提升管反应器

提升管反应器
提升管反应器

提升管反应器的作用

图1 提升管反应器结构示意图

提升管反应器的基本结构形式如图1所示。提升管反应器的直径由进料量确定。工业上一般采用的线速是人口处为4-7m/s ,出口处为12-18m/s。随着反应深度的增大,油气体积流量增大,因此有的提升管反应器由不同直径的两段(上粗下细)组成二提升管反应器的高度由反应所需时间确定,工业设计时多采用2-4s的反应时间。近年来由于进人反应器的再生催化剂温度多已提高到650-720℃,提升管下段进料油与再生催化剂接触处的混合温度较高,当以生产汽油、柴油为上要目标时,反应只需2s左右的时间就已基本完成,过长的反应时间使二次裂化反应增多,反而使口的产物的收率下降。为了优化反应深度,有的装置采用终止反应技术,即在提升管的中上部某个适当位置注人冷却介质以降低终中部的反应温度,从而抑制二次反应。有的还在注人反应终止剂的问时相应地提高或控制混合段的温度,称为混合温度控制技术(MTC)。此项技术的关键是如何确定注人冷却介质的适宜位置、种类和数量。国内有些炼油厂采用了注人终止剂技术,但是仅是凭经验来确定有关的参数,可靠性差。中国石油大学提出的提升管反应器流动—反应模型可以对提升管内的反应过程进行三维模拟,初步解决了科学确定上述有关参数的问题。图2是在某催化裂化装置的提升管的适当位置注入反应终止剂前后提升管沿高的温度及反应产二物产率变化情况

的模拟计算结果。由此可见,注人终止剂后,汽油和柴油的产率都有所提高。注人终止剂的效果与原工况及注人的条件有关。

提升管反应过程

图2 提升管注人终止剂的效果的模拟计算结果

提升管上端出口处设有气—固快速分离构件,其目的是使催化剂与油气快速分离以抑制反应的继续进行。快速分离构件有多种形式,比较简单的有半圆帽形、T字形的构件,为了提高分离效率,近年来较多地采用初级旋风分离器。实际上油气在沉降器及油气转移管线中仍有一段停留时间,从提升管出日到分馏塔约为10-20s。,而且温度也较高一般为450-510℃。在此条件下还会有相当程度的二次反应发生,而且主要是热裂化反应,造成于气和焦炭产率增大。对重油催化裂化,此现象更为严重,有时甚至在沉降器、油气管线及分馏塔底的器壁上结成焦块。因此,缩短油气在高温下的停留时间是很有必要的。适当减小沉降器的稀相空间体积、缩短初级旋风分离器的升气管出口与沉降器顶的旋风分离器入口之间的距离是减少二次反应的有效措施之一。据报道,采取此措施可以使油气在沉降器内的停留时间缩短至3s,热裂化反应明显减少。

提升管下部进料段的油剂接触状况对重油催化裂化的反应有重要影响。对重油进料,要求迅速汽化、有尽可能高的汽化率,而且一与催化剂的接触均匀。原料油雾化粒径小可增人传热面积,而.只由于原料油分散程度高,油雾与催化剂的接触机会较均等,从而提高了汽化速率。实验及计算结果表明,雾滴初始粒径越小则进料段内的汽化速率越高,两者之间呈指数关系。实验结果还表明,对重油催化裂化,提高进料段的汽化率能改善产品产率分布。因此,选用喷雾粒径小,而且粒径分布范围较窄的高效雾化喷嘴对重油催化裂化是很重要的。模拟计算结果表明,当雾滴平均粒径从

60μm减小至50μm时,对重油催化裂化的反应结果仍有明.显的效果。除了液雾的粒径分布外,影响油雾与催化剂的接触状况的因素还有喷嘴的个

数及位置、喷出液雾的形状、从预提升管上升的催化剂的流动状况等。在重油催化裂化时,对这些因素都应予以认真的研究。

汽提段的作用

沉降器下面的汽提段的作用是用水蒸气脱除催化剂上吸附的油气及置

换催化剂颗粒之间的油气,其目的是减少油气损失和减小再生器的烧焦负荷。裂化反应中生成的催化焦、附加焦及污染焦的含氢量约为4%(质量分数),但汽提段的剂油比焦的含氢量有时可达10%(质量分数)以上。因此,从汽提后的催化剂上焦炭的氢碳比可以判断汽提效果。汽提段的效率与水蒸气用量、催化剂在汽提段的停留时间、汽提段的温度及压力以及催化剂的表面结构有关。工业装置的水蒸气用量一般为2-3kg/1000kg催化剂,对重油催化裂化则用4-5 kg/1000kg催化剂。改进汽提段的结构可以提高汽提效率或减少水蒸气用量。据报道,在初级旋风分离器料腿处安装预汽提器有利于进一步提高油气与催化剂分离的效果。

编辑本段提升管反应器的发展

提升管反应器已广泛应用于重油催化裂化,但仍还有不少值得研究和改进之处,特别是为了提高轻质油收率并直接生产清洁油品,近年来出现了不同形式反应器系统的重油催化裂化工艺技术,如两段提升管催化裂化技术(TSRFCC)、多产异构烷烃催化裂化技术(MIP)以及催化裂化汽油辅助反应器改质技术等。

两段提升管催化裂化技术(TSRFCC)

图3 两段提升管催化裂化工艺流程示意图

中国石油大学重质油国家重点实验室开发的(TSRFCC)技术,采用两段提升管反应器,构成了两段提升管催化裂化反应系统(见图3),第一段提

升管进新鲜原料,与再生催化剂接触反应一定时间后进人油气和待生催化剂分离系统;未转化的原料(循环油)进人第二段提升管与再生催化剂接触进一步转化反应。TSRFCC技术通过分段反应、催化剂接力、短反应时间和大剂油比工艺条件,可以明显促进催化反应和抑制热裂化反应,并在一定程度下克服新鲜原料和循环油在同一反应器内存在的恶性吸附—反应竞争。工业应用结果表明,轻质油收率提高1%-2%,干气产率下降1.5%,柴汽比增加,产品质量得到明显改善。

多产异构烷烃催化裂化技术(MIP)

MIP工艺采用串联提升管反应器型式的新型反应系统及相应的工艺条件,选择性地控制裂化反应,促进氢转移反应和异构化反应,主要目的是降低催化裂化汽油烯烃含量。新型反应系统优化了催化裂化一次反应和二次反应,该反应系统分为两个反应区,第一反应区以一次裂化反应为主,采用较高的反应强度,即较高的反应温度和较大的剂油比,裂解较重质的原料油并生产较多的烯烃;第二反应区主要增加氢转移反应和异构化反应,抑制二次裂化反应,采用较低的反应温度和较长的反应时间。因此,MIP工艺技术是从反应器型式和工艺条件的差异来构造两个不同的反应区,其工艺流程可见图4。工业化应用结果表明,1}IIP技术可大幅度降低汽油的烯烃含量,重油裂化能力较好,液收率较高。

催化裂化汽油辅助反应器改质技术

图4 MIP工艺流程示意图

中国石油大学成功开发的催化裂化汽油辅助反应器改质技术,以常规催化裂化催化剂和常规催化裂化工艺为基础,依托原有催化裂化装置,增设了一个单独的提升管与湍动床层相组合的辅助反应器,利用这一单独的改质反应器对催化裂化汽油进行进一步改质,促进了需要的氢转移和异构化反应并抑制了不需要的裂化反应,实现了催化裂化汽油的良性定向催化转化,从而达到了降低烯烃含量、维待辛烷值基本不变以生产清洁汽油的目的。其工艺流程如图5所示。工业化应用结果表明,可使催化裂化汽油烯烃含量降到20%(体积分数)以下,且维持辛烷值不变,使催化裂化装

图5 汽油辅助反应器改质技术工艺流程示意图

置直接生产出烯烃含量合格的高品质清洁汽油。改质过程损失小,只占整个重油催化裂化装置物料平衡的0.8%(质量分数),且操作与调变灵活,通过调整改质反应器操作,可提高丙烯产率3%左右。

除此之外,有研究报道,采用渣油单独进料并选好其注人的位置会有利于改善反应状况。对下行式钾式反应器也有不少研究。从原理上分析,卜行式反应器可能有以下一些优点:油气与催化剂一起从上而下流动,没有固体颗粒的滑落间题,流型可接近平推流而很少返混;有可能与管式再生器结合而节约投资等。这种反应器型式可能对要求高温、短接触时间的反应更为适合。关于下行式反应器的研究已有一些专利,但尚未见有工业化的报道。[1]

催化裂化提升管反应器流动反应耦合模型研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2015年第34卷第3期 ·608· 化 工 进 展 催化裂化提升管反应器流动反应耦合模型研究进展 杨朝合,杜玉朋,赵辉 (中国石油大学(华东)重质油国家重点实验室,山东 青岛 266580) 摘要:催化裂化(FCC )工艺在重质油轻质化过程中发挥着重要作用,而FCC 提升管反应器的模型化是催化裂化新工艺与新装备的开发、催化裂化装置稳定操作与生产调优等常需做的工作。本文首先根据流动模型与反应模型不同的集成方式对提升管反应器流动-反应耦合模型进行了归纳与分类,并回顾了国内外流动-反应耦合模型的研究历程,指出了耦合模型的发展趋势;随后对当前研究较多的计算流体力学(CFD )流动-反应耦合模型进行了较为全面的阐述,包括对耦合模型的应用场合、模型求解解耦方法的研究情况等均作了介绍,同时还分析了该类耦合模型所存在的不足之处,并指出工业提升管反应器在线采样技术的开发在耦合模型的验证工作上的必要性;最后,对FCC 提升管反应器流动-反应耦合模型研究进行了总结与展望,以期能够为FCC 提升管反应器模型化新方法的提出以及耦合模型的验证工作等研究给予借鉴和指导。 关键词:催化裂化;提升管反应器;流动;反应;模型;计算流体力学 中图分类号:TE 624 文献标志码:A 文章编号:1000–6613(2015)03–0608–09 DOI :10.16085/j.issn.1000-6613.2015.03.002 Evolvement of flow-reaction models for fluid catalytic cracking riser reactors YANG Chaohe ,DU Yupeng ,ZHAO Hui (State Key Laboratory of Heavy Oil Processing ,China University of Petroleum ,Qingdao 266580,Shandong ,China ) Abstract :Fluid catalytic cracking(FCC) is an important process in converting heavy oil into light distillates. The modelling of FCC riser reactors is essential in the development of novel FCC processes and new equipment ,as well as the steady operation and optimization of FCC units. This paper reviewed the coupled flow-reaction models for FCC risers between flow models and reaction models. The evolvements of the coupled flow-reaction models were also reviewed. The applications of the coupled CFD flow-reaction models were presented and the decoupling methods in solving the coupled models were addressed. Meanwhile ,the disadvantages of the coupled CFD flow-reaction models were analyzed and the requirement of online sampling technologies for industrial FCC riser reactors was pointed out. Finally ,the studies on the coupled flow-reaction models were summarized. This review would provide reference for investigations in novel modeling approaches for FCC riser reactors and for validations of the coupled models. Key words :fluid catalytic cracking ;riser reactor ;flow ;reaction ;model ;computational fluid dynamics (CFD) 反应器是诸多化学工业过程的关键设备,提升 管反应器是石油加工领域重要的二次加工过程—— 催化裂化(FCC )的核心装备。从外观上看,FCC 提升管反应器虽简单到仅是一根竖直的圆管,但其收稿日期:2014-08-19;修改稿日期:2014-09-19。 基金项目:国家973计划项目(2012CB215006)。 第一作者及联系人:杨朝合(1964—),男,教授,从事化学反应工程、石油炼制技术、化工过程节能与优化等方面的研究。E-mail yangch@https://www.360docs.net/doc/c64441490.html, 。

4 管式反应器

4管式反应器 4.1在常压及800℃等温下在活塞流反应器中进行下列气相均相反应: 6532664 +→+C H CH H C H CH 在反应条件下该反应的速率方程为: 0.51.5,/.=T H r C C mol l s 式中C T 及C H 分别为甲苯及氢的浓度,mol/l ,原料处理量为2kmol/h ,其中甲苯与氢的摩尔比等于1。若反应器的直径为50mm ,试计算甲苯最终转化率为95%时的反应器长度。 解:根据题意可知甲苯加氢反应为恒容过程,原料甲苯与氢的摩尔比等于1,即: 00=T H C C ,则有:0(1) ==?T H T T C C C X 示中下标T 和H 分别代表甲苯与氢,其中: 53300330000.5 1.01310 5.6810/8.314101073 2/21/0.27810/??××===×××====×T T T T p C kmol m RT F Q C kmol h kmol s 所以,所需反应器体积为: 00000.5 1.500 2.50.95333 1.5 1.501.5 1.5(10.95)10.278100.4329 3.0061.5(5.6810)(1) 1.51 ???==??=×=×=×??∫ ∫∫T T X X T T r T T T H T T T dX dX V Q C Q C C C C dX m X 所以,反应器的长度为:23.0061531.10.05 3.14/4 =×m 4.2根据习题3.2所规定的条件和给定数据,改用活塞流反应器生产乙二醇,试计算所需的反应体积,并与间歇釜式反应器进行比较。 解:题给条件说明该反应为液相反应,可视为恒容过程,在习题3.2中已算出: 0275.8/=Q l h 0 1.231/=A C mol l 所以,所需反应器体积:00000000(1)() 275.80.95818.61 5.2 1.23110.95 =??===?×?∫A X A r A A A B A A A A A dX V Q C kC X C C X Q X l kC X

管式反应器

管式反应器 除了上一章的两类理想反应器,管式反应器也是一类理想反应器模型(活塞流模型)。与间歇釜式反应器不同,全混流和活塞流模型用于流动过程。 根据上一章所学的知识,物料在反应器中的停留时间是决定化学反应转化程度和产物分布的一个重要因素。全混流和活塞流模型均是根据特定的停留时间分布规律建立起来的(这部分内容将在下一章中详细阐述),是两种极端的情况,是分析许多问题的出发点,也是各种实际反应器设计的理论基础。本章将涉及到如下的具体内容: 活塞流模型的基本假定 等温管式反应器设计与分析 管式反应器与釜式反应器的性能比较 循环管式反应器的分析计算 管式反应器的变温操作 第一节活塞流假定 流体流动是非常复杂的物理现象,影响到系统的反应速率和转化程度。 一、流动状况对反应过程的影响 1. 流动情况影响 例1. (1)空管中, 图4.1 (a)(b) 内部各部分流体的停留时间不同,因此反应时间也不一样,反应速率和最终转化率也不一样 第二节等温管式反应器的设计

一、单一反应 在管式反应器中进行的单一反应,取如图4.2所示的微元体(高为dZ) 图 4.2 管式反应器示意图 在定态条件下, 由此得到 或 ∴(4-4) ∴(4-5)假设 =常数(=X Af下的值),则 --釜式反应器的设计方程 式(4-5)可以进一步变成:

(间歇釜式的设计的方程为) 注意:二者尽管形式上相同,但一个是反应时间t,一个空时τ(与所选择的进口状态有关)。另外,间歇釜式反应器总是恒容的。如果管式反应器也在恒容下进行,则有τ=t;否则,τ≠t。 对于式(4-4),设反应器的截面积为A,则有dV r=Ad Z,那么 对于恒容过程 C A=C AO(1-X A)则 时间变量转化为位置变量。 例4.1 例4.2 例4.3例4.4例4.5 第三节管式与釜式反应器反应体积的比较 在处理量、组成、T、XAf相同的条件下进行对比。对于二级可逆反应,使用不同形式的理想反应器时所需要的反应体积如表4-1所示,即有 (本章前面和上一章的例题给出的结果) 一般来说,比较按正常动力学和反常动力学两种情况讨论:

两段提升管催化裂化

两段提升管催化裂化/裂解系列技术 TSRFCC TM Process 技术背景 催化裂化仍将是石油加工企业最重要的蜡油和渣油转化为高价值轻质油品的重油轻质化手段。目前我国车用汽油的80%、柴油的三分之一左右来自于催化裂化过程。1936年建成世界上第一套固定床催化裂化工业装置,20世纪60年代由于分子筛催化裂化催化剂的出现,发展了提升管催化裂化技术并沿用至今。近年来,研制出了各种类型的催化裂化催化剂以适应于不同的原料和不同的加工方案,甚至可以做到“量体裁衣”;围绕着提升管反应器,在进料雾化喷嘴、预提升段及终端气固分离设备等方面也有较大的改进。这些都对提高目的产品产率做出了重要贡献,但在近半个世纪中一直存在着“重”催化剂开发“轻”工艺技术研究的倾向。 由于石油资源的重质化和劣质化,以及对轻质油品需求的迅速增加,催化裂化所加工的原料越来越重,因此,提高目的产品产率和改善产品分布一直是催化裂化技术进步的主旋律。然而随着环保法规的日趋严格,汽柴油质量升级步伐加快,催化裂化特别是重油催化裂化目前面临着前所未有的困难,如何在保证目的产品收率和汽油辛烷值不减少的前提下降低催化汽油烯烃含量是当务之急。简单地进行催化汽油回炼或使用降烯烃催化剂,以及延长反应物流在反应器中的停留时间实现汽油烯烃含量的降低,总是以牺牲汽柴油收率、总液体收率或柴油质量为代价。 两段提升管催化裂化(TSRFCC—Two Stage Riser Fluid Catalytic Cracking)是在中国石油天然气股份公司的支持下,由中国石油大学(华东)历时八年开发成功的一项新技术,通过华东设计院实现工业化。2002年至今已有9套工业装置投入生产。该技术基于多相复杂化学反应工程理论基础,在不回炼汽油的情况下(主要工艺方案)可显著提高装置的加工能力和目的产品产率,同时增加柴汽比,提高柴油的十六烷值。与传统催化裂化技术相比,TSRFCC技术具有极强的操作灵活性,通过工艺流程、设备参数和操作条件优化,以及配合适宜的

管式反应器课程设计

化学化工学院 化工专业课程设计 设计题目:管式反应器设计 化工系

化工专业课程设计——设计文档质量评分表(100分) 评委签名: 日期:

目录 绪论 .........................................................错误!未定义书签。1设计内容与方法介绍..........................................错误!未定义书签。 反应器设计概述............................................错误!未定义书签。 设计内容..................................................错误!未定义书签。 生产方法介绍..............................................错误!未定义书签。 反应器类型特点............................................错误!未定义书签。 反应器选择及操作条件说明..................................错误!未定义书签。2工艺计算....................................................错误!未定义书签。 主要物性数据..............................................错误!未定义书签。 计算,确定管长,主副反应收率.............................错误!未定义书签。 管数计算..................................................错误!未定义书签。3压降计算公式................................................错误!未定义书签。4催化剂用量计算..............................................错误!未定义书签。5换热面积计算................................................错误!未定义书签。6反应器外径计算..............................................错误!未定义书签。7壁厚计算....................................................错误!未定义书签。 8 筒体封头计算................................................错误!未定义书签。9管板厚度计算................................................错误!未定义书签。10设计结果汇总...............................................错误!未定义书签。11设计小结...................................................错误!未定义书签。

硫酸氨管式反应器技改项目

硫酸氨管式反应器造粒技术改造项目目录 一.工艺叙述 1.1 工艺流程简述 1.2工艺原理及工艺特点 二管式反应器造粒技术与国内氨酸法对比 2.1国内氨酸法工艺 2.2硫酸、氨管式反应器工艺 三改造所需设备 3.1硫酸、氨管式反应器系统设备 3.2 附属设备 3.3 仪表及计量设备 3.4 氨站设备 3.5 酸站设备 四产品方案 五投资估算

一.工艺叙述 1.1工艺流程简述 1.1.1原料预处理与计量 由于原料磷铵和氯化铵有块状物,影响了原料的输送和计量,需对其进行预处理。上述两种原料经人工解包后,倒入其各自的预处理料斗,经处理后直接落入原料计量料斗,同时尿素也经破碎后进入原料料斗。 原料计量采用电子皮带称,六台电子皮带称分别用于原料磷铵、氯化铵、氯化钾、固体尿素、微量元素的计量。原料电子皮带称采用工控机控制,以实现原料计量报表、历史记录、配方自动调节等功能。 1.1.2 造粒 计量后的原料由位于电子称下方的收集皮带机送入厂房,与系统返料一起进入造粒给料控量料斗,固相造粒物料经给料控量料斗均衡的进入造粒机,保证了造粒固、液比的稳定,同时也保证了造粒的稳定性。 来自合成氨的液氨经液氨蒸发器蒸发后与经硫酸泵送来的硫酸,及洗涤液经计量,调节控制后,以额定量进入硫酸、氨管式反应器,反应器生成的高温低湿硫酸铵料浆借其本身产生的蒸汽自雾化,均匀地喷到造粒床层上,促进造粒物料粒化,并改善造粒物料物性。同时,部分液氨经氨预处理器用蒸汽汽化并混合后通过氨分布器进入造粒床层,与磷铵反应并参与造粒。 1.2工艺原理及工艺特点 本造粒工艺的特点是利用硫酸、氨化学反学热及氨与磷铵的反应热

理想管式循环反应器

理想管式循环反应器 一、循环反应器简介 循环反应器是一种把出口产物的一部分循环至反应器入口再进行反应的反应器。最常见的循环反应器是管式循环反应器。其基本的结构如图1所示。 图1 管式循环反应器基本结构图 循环反应器中一个最重要的概念就是循环比——循环流量与出口流量之比。随着旬环比的增加,平推流反应器内的轴向浓度梯度降低,这种循环操作的平推流反应器越来越接近全混流反应器。 这类反应器广泛地用于自催化反应、生化反应和某些自热反应。不同类型的循环反应器有不同的目的。对于反应热很大的反应,采用循环反应器可以进行器外换热,更好地控制床层温度;对于自催化反应,循环部分产品可以加快反应速率;对于反应转化率高时二次反应大的反应,采用循环反应器可以降低原料的一次反应深度,提高主要产品的选择性。 二、循环反应器设计方程 关于反应器的计算,其关键是设计方程的导出。由于存在循环,因此循环反应器不同于之前学过的CSTR或PFR,设计方程也有很大不同。这里仅仅考虑理想的管式循环反应器。

循环反应器模型如图2所示。 图2 管式循环反应器模型 依据上述循环比定义,这里的循环比为2 3 23A A F F R == νν。也可以看到,当R=0时,该反应器就是PFR ;当R→∞时,该反应器就是CSTR 。 这里,为了便于计算,给出以下定义。 A X :A 组分的转化率,也就是反应的A 的物质的量与输入的A 的物质的量 之间的比值。 为了更好的分析整体的情况,我们将中间的反应过程看做一个黑箱(如图3所示),那么总的转化率0 2 02A A A A F F F X -= 。 图3 循环反应器的黑箱模型 为了得到循环反应器的设计方程,通常会沿用PFR 设计方程,以如下的公

气升式反应器

气升式反应器 气升式反应器是在鼓泡式反应器的基础上发展起来的,它是利用空气的喷射功能和流体的密度差造成的反应液循环流动,已实现流体的搅拌、混合和氧传递。由于它能提供较好的混合和较低的剪应力。 主要结构设计参数为降液管与生业管的横截面之比。 微藻培养反应器 Eg 开放池塘 密闭光反应器,(管道式,圆筒形式,扁平箱式,浅层槽式和光纤式) 1 管道式反应器 2气体分离器 3离心泵 4 二氧化碳发生器 5 培养基接受槽66 6 净水装置7 7 收货储槽, 8 离心机

氧的传递 由于氧气在水中的溶解度较低,为好氧细胞提供足够的溶氧是巨大的挑战。 1 氧气的扩散(气泡到气液界面) 气泡经外界压力迅速移动至气体液体的分界面 2氧在气液界面的分子扩散 若气泡中氧分压较高,氧气则迅速扩散至液体中 若气泡中氧气分压较低,或是二氧化碳浓度较高,氧则扩散缓慢或者停止扩散 3 氧在气泡边界层的扩散行为 由于氧气需经扩散到达并溶解在液体中,所以溶质通过气泡边界层的速度较为缓慢。 氧通过气泡边界层的的速度收到以下因素的影响 温度 液体中的氧分压 液体中氧的饱和浓度 气泡中的氧分压 培养液粘度 搅拌速度 4 培养液中氧的对流及其扩散 氧在培养液中的传递速率取决于 搅拌功率

粘度 发酵液中的氧浓度 氧传递至微粒或者菌体内部 5 经过微利或者菌体球的边界层 6 进入菌体或者微粒 7 穿过菌体或者微粒 8穿过菌体细胞膜 9 反应 其中5 7步速度缓慢

总有一天你会渐渐明白,对自己笑的人不一定是真爱,对方表面的伪善是为博取信赖,暗里他可能会伺机将你伤害。 总有一天你会渐渐明白,不是所有人都对你心门敞开,即使你用善良和真心对待,有的人依然会悄悄将你出卖。 总有一天你会渐渐明白,哪怕你拿到了幸福的号码牌,命运之神也不一定对你温柔相待,你的余生仍有可能会被忧伤覆盖。 总有一天你会渐渐明白,人世间每个人都会有孽缘和无奈,有的人不值得你为他付出和慷慨,命中注定的灾祸你想躲也躲不开。 总有一天你会渐渐明白,不管你在人群中出不出彩,不管你对生活认真抑或懈怠,该来的一切总是会因你而来。 总有一天你会渐渐明白,人生总有预料不到的惊喜和意外,纵然你处在绝望的谷底和天台,转身就有可能看到晴天驱走阴霾。 总有一天你会渐渐明白,无论人生之路宽畅还是狭窄,如果你能用勇敢和坦然对待,一切困难都不是前进的阻碍。 天下总有地方是专属于你的舞台,你的江湖你才是真正的主宰,对于前尘和过往少问应不应该,无论何处你都要展现自己的风采。 别去管自己是不是栋梁人才,世上每个人都是特别的存在,无论你踏步于尘世内外,尽力和无悔才是对命运最好的交差。

提升管反应器

提升管反应器的作用 图1 提升管反应器结构示意图 提升管反应器的基本结构形式如图1所示。提升管反应器的直径由进料量确定。工业上一般采用的线速是人口处为4-7m/s ,出口处为12-18m/s。随着反应深度的增大,油气体积流量增大,因此有的提升管反应器由不同直径的两段(上粗下细)组成二提升管反应器的高度由反应所需时间确定,工业设计时多采用2-4s的反应时间。近年来由于进人反应器的再生催化剂温度多已提高到650-720℃,提升管下段进料油与再生催化剂接触处的混合温度较高,当以生产汽油、柴油为上要目标时,反应只需2s左右的时间就已基本完成,过长的反应时间使二次裂化反应增多,反而使口的产物的收率下降。为了优化反应深度,有的装置采用终止反应技术,即在提升管的中上部某个适当位置注人冷却介质以降低终中部的反应温度,从而抑制二次反应。有的还在注人反应终止剂的问时相应地提高或控制混合段的温度,称为混合温度控制技术(MTC)。此项技术的关键是如何确定注人冷却介质的适宜位置、种类和数量。国内有些炼油厂采用了注人终止剂技术,但是仅是凭经验来确定有关的参数,可靠性差。中国石油大学提出的提升管反应器流动—反应模型可以对提升管内的反应过程进行三维模拟,初步解决了科学确定上述有关参数的问题。图2是在某催化裂化装置的提升管的适当位置注入反应终止剂前后提升管沿高的温度及反应产二物产率变化情况

的模拟计算结果。由此可见,注人终止剂后,汽油和柴油的产率都有所提高。注人终止剂的效果与原工况及注人的条件有关。 提升管反应过程 图2 提升管注人终止剂的效果的模拟计算结果 提升管上端出口处设有气—固快速分离构件,其目的是使催化剂与油气快速分离以抑制反应的继续进行。快速分离构件有多种形式,比较简单的有半圆帽形、T字形的构件,为了提高分离效率,近年来较多地采用初级旋风分离器。实际上油气在沉降器及油气转移管线中仍有一段停留时间,从提升管出日到分馏塔约为10-20s。,而且温度也较高一般为450-510℃。在此条件下还会有相当程度的二次反应发生,而且主要是热裂化反应,造成于气和焦炭产率增大。对重油催化裂化,此现象更为严重,有时甚至在沉降器、油气管线及分馏塔底的器壁上结成焦块。因此,缩短油气在高温下的停留时间是很有必要的。适当减小沉降器的稀相空间体积、缩短初级旋风分离器的升气管出口与沉降器顶的旋风分离器入口之间的距离是减少二次反应的有效措施之一。据报道,采取此措施可以使油气在沉降器内的停留时间缩短至3s,热裂化反应明显减少。 提升管下部进料段的油剂接触状况对重油催化裂化的反应有重要影响。对重油进料,要求迅速汽化、有尽可能高的汽化率,而且一与催化剂的接触均匀。原料油雾化粒径小可增人传热面积,而.只由于原料油分散程度高,油雾与催化剂的接触机会较均等,从而提高了汽化速率。实验及计算结果表明,雾滴初始粒径越小则进料段内的汽化速率越高,两者之间呈指数关系。实验结果还表明,对重油催化裂化,提高进料段的汽化率能改善产品产率分布。因此,选用喷雾粒径小,而且粒径分布范围较窄的高效雾化喷嘴对重油催化裂化是很重要的。模拟计算结果表明,当雾滴平均粒径从 60μm减小至50μm时,对重油催化裂化的反应结果仍有明.显的效果。除了液雾的粒径分布外,影响油雾与催化剂的接触状况的因素还有喷嘴的个

提升管反应器技术要求

提升管反应器技术要求 1.本设备应按GB150—89《钢制压力容器》制造和验收。 2.本设备的对接焊缝型式应符合GB985~986—88中所规定的焊缝结构型式,制造厂亦可 按与此相应的工厂标准。 3.本设备碳素钢之间的焊接采用J426焊条,铭钼钢之间的焊接采用R307焊条,不锈钢 之间采用A137焊条,碳素钢与铭钼钢之间的焊接采用J426焊条,碳素钢与不锈钢之间及铭钼钢与不锈钢之间的焊接均采用A307焊条。 4.除注明者外,所有搭接焊缝和角焊缝的焊角高度均等于较薄件厚度,并必须是连续焊。 5.所有零件机械加工面的未注公差尺寸的公差应符合GB1804—79《公差与配合》IT14级 的规定,非机械加工面的未注公差尺寸的公差应符合IT16级的规定。 6.保温支持圈间距约为3000mm应避开环焊缝、开口和其它固定件,如避不开开口和其 它固定件时,可将支持圈断开。 7.本设备上支座与A32430处的固定支架的连接采用两个螺母,第一个螺母不拧紧,与支 座间的距离为1~3mm,用第二个螺母锁紧。 8.本设备安装后,其垂直度偏差不得超过20mm。 9.本设备组装时,其环焊缝的对口错边量不得超过1mm,对口处的端面不平度不大于 1/1000DN。 10.无图零件切边表面粗糙度为A。 11.本设备耐磨层JA—95应按WL2/1注6旋风分离器衬里性能进行。 12.本设备外保温应按TB60—78《设备保温规范》施工和验收。 13.A、B类焊缝应按GB3323—87《钢熔化焊对接接头射线照相和质量分级》进行100%探 伤,Ⅱ级为合格,C、D类焊缝应按GB150—89附录H″钢制压力容器渗透探伤进行100%探伤。 14.本设备组装前,须将提升管(编号24)割短90mm,拆除铰链型膨胀节(编号10—0 和21—0)上的装运螺栓,使膨胀节处于预变拉状态进行焊接,但不允许用膨胀节的预变形矫正管线的安装误差。复式普通型膨胀节应在组装完毕后拆除装运螺栓。 15.本设备制造完毕后应彻底除锈,涂底漆两道(不包括不锈钢部分)导向支架,固定支架 及膨胀节的推板涂底漆面漆各一道。 16.铰链型膨胀节安装时,各拉板应平行于提升管和斜管所在的平面。管线保温时,波纹管 及距波纹管端50mm的筒节,拉杆及拉杆支座周围50mm范围不保温。 17.开口A的安装技术要求详见中国科学院力学研究所的“提升管进料喷嘴布置图”。 注: 1.安装时,A32430处的固定支架中与支座相连接处的横梁上表面与支座底板下表面之间 保持4mm间距,其方法可采用在固定支架横梁的上表面垫一块4mm垫板,再将支座就位,与提升管焊牢,组装完毕后将垫板去掉。 2.流化蒸汽盘管(编号59—0)安装时,应先放入筒体(编号58)中进行组焊,然后再将 锥形封头(编号61)和椭圆形封头(编号53)与筒体组焊。 3.提升管上段材质为15CrMO的腐蚀裕量为1.5mm,下段不锈钢的腐蚀裕量为0mm。 4.本设备的保温材料上部15CrMO部门为岩棉缝毡,下部不锈钢部分为硅酸铝耐火纤维 板,厚度为120mm,保护层为0.5mm厚的镀锌铁皮保温结构重~2500kg,保护层外表面积约为100m2。 5.开口⑧、⒃对焊钢法兰,凹面的焊在设备上,凸面的件为附加对应法兰。 6.A32430及A25884处的固定支架仍用原支架,仅支座处的连接螺栓螺母由M24变为 M30,详见本图编号29,编号30,A25884处固定支架的斜撑由L100×100×10变为

反应器结构及工作原理图解

反应器结构及工作原理图解 小7:这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。②釜式反应器。由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。③有固体颗粒床层的反应器。气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。④塔式反应器。用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。 一、管式反应器 一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。

分类: 1、水平管式反应器 由无缝钢管与U形管连接而成。这种结构易于加工制造和检修。高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa压力。如用透镜面钢法兰,承受压力可达10000-20000kPa。

2、立管式反应器 立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。

3、盘管式反应器 将管式反应器做成盘管的形式,设备紧凑,节省空间。但检修和清刷管道比较困难。

连续循环反应器中返混状况测定

实验二连续循环反应器中返混状况测定 实验目的 实验原理 在工业生产上,对某些反应为了控制反应物的合适浓度,以便控制温度、转化率和收率,同时需要使物料在反应器内由足够的停留时间,并具有一定的线速度,而将反应物的一部分物料返回到反应器进口,使其与新鲜的物料混合再进入反应器进行反应。在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。对于这种反应器循环与返混之间的关系,需要通过实验来测定。 在连续均相管式循环反应器中,若循环流量等于零,则反应器的返混程度与平推流反应器相近,由于管内流体的速度分布和扩散,会造成较小的返混。若有循环操作,则反应器出口的流体被强制返回反应器入口,也就是返混。返混程度的大小与循环流量有关,通常定义循环比 R 为: 循环物料的体积流量 离开反应器物料的体积流量循环比 R 是连续均相管式循环反应器的重要特征,可自零变至无穷大。当R=0 时,相当于平推流管式反应器。当R=∞时,相当于全混流反应器。因此,对于连续均相管式循环反应器,可以通过调节循环比 R,得到不同返混程度的反应系统。一般情况下,循环比大于 20 时,系统的返混特性已经非常接近全混流反应器。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。 停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量 Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知f(t)dt=V?C(t)dtQ Q=∫0∞VC(t)dt 所以f(t)=VC(t)/∫0∞VC(t)dt=C(t)/∫0∞C(t)dt 由此可见 f (t )与示踪剂浓度 C(t )成正比。因此,本实验中用水作为连续流动的物料,以

管式反应器(上

毕业论文题目管式反应器操作与控制 专业应用化工生产技术年级 姓名 指导教师 定稿日期:2013年 5月 25日

目录 一、管式反应器的概述 (1) 二、管式反应器的特点 (2) 三、管式反应器的分类 (3) 四、管式反应器的日常维护 (5) 五、管式反应器故障分析及处理 (5) 六、关于管式反应器的计算 (7) 七、管式反应器生产实例 (12) 八、相关习题 (15) (一)判断题 (15) (二)选择题 (15) (三)填空题 (15) (四)问答题 (15) (五)参考答案 (15) 结语 (16) 参考文献 (16) 致谢 (17)

管式反应器操作与控制 一、管式反应器的概述 管式反应器是一种呈管状、长径比很大的连续操作反应器。 这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。 管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。此外,管式反应器可实现分段温度控制。其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。

二、管式反应器的特点 1、反应物的分子在反应器内停留时间相等,反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 2、管式反应器的单位反应器体积具有较大的换热面,特别适用于热效应较大的反应。 3、由于反应物在管式反应器中返混小,反应速度快,流速快,所以它的生产率高。 4、管式反应器适用于大型化和连续化的化工生产。 5、和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近于理想置换流。 6、反应器内各处的浓度未必相等,反应速率随空间位置而变化; 7、由于径向具有严格均匀的速度分布,也就是在径向不存在浓度变化,所以反应速率随空间位置的变化将只限于轴向。 8、理想管式反应器的反应结果唯一地由化学反应动力学所确定。 9、结构简单紧凑,强度高,抗腐蚀强,抗冲击性能好,使用寿命长,便于检修。

管式反应器

管式反应器的概述 管式反应器是一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。 管式反应器的特点 1、反应物的分子在反应器内停留时间相等,反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。 2、管式反应器的单位反应器体积具有较大的换热面,特别适用于热效应较大的反应。 3、由于反应物在管式反应器中返混小,反应速度快,流速快,所以它的生产率高。 4、管式反应器适用于大型化和连续化的化工生产。 5、和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近于理想置换流。 6、反应器内各处的浓度未必相等,反应速率随空间位置而变化; 7、由于径向具有严格均匀的速度分布,也就是在径向不存在浓度变化,所以反应速率随空间位置的变化将只限于轴向。 8、理想管式反应器的反应结果唯一地由化学反应动力学所确定。 9、结构简单紧凑,强度高,抗腐蚀强,抗冲击性能好,使用寿命长,便于检修。 管式反应器的分类 管式反应器按结构可分为:直管式、U型管式、盘管式和多管式 1、直管式:结构简单,处理量小,可用作多管式反应器的实验装置

2、U型管式: 3、盘管式 4、多管式: 多管式反应器按管道的连接方式的不同,把管式反应器分为多管串联管式反应器和多管并联管式反应器。

相关文档
最新文档