、观察分析低碳钢材料在常温冲击下的破坏情况和断口形貌。 2、测定低碳钢材料的冲击韧度αk值。 3、了解冲击试验方法。 二、实验设备 1、金属摆锤冲击试验机。 2、游标卡尺。 三、实验材料 本实验采用GB/T 229?1994标准规定的10mm?10mm?55mm U形缺口或V 形缺口试件。 四、实验步骤及注意事项 1、测量试件缺口处尺寸,测三次,取平均值,计算出横截面面积。 2、检查回零误差和能量损失:正式试验开始前在支座上不放试件的情况下 “空打”一次: (1)取摆:按“取摆”键,摆锤逆时针转动; (2)退销:按“退销”键,保险销退销; (3)冲击:按“冲击”键,挂/脱摆机构动作,摆锤靠自重绕轴开始进行冲击; (4)放摆:按“放摆”键,保险销自动退销,当摆锤转至接近垂直位置时便自动停摆; (5)清零:按“清零”键,使摆锤角度值复位为零。注意:必须在摆锤处于垂直静止状态时方可执行此动作。 第一次“空打”后显示屏上显示的空打冲击吸收功N1即为回零误差,此值经校正后应不大于此摆锤标称能量值的0.1%。 继续“空打”五次,记下第六次空打冲击吸收功N6,则摆锤在摆动中由于空气和摩擦阻力造成的能量损失为:

()1610 1N N e -= 此值应不大于此摆锤标称能量值的0.5%。 3、正式试验:按“取摆”键,摆锤逆时针转动上扬,触动限位开关后由挂摆机构挂住,保险销弹出,此时可在支座上放置试件(注意试件缺口对中并位于受拉边)。然后顺序执行以上“取摆”、“退销”、“冲击”、“放摆”动作。显示屏上将显示该试件的冲击吸收功和相应的冲击韧度。 4、摆锤抬起后,严禁在摆锤摆动范围内站立、行走和放置障碍物。 五、实验数据记录及结果处理

金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸 编制: 审核: 批准: 生效日期: 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日

本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备 GB/T 8170 数值修约规则与极限数值的表示和判定 GB/T 10623 金属材料力学性能试验术语 术语和定义 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 标距gauge length 用于测量试样尺寸变化部分的长度。 原始标距original gauge length 在施加试验力之前的标距长度。 断后标距final gauge length after fracture 试样断裂后的标距长度。 平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S0-S u)与原始横截面积(S0)之比的百分率。 符号和说明

与试样相关的符号及说明如下: 形状和尺寸 一般要求 试样的形状与尺寸取决于要被试验的金属产品的形状和尺寸。通常从产品,压制坯或铸件切取样坯经机械加工制成试样。但具有恒定横截面的产品(型材,棒材,线材等)和铸造试样(铸铁和铸造非铁合金)可以不经机加工而进行试验。 原始标距与横截面有L0=k 关系的试样称为比例试样,国际上使用的比 例系数k。但试样横截面积太小时,以致采用比

6低温冲击实验

六、低温冲击实验 一、实验目的: 1. 了解材料的低温脆性,学会测定材料韧脆转变温度的原理和方法; 2. 掌握冲击韧性的实验方法,要求能正确地测试材料的冲击韧性; 3. 熟悉冲击试样的宏观断口特征。 二、实验仪器材料: JB30GD 型冲击实验机、游标卡尺、低温箱、液氮罐、标准夏氏V 型缺口试样 三、实验原理: (一)冷脆与冷脆转变温度T K 有一些金属材料如体心立方晶格的中、低强度结构钢,当其服役温度降低时,其塑性、韧性便急剧降低,使材料脆化,这种现象叫做冷脆。由于温度降低造成金属由韧性状态转变为脆性状态的温度叫做冷脆转变温度,用符T K 表示。不同金属的冷脆转变温度T K 是不同的,T K 愈低,表示脆化倾向愈小,即在低温下使用时危险性愈小。金属的冷脆现象对一些在寒冷地带服役的机械设备(工程机械、运输机械、桥梁、铁路、输油管道等)带来很大危害及影响。因此,对制造这些设备的金属材料,常常需要测定其冷脆转变温度T K 以确定其低温脆化倾向的大小。 (二)冷脆转变温度T K 的测定方法 金属冷脆转变温度T K 可通过低温系列温度冲击实验来测定。所谓低温系列冲击试验就是对同一种金属材料的冲击试样,在低于室温的一系列不同温度下作断口百分数 冲击吸收功温度t/°C 纤维区 晶状区 X100率 分百口断图1 冲击吸收功或断口形貌与温度的关系曲线

冲击试验。根据其冲击吸收功A K 随温度t 的变化关系,或试样冲断后断口形貌随温度t 的变化关系,来确定其冷脆转变温度。图l 为体心立方金属的A K —t 或断口率—温度关系曲线示意图。由图可见,这两种曲线一般都由三个部分组成。第一部分为冲击吸收功变化不大的高冲击吸收功部分(上平台),这部分冲击断口形貌特点是灰暗色、纤维状属于韧性断口;第三部分是冲击吸收功变化不大的低冲击吸收功部分(下平台),这一部分冲击断口形貌特点是结晶状,是典型的脆性断裂断口,曲线的中间部分(第二部分)冲击吸收功变化较大,断口形貌为不同比例的结晶状和纤维状的混合断口,所以在这个温度区间即为冷脆转变温度范围。 根据以上两种曲线,可以分别采用能量法或断口形貌法来确定金属材料的冷脆转变温度。 1、 能量法: 以冲击吸收功降低到某一个具体数值时的温度定位T K 。 对于夏比U 型缺口试样,取冲击能量为0.4A KUmax 所对应的温度为T K 或取12(A KUmax +A KUmin )所对应的温度为T K 。 A KUmax 是指室温下100%韧性断口所对应的 冲击吸收功,而A KUmin 是指刚刚出现100% 结晶状断口时所对应的冲击吸收功。 对于夏比V 型缺口试样,通常规定某 一个冲击吸收功所对应的温度T K 。这个冲 击吸收功是根据构件的使用条件来选取的。 2、 断口形貌法 指冲击断口形貌中纤维区所占面积下 降到50%时所对应的温度为T K ,记为 50%FATT 。这种方法主要适用V 型缺口试样。 3、 综合法 将A KU -t 关系曲线中的上平台开始上升的温度定义为t K 。因为这个温度相当于刚刚开始全部形成结晶状断口形貌时的温度,所以这种t K 也叫无塑性转变温度,常用符号NDT 表示。 四、实验步骤 1. 本实验温度可选择:20o C 、0 o C 、-10 o C 、-20 o C 、-30 o C 、-35 o C 、-40 o C 、-50 o C 八个温度,各温度下的冲击试样不得少于3个。 2. 试样的准备:领取试样,在端部打上编号。用棉纱擦净,再测量试样尺寸,最后检查试样缺口处的加工质量。 3. 了解冲击试验机的构造、工作原理、操作方法及安全注意事项 4. 冷却试样:根据试验温度要求在低温恒温箱内放入试样,进行保温。调节温纤维区晶状区剪切唇 图2 冲击断口形貌

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均 匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ;屈服点σS;抗拉强度σb;断裂强度σk。 ε 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本

吻合;塑性变形阶段两者出线显著差异。 2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也

叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映单晶体和多晶体金属的弹性模量,主要取决于金属原子本性和晶体类型。 包申格效应;滞弹性;伪弹性;粘弹性。 包申格效应消除方法:预先大塑性变形,回复或再结晶温度下退火。循环韧性表示材料的消震能力。 3、关于塑形变形的问题 a、相关概念 滑移:滑移系越多,塑性越好;滑移系不是唯一因素(晶格阻力等因素);滑移面——受温度、成分和变形的影响;滑移方向——比较稳定 孪生:fcc、bcc、hcp都能以孪生产生塑性变形;一般在低温、高速条件下发生;变形量小,调整滑移面的方向

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB 中华人民共和国国家标准 GB/T228-2002 eqv ISO 6892:1998 金属材料室温拉伸试验方法 Metallic materials——Tensile testing at ambient temperature 发布 GB/T228-2002 目次 前言Ⅲ ISO前言Ⅳ 1 范围1 2 引用标准1 3 原理1 4 定义1 5 符号和说明5 6 试样6 7 原始横截面积(So)的测定7 8 原始标距(Lo)标记7 9 试验设备的准确度7 10 试验要求8 11 断后伸长率(A)和断裂总伸长率(At)的测定8 12 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定9 13 屈服点延伸率(Ae)的测定9 14 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定10 15 规定非比例延伸强度(Rp)的测定10 16 规定总延伸强度(Rt)的测定11 17 规定残余延伸强度(Rr)的验证方法11 18 抗拉强度(Rm)的测定11 19 断面收缩率(Z)的测定12 20 性能测定结果数值的修约14 21 性能测定结果的准确度14

22 试验结果处理15 23 试验报告15 附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16 附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于 4mm线材、棒材和型材使用的试样型17 附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试 样类型20 附录D(标准的附录)管材使用的试样类型21 附录E(提示的附录)断后伸长率规定值低于5%的测定方法24 附录F(提示的附录)移位方法测定断后伸长率24 附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25 附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26 附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。2)举例27 附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28 附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31 附录L(提示的附录)新旧标准性能名称和符号对照34 GB/T228-2002 前言 本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。在主要技术内容上与ISO6892:1998相同,但部分技术内容较为详细和具体,编写结构不完全对应。补充性能测定结果数值的修约要求和试验结果处理。增加试样类型。删去附录F(提示的附录)计算矩形横截面试样原始标距用计算图尺;删去附录L(提示的附录)参考文献目录。增加附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(RP);增加附录L(提示的附录)新旧标准性能名称和符号对照。 本标准合作并修订原国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。对原标准在以下方面的技术内容进行了较大修改和补充: ——引用标准; ——定义和符号; ——试样; ——试验要求; ——性能测定方法; ——性能测定结果数值修约; ——性能测定结果准确度阐述。 自本标准实施之日起,代替GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。 本标准的附录A∽D都是标准的附录。 本标准的附录E∽L都是提示的附录。 本标准由原国家冶金工业局提出。 本标准由全国钢标准化技术委员会归口。

相关文档
最新文档